LT1499CSTR [Linear]

Driving A-to-D Converters; 驾驶A-模数转换器
LT1499CSTR
型号: LT1499CSTR
厂家: Linear    Linear
描述:

Driving A-to-D Converters
驾驶A-模数转换器

转换器 模数转换器
文件: 总20页 (文件大小:268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1498/LT1499  
10MHz, 6V/µs, Dual/Quad  
Rail-to-Rail Input and Output  
Precision C-Load Op Amps  
FEATURES  
DESCRIPTION  
The LT®1498/LT1499 are dual/quad, rail-to-rail input and  
output precision C-Load™ op amps with a 10MHz gain-  
bandwidth product and a 6V/μs slew rate.  
n
Rail-to-Rail Input and Output  
+
n
n
n
n
n
n
n
n
n
n
n
n
n
475μV Max V from V to V  
OS  
Gain-Bandwidth Product: 10MHz  
Slew Rate: 6V/μs  
The LT1498/LT1499 are designed to maximize input  
dynamic range by delivering precision performance over  
the full supply voltage. Using a patented technique, both  
input stages of the LT1498/LT1499 are trimmed, one at  
the negative supply and the other at the positive supply.  
Theresultingguaranteedcommonmoderejectionismuch  
better than other rail-to-rail input op amps. When used as  
a unity-gain buffer in front of single supply 12-bit A-to-D  
converters, the LT1498/LT1499 are guaranteed to add less  
than 1LSB of error even in single 3V supply systems.  
Low Supply Current per Amplifier: 1.7mA  
Input Offset Current: 65nA Max  
Input Bias Current: 650nA Max  
Open-Loop Gain: 1000V/mV Min  
Low Input Noise Voltage: 12nV/√Hz Typ  
Wide Supply Range: 2.2V to 15V  
Large Output Drive Current: 30mA  
Stable for Capacitive Loads Up to 10,000pF  
Dual in 8-Pin PDIP and SO Package  
Quad in Narrow 14-Pin SO  
With 110dB of supply rejection, the LT1498/LT1499 main-  
tain their performance over a supply range of 2.2V to 36V  
and are specified for 3V, 5V and 15V supplies. The inputs  
canbedrivenbeyondthesupplieswithoutdamageorphase  
reversal of the output. These op amps remain stable while  
driving capacitive loads up to 10,000pF.  
APPLICATIONS  
n
Driving A-to-D Converters  
n
Active Filters  
n
Rail-to-Rail Buffer Amplifiers  
n
Low Voltage Signal Processing  
The LT1498 is available with the standard dual op amp  
configurationin8-pinPDIPandSOpackaging.TheLT1499  
features the standard quad op amp configuration and is  
available in a 14-pin plastic SO package. These devices  
can be used as plug-in replacements for many standard  
op amps to improve input/output range and precision.  
n
Battery-Powered Systems  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and C-Load  
is a trademark of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
TYPICAL APPLICATION  
Frequency Response  
10  
V
V
= 2.7V  
P-P  
= 3V  
IN  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
+
Single Supply 100kHz 4th Order Butterworth Filter  
6.81k  
11.3k  
100pF  
5.23k  
10.2k  
47pF  
6.81k  
+
V
V
IN  
5.23k  
330pF  
1/2 LT1498  
+
1000pF  
V
OUT  
1/2 LT1498  
+
+
1498 TA01  
V /2  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
1498 TA02  
14989fe  
1
LT1498/LT1499  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
+
Total Supply Voltage (V to V ).................................36V  
Input Current........................................................ 10mA  
Output Short-Circuit Duration (Note 2).........Continuous  
Operating Temperature Range  
Specified Temperature Range (Note 4)  
LT1498/LT1499....................................–40°C to 85°C  
LT1498MP ......................................... –55°C to 125°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
LT1498/LT1499....................................–40°C to 85°C  
LT1498MP ......................................... –55°C to 125°C  
PIN CONFIGURATION  
TOP VIEW  
OUTA  
–IN A  
+IN A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
8
OUT D  
–IN D  
+IN D  
TOP VIEW  
TOP VIEW  
+
+
OUT A  
–IN A  
+IN A  
1
2
3
4
V
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
8
7
6
5
A
B
D
C
OUT B  
–IN B  
+IN B  
OUT B  
–IN B  
+IN B  
+
A
V
A
V
+IN B  
–IN B  
+IN C  
–IN C  
OUT C  
B
B
V
V
N8 PACKAGE  
8-LEAD PLASTIC DIP  
= 150°C, θ = 130°C/W  
S8 PACKAGE  
8-LEAD PLASTIC SO  
= 150°C, θ = 130°C/W  
OUT B  
8
T
JMAX  
T
JMAX  
S PACKAGE  
14-LEAD PLASTIC SO  
= 150°C, θ = 150°C/W  
JA  
JA  
T
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1498CN8#PBF  
LT1498CS8#PBF  
LT1498IN8#PBF  
LT1498IS8#PBF  
LT1498MPS8#PBF  
LT1499CS#PBF  
LT1499IS#PBF  
LEAD BASED FINISH  
LT1498CN8  
TAPE AND REEL  
LT1498CN8#TRPBF  
LT1498CS8#TRPBF  
LT1498IN8#TRPBF  
LT1498IS8#TRPBF  
LT1498MPS8#TRPBF  
LT1499CS#TRPBF  
LT1499IS#TRPBF  
TAPE AND REEL  
LT1498CN8#TR  
LT1498CS8#TR  
LT1498IN8#TR  
PART MARKING*  
1498  
PACKAGE DESCRIPTION  
8-Lead Plastic PDIP  
8-Lead Plastic SO  
8-Lead Plastic PDIP  
8-Lead Plastic SO  
8-Lead Plastic SO  
14-Lead Plastic SO  
14-Lead Plastic SO  
PACKAGE DESCRIPTION  
8-Lead Plastic PDIP  
8-Lead Plastic SO  
8-Lead Plastic PDIP  
8-Lead Plastic SO  
8-Lead Plastic SO  
14-Lead Plastic SO  
14-Lead Plastic SO  
TEMPERATURE RANGE  
0°C to 70°C  
1498  
0°C to 70°C  
1498I  
–40°C to 85°C  
–40°C to 85°C  
–55°C to 125°C  
0°C to 70°C  
1498I  
1498MP  
1498  
1498I  
–40°C to 85°C  
TEMPERATURE RANGE  
0°C to 70°C  
PART MARKING*  
1498  
LT1498CS8  
1498  
0°C to 70°C  
LT1498IN8  
1498I  
–40°C to 85°C  
–40°C to 85°C  
–55°C to 125°C  
0°C to 70°C  
LT1498IS8  
LT1498IS8#TR  
1498I  
LT1498MPS8  
LT1499CS  
LT1498MPS8#TR  
LT1499CS#TR  
1498MP  
1498  
LT1499IS  
LT1499IS#TR  
1498I  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
14989fe  
2
LT1498/LT1499  
ELECTRICAL CHARACTERISTICS TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless  
otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
OS  
Input Offset Voltage  
V
V
= V  
= V  
150  
150  
475  
475  
μV  
μV  
CM  
CM  
+
Input Offset Voltage Shift  
V
V
= V to V  
150  
200  
425  
750  
μV  
μV  
ΔV  
CM  
CM  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V , V (Note 5)  
+
I
B
V
V
= V  
0
250  
–250  
650  
0
nA  
nA  
CM  
CM  
= V  
–650  
+
Input Bias Current Shift  
V
= V to V  
500  
1300  
nA  
ΔI  
B
CM  
+
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V (Note 5)  
0
10  
–10  
100  
0
nA  
nA  
= V (Note 5)  
–100  
+
I
OS  
Input Offset Current  
V
V
= V  
5
5
65  
65  
nA  
nA  
CM  
CM  
= V  
+
Input Offset Current Shift  
Input Noise Voltage  
V
= V to V  
10  
400  
12  
130  
nA  
ΔI  
CM  
OS  
0.1Hz to 10Hz  
f = 1kHz  
nV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/√Hz  
pA/√Hz  
pF  
i
n
f = 1kHz  
0.3  
5
C
IN  
A
VOL  
Large-Signal Voltage Gain  
V = 5V, V = 75mV to 4.8V, R = 10k  
600  
500  
3800  
2000  
V/mV  
V/mV  
S
O
L
V = 3V, V = 75mV to 2.8V, R = 10k  
S
O
L
+
+
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
81  
76  
90  
86  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
+
CMRR Match (Channel-to-Channel) (Note 5)  
V = 5V, V = V to V  
75  
70  
91  
86  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
PSRR  
Power Supply Rejection Ratio  
V = 2.2V to 12V, V = V = 0.5V  
88  
82  
105  
103  
dB  
dB  
S
CM  
O
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing (Low) (Note 6)  
V = 2.2V to 12V, V = V = 0.5V  
S
CM  
O
V
V
No Load  
14  
35  
90  
30  
70  
mV  
mV  
mV  
OL  
I
I
= 0.5mA  
= 2.5mA  
SINK  
SINK  
200  
Output Voltage Swing (High) (Note 6)  
Short-Circuit Current  
No Load  
SOURCE  
SOURCE  
2.5  
50  
140  
10  
100  
250  
mV  
mV  
mV  
OH  
I
I
= 0.5mA  
= 2.5mA  
I
I
V = 5V  
12.5  
12.0  
24  
19  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate (Note 8)  
1.7  
2.2  
mA  
S
GBW  
SR  
6.8  
10.5  
MHz  
V = 5V, A = 1, R = Open, V = 4V  
2.6  
2.3  
4.5  
4.0  
V/μs  
V/μs  
S
S
V
V
L
L
O
V = 3V, A = 1, R = Open  
The l denotes the specifications which apply over the temperature range 0°C < TA < 70°C. VS = 5V, 0V; VS = 3V, 0V;  
VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
= V  
175  
175  
650  
650  
μV  
μV  
OS  
= V + 0.1V  
l
l
V
TC  
Input Offset Voltage Drift (Note 3)  
0.5  
1.5  
2.5  
4.0  
μV/°C  
μV/°C  
OS  
+
V
CM  
V
CM  
V
CM  
= V  
+
l
l
Input Offset Voltage Shift  
= V + 0.1V to V  
170  
200  
600  
900  
μV  
μV  
ΔV  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
= V + 0.1V, V (Note 5)  
14989fe  
3
LT1498/LT1499  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range  
0°C < TA < 70°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
I
B
Input Bias Current  
V
V
= V  
0
275  
–275  
780  
0
nA  
nA  
CM  
CM  
= V + 0.1V  
–780  
+
l
Input Bias Current Shift  
V
CM  
= V + 0.1V to V  
550  
1560  
nA  
ΔI  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V (Note 5)  
0
15  
–15  
170  
0
nA  
nA  
= V + 0.1V (Note 5)  
–170  
+
l
l
I
Input Offset Current  
V
CM  
V
CM  
= V  
10  
10  
85  
85  
nA  
nA  
OS  
= V + 0.1V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.1V to V  
20  
170  
nA  
ΔI  
CM  
OS  
l
l
A
VOL  
V = 5V, V = 75mV to 4.8V, R = 10k  
V = 3V, V = 75mV to 2.8V, R = 10k  
500  
400  
2500  
2000  
V/mV  
V/mV  
S
S
O
O
L
L
+
+
l
l
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V + 0.1V to V  
78  
73  
89  
85  
dB  
dB  
S
CM  
V = 3V, V = V + 0.1V to V  
S
CM  
+
+
l
l
CMRR Match (Channel-to-Channel) (Note 5)  
V = 5V, V = V + 0.1V to V  
74  
69  
90  
86  
dB  
dB  
S
CM  
V = 3V, V = V + 0.1V to V  
S
CM  
l
l
PSRR  
Power Supply Rejection Ratio  
V = 2.3V to 12V, V = V = 0.5V  
86  
80  
102  
102  
dB  
dB  
S
CM  
O
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing (Low) (Note 6)  
V = 2.3V to 12V, V = V = 0.5V  
S
CM  
O
l
l
l
V
No Load  
17  
40  
110  
35  
80  
mV  
mV  
mV  
OL  
OH  
I
I
= 0.5mA  
= 2.5mA  
SINK  
SINK  
220  
l
l
l
V
Output Voltage Swing (High) (Note 6)  
Short-Circuit Current  
No Load  
SOURCE  
SOURCE  
3.5  
55  
160  
15  
120  
300  
mV  
mV  
mV  
I
I
= 0.5mA  
= 2.5mA  
l
l
I
I
V = 5V  
12  
10  
23  
20  
mA  
mA  
SC  
S
V = 3V  
S
l
l
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate (Note 8)  
1.9  
9
2.6  
mA  
S
GBW  
SR  
6.1  
MHz  
l
l
V = 5V, A = 1, R = Open, V = 4V  
2.5  
2.2  
4.0  
3.5  
V/μs  
V/μs  
S
S
V
V
L
L
O
V = 3V, A = 1, R = Open  
The l denotes the specifications which apply over the temperature range –40°C < TA < 85°C. VS = 5V, 0V; VS = 3V, 0V;  
VCM = VOUT = half supply, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
= V  
250  
250  
750  
750  
μV  
μV  
= V + 0.1V  
l
l
V
TC  
Input Offset Voltage Drift (Note 3)  
0.5  
1.5  
2.5  
4.0  
μV/°C  
μV/°C  
OS  
+
V
V
V
= V  
CM  
CM  
CM  
+
l
l
Input Offset Voltage Shift  
= V + 0.1V to V  
250  
300  
650  
μV  
μV  
ΔV  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V + 0.1V, V (Note 5)  
1500  
+
l
l
I
B
V
V
= V  
0
350  
–350  
975  
0
nA  
nA  
CM  
CM  
= V + 0.1V  
–975  
+
l
Input Bias Current Shift  
V
CM  
= V + 0.1V to V  
700  
1950  
nA  
ΔI  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V (Note 5)  
0
30  
–30  
180  
0
nA  
nA  
= V + 0.1V (Note 5)  
–180  
+
l
l
I
Input Offset Current  
V
CM  
V
CM  
= V  
15  
15  
110  
110  
nA  
nA  
OS  
= V + 0.1V  
+
l
Input Offset Current Shift  
V
CM  
= V + 0.1V to V  
30  
220  
nA  
ΔI  
OS  
14989fe  
4
LT1498/LT1499  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range  
–40°C < TA < 85°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
V = 5V, V = 75mV to 4.8V, R = 10k  
MIN  
TYP  
MAX  
UNITS  
l
l
A
VOL  
Large-Signal Voltage Gain  
400  
300  
2500  
2000  
V/mV  
V/mV  
S
O
L
V = 3V, V = 75mV to 2.8V, R = 10k  
S
O
L
+
+
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
V = 5V, V = V + 0.1V to V  
77  
73  
86  
81  
dB  
dB  
S
CM  
V = 3V, V = V + 0.1V to V  
S
CM  
+
+
l
l
V = 5V, V = V + 0.1V to V  
72  
69  
86  
83  
dB  
dB  
S
CM  
V = 3V, V = V + 0.1V to V  
S
CM  
l
l
Power Supply Rejection Ratio  
V = 2.5V to 12V, V = V = 0.5V  
86  
80  
100  
100  
dB  
dB  
S
CM  
O
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing (Low) (Note 6)  
V = 2.5V to 12V, V = V = 0.5V  
S
CM  
O
l
l
l
V
No Load  
18  
45  
110  
40  
80  
mV  
mV  
mV  
OL  
OH  
I
I
= 0.5mA  
= 2.5mA  
SINK  
SINK  
220  
l
l
l
V
Output Voltage Swing (High) (Note 6)  
Short-Circuit Current  
No Load  
3.5  
60  
170  
15  
120  
300  
mV  
mV  
mV  
I
I
= 0.5mA  
= 2.5mA  
SOURCE  
SOURCE  
l
l
I
I
V = 5V  
7.5  
7.5  
15  
15  
mA  
mA  
SC  
S
V = 3V  
S
l
l
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate (Note 8)  
2.0  
8.5  
2.7  
mA  
S
GBW  
SR  
5.8  
MHz  
l
l
V = 5V, A = 1, R = Open, V = 4V  
V = 3V, A = 1, R = Open  
2.2  
1.9  
3.6  
3.2  
V/μs  
V/μs  
S
V
L
O
S
V
L
The l denotes the specifications which apply over the temperature range –55°C < TA < 125°C. VS = 5V, 0V; VS = 3V, 0V;  
VCM = VOUT = half supply, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
= V – 0.5V  
300  
300  
1100  
1100  
μV  
μV  
= V + 0.5V  
l
l
V
TC  
Input Offset Voltage Drift (Note 3)  
0.5  
1.5  
μV/°C  
μV/°C  
OS  
+
V
V
V
= V – 0.5V  
CM  
CM  
CM  
+
l
l
Input Offset Voltage Shift  
= V + 0.5V to V – 0.5V  
250  
300  
2300  
1900  
μV  
μV  
ΔV  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V + 0.5V, V 0.5V (Note 5)  
+
l
l
I
B
V
V
= V – 0.5V  
0
450  
–450  
1100  
0
nA  
nA  
CM  
CM  
= V + 0.5V  
–1100  
+
l
Input Bias Current Shift  
V
CM  
= V + 0.5V to V – 0.5V  
900  
2200  
nA  
ΔI  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V – 0.5V (Note 5)  
0
40  
–40  
400  
0
nA  
nA  
= V + 0.5V (Note 5)  
–400  
+
l
l
I
Input Offset Current  
V
CM  
V
CM  
= V – 0.5V  
40  
40  
300  
300  
nA  
nA  
OS  
= V + 0.5V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.5V to V – 0.5V  
80  
600  
nA  
ΔI  
CM  
OS  
l
l
A
VOL  
V = 5V, V = 0.5mV to 4.5V, R = 10k  
V = 3V, V = 0.5mV to 2.5V, R = 10k  
40  
20  
210  
210  
V/mV  
V/mV  
S
S
O
O
L
L
+
+
l
l
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V + 0.5V to V – 0.5V  
66  
62  
80  
75  
dB  
dB  
S
CM  
V = 3V, V = V + 0.5V to V – 0.5V  
S
CM  
+
+
l
l
CMRR Match (Channel-to-Channel) (Note 5)  
V = 5V, V = V + 0.5V to V – 0.5V  
62  
58  
80  
75  
dB  
dB  
S
CM  
V = 3V, V = V + 0.5V to V – 0.5V  
S
CM  
l
l
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 12V, V = V = 0.5V  
86  
80  
100  
100  
dB  
dB  
S
CM  
O
PSRR Match (Channel-to-Channel) (Note 5)  
V = 2.5V to 12V, V = V = 0.5V  
S CM O  
14989fe  
5
LT1498/LT1499  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range  
–55°C < TA < 125°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
Output Voltage Swing (Low) (Note 6)  
Output Voltage Swing (High) (Note 6)  
Short-Circuit Current  
No Load  
SINK  
SINK  
22  
45  
50  
80  
mV  
mV  
mV  
OL  
I
I
= 0.5mA  
= 2.5mA  
110  
220  
l
l
l
V
OH  
No Load  
SOURCE  
SOURCE  
3.5  
60  
170  
20  
120  
350  
mV  
mV  
mV  
I
I
= 0.5mA  
= 2.5mA  
l
l
I
I
V = 5V  
5
5
15  
15  
mA  
mA  
SC  
S
V = 3V  
S
l
l
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate (Note 8)  
2.4  
8.5  
3.0  
mA  
S
GBW  
SR  
5.8  
MHz  
l
l
V = 5V, A = 1, R = Open, V = 4V  
2.0  
1.7  
3.6  
3.2  
V/μs  
V/μs  
S
V
V
L
L
O
V = 3V, A = 1, R = Open  
S
TA = 25°C. VS = 15V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
= V  
= V  
200  
200  
800  
800  
μV  
μV  
+
Input Offset Voltage Shift  
V
V
= V to V  
150  
250  
650  
μV  
μV  
ΔV  
CM  
CM  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V , V (Note 5)  
1400  
+
I
V
CM  
V
CM  
= V  
= V  
0
250  
–250  
715  
0
nA  
nA  
B
–715  
+
Input Bias Current Shift  
V
CM  
= V to V  
500  
1430  
nA  
ΔI  
B
+
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V (Note 5)  
0
12  
–12  
120  
0
nA  
nA  
= V (Note 5)  
–120  
+
I
Input Offset Current  
V
CM  
V
CM  
= V  
= V  
6
6
70  
70  
nA  
nA  
OS  
+
Input Offset Current Shift  
Input Noise Voltage  
V
= V to V  
12  
400  
12  
140  
nA  
ΔI  
CM  
OS  
0.1Hz to 10Hz  
f = 1kHz  
nV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Large-Signal Voltage Gain  
nV/√Hz  
pA/√Hz  
i
n
f = 1kHz  
0.3  
A
VOL  
V = –14.5V to 14.5V, R = 10k  
V = –10V to 10V, R = 2k  
1000  
500  
5200  
2300  
V/mV  
V/mV  
O
O
L
L
Channel Separation  
V = –10V to 10V, R = 2k  
116  
93  
87  
89  
83  
130  
106  
103  
110  
105  
dB  
dB  
dB  
dB  
dB  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
Power Supply Rejection Ratio  
V
CM  
V
CM  
= V to V  
+
= V to V  
V = 5V to 15V  
S
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing (Low) (Note 6)  
V = 5V to 15V  
S
V
V
No Load  
18  
40  
230  
30  
80  
500  
mV  
mV  
mV  
OL  
OH  
I
I
= 0.5mA  
= 10mA  
SINK  
SINK  
Output Voltage Swing (High) (Note 6)  
No Load  
SOURCE  
SOURCE  
2.5  
55  
420  
10  
120  
800  
mV  
mV  
mV  
I
I
= 0.5mA  
= 10mA  
14989fe  
6
LT1498/LT1499  
ELECTRICAL CHARACTERISTICS TA = 25°C. VS = 15V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
I
I
Short-Circuit Current  
15  
30  
1.8  
10.5  
6
mA  
mA  
SC  
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate  
2.5  
S
GBW  
SR  
6.8  
3.5  
MHz  
V/μs  
A = –1, R = Open, V = 10V  
V
L
O
Measure at V = 5V  
O
The l denotes the specifications which apply over the temperature range 0°C < TA < 70°C. VS = 15V, VCM = 0V, VOUT = 0V, unless  
otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
= V  
200  
200  
900  
900  
μV  
μV  
= V + 0.1V  
l
l
V
TC  
Input Offset Voltage Drift (Note 3)  
1.0  
2.0  
3.5  
5.0  
μV/°C  
μV/°C  
OS  
+
V
V
V
= V  
CM  
CM  
CM  
+
l
l
ΔV  
Input Offset Voltage Shift  
= V + 0.1V to V  
200  
350  
750  
μV  
μV  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V + 0.1V, V (Note 5)  
1500  
+
l
l
I
B
V
V
= V  
0
300  
–300  
875  
0
nA  
nA  
CM  
CM  
= V + 0.1V  
–875  
+
l
Input Bias Current Shift  
V
CM  
= V + 0.1V to V  
600  
1750  
nA  
ΔI  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V (Note 5)  
0
20  
–20  
180  
0
nA  
nA  
= V + 0.1V (Note 5)  
–180  
+
l
l
I
Input Offset Current  
V
CM  
V
CM  
= V  
15  
15  
90  
90  
nA  
nA  
OS  
= V + 0.1V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.1V to V  
30  
180  
nA  
ΔI  
CM  
OS  
l
l
A
VOL  
V = –14.5V to 14.5V, R = 10k  
V = –10V to 10V, R = 2k  
900  
400  
5000  
2000  
V/mV  
V/mV  
O
O
L
L
l
l
l
l
l
Channel Separation  
V = –10V to 10V, R = 2k  
112  
92  
86  
88  
82  
125  
103  
103  
103  
103  
dB  
dB  
dB  
dB  
dB  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
Power Supply Rejection Ratio  
V
CM  
V
CM  
= V + 0.1V to V  
+
= V + 0.1V to V  
V = 5V to 15V  
S
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing (Low) (Note 6)  
V = 5V to 15V  
S
l
l
l
V
No Load  
18  
45  
270  
40  
90  
mV  
mV  
mV  
OL  
OH  
I
I
= 0.5mA  
= 10mA  
SINK  
SINK  
520  
l
l
l
V
Output Voltage Swing (High) (Note 6)  
No Load  
SOURCE  
SOURCE  
3.5  
60  
480  
15  
mV  
mV  
mV  
I
I
= 0.5mA  
= 10mA  
120  
1000  
l
l
l
l
I
I
Short-Circuit Current  
12  
28  
1.9  
9
mA  
mA  
SC  
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate  
2.8  
S
GBW  
SR  
6.1  
3.4  
MHz  
V/μs  
A = –1, R = Open, V = 10V  
5.3  
V
L
O
Measured at V = 5V  
O
14989fe  
7
LT1498/LT1499  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range  
–40°C < TA < 85°C. VS = 15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
= V  
300  
300  
950  
950  
μV  
μV  
= V + 0.1V  
l
l
V
TC  
Input Offset Voltage Drift (Note 3)  
1.0  
2.0  
3.5  
5.0  
μV/°C  
μV/°C  
OS  
+
V
V
V
= V  
CM  
CM  
CM  
+
l
l
Input Offset Voltage Shift  
= V + 0.1V to V  
250  
350  
850  
μV  
μV  
ΔV  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V + 0.1V, V (Note 5)  
1800  
+
l
l
I
V
V
= V  
0
350  
–350  
1050  
0
nA  
nA  
B
CM  
CM  
= V + 0.1V  
–1050  
+
l
Input Bias Current Shift  
V
CM  
= V + 0.1V to V  
700  
2100  
nA  
ΔI  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V (Note 5)  
0
20  
–20  
200  
0
nA  
nA  
= V + 0.1V (Note 5)  
–200  
+
l
l
I
Input Offset Current  
V
CM  
V
CM  
= V  
15  
15  
115  
115  
nA  
nA  
OS  
= V + 0.1V  
+
l
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.1V to V  
30  
230  
nA  
ΔI  
CM  
OS  
l
l
A
VOL  
V = –14.5V to 14.5V, R = 10k  
V = –10V to 10V, R = 2k  
800  
350  
5000  
2000  
V/mV  
V/mV  
O
O
L
L
l
l
l
l
l
Channel Separation  
V = –10V to 10V, R = 2k  
110  
90  
86  
88  
82  
120  
101  
100  
100  
100  
dB  
dB  
dB  
dB  
dB  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
Power Supply Rejection Ratio  
V
CM  
V
CM  
= V + 0.1V to V  
+
= V + 0.1V to V  
V = 5V to 15V  
S
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing (Low) (Note 6)  
V = 5V to 15V  
S
l
l
l
V
No Load  
25  
50  
275  
50  
mV  
mV  
mV  
OL  
OH  
I
I
= 0.5mA  
= 10mA  
100  
520  
SINK  
SINK  
l
l
l
V
Output Voltage Swing (High) (Note 6)  
No Load  
SOURCE  
SOURCE  
3.5  
65  
500  
15  
mV  
mV  
mV  
I
I
= 0.5mA  
= 10mA  
120  
1000  
l
l
l
l
I
I
Short-Circuit Current  
10  
18  
2.0  
mA  
mA  
SC  
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate  
3.0  
S
GBW  
SR  
5.8  
3
8.5  
MHz  
V/μs  
A = –1, R = Open, V = 10V  
4.75  
V
L
O
Measure at V = 5V  
O
14989fe  
8
LT1498/LT1499  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range  
–55°C < TA < 125°C. VS = 15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
= V – 0.5V  
350  
350  
1300  
1300  
μV  
μV  
= V + 0.5V  
l
l
V
TC  
Input Offset Voltage Drift (Note 3)  
1.0  
2.0  
μV/°C  
μV/°C  
OS  
+
V
V
V
= V – 0.5V  
CM  
CM  
CM  
+
l
l
Input Offset Voltage Shift  
= V + 0.5V to V – 0.5V  
250  
400  
1500  
2200  
μV  
μV  
ΔV  
OS  
+
Input Offset Voltage Match (Channel-to-Channel)  
Input Bias Current  
= V + 0.5V, V 0.5V (Note 5)  
+
l
l
I
B
V
V
= V – 0.5V  
0
500  
–500  
1200  
0
nA  
nA  
CM  
CM  
= V + 0.5V  
–1200  
+
l
Input Bias Current Shift  
V
CM  
= V + 0.5V to V – 0.5V  
1000  
2400  
nA  
ΔI  
B
+
l
l
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V – 0.5V (Note 5)  
0
40  
–40  
400  
0
nA  
nA  
= V + 0.5V (Note 5)  
–400  
+
l
l
I
Input Offset Current  
V
CM  
V
CM  
= V – 0.5V  
40  
40  
300  
300  
nA  
nA  
OS  
= V + 0.5V  
+
l
l
l
l
l
l
l
Input Offset Current Shift  
V
= V + 0.5V to V – 0.5V  
80  
600  
nA  
V/mV  
dB  
ΔI  
CM  
OS  
A
VOL  
Large-Signal Voltage Gain  
V = –14.5V to 14.5V, R = 10k  
40  
110  
86  
400  
120  
100  
100  
100  
100  
O
L
Channel Separation  
V = –10V to 10V, R = 2k  
O
L
+
CMRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
Power Supply Rejection Ratio  
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing (Low) (Note 6)  
V
CM  
V
CM  
= V + 0.5V to V – 0.5V  
dB  
+
= V + 0.5V to V – 0.5V  
80  
dB  
PSRR  
V = 5V to 15V  
88  
dB  
S
V = 5V to 15V  
80  
dB  
S
l
l
l
V
No Load  
25  
50  
275  
75  
100  
520  
mV  
mV  
mV  
OL  
OH  
I
I
= 0.5mA  
= 10mA  
SINK  
SINK  
l
l
l
V
Output Voltage Swing (High) (Note 6)  
No Load  
3.5  
65  
500  
20  
mV  
mV  
mV  
I
I
= 0.5mA  
= 10mA  
120  
SOURCE  
SOURCE  
1400  
l
l
l
l
I
I
Short-Circuit Current  
7.5  
12  
2.5  
mA  
mA  
SC  
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate  
3.2  
S
GBW  
SR  
5.8  
2.2  
8.5  
MHz  
V/μs  
A = –1, R = Open, V = 10V  
4.75  
V
L
O
Measure at V = 5V  
O
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: Matching parameters are the difference between amplifiers A and  
D and between B and C on the LT1499; between the two amplifiers on the  
LT1498.  
Note 6: Output voltage swings are measured between the output and  
Note 2: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
power supply rails.  
Note 7: V = 3V, V = 15V GBW limit guaranteed by correlation to  
S
S
5V tests.  
Note 3: This parameter is not 100% tested.  
Note 8: V = 3V, V = 5V slew rate limit guaranteed by correlation to  
S
S
Note 4: The LT1498C/LT1499C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT1498C/LT1499C are designed,  
characterized and expected to meet specified performance from –40°C  
to 85°C but are not tested or QA sampled at these temperatures. The  
LT1498I/LT1499I are guaranteed to meet specified performance from  
–40°C to 85°C. The LT1498MP is guaranteed to meet specified  
performance from –55°C to 125°C.  
15V tests.  
14989fe  
9
LT1498/LT1499  
TYPICAL PERFORMANCE CHARACTERISTICS  
VOS Distribution, VCM = 0V  
(PNP Stage)  
VOS Distribution VCM = 5V  
(NPN Stage)  
ΔVOS Shift for VCM = 0V to 5V  
25  
20  
15  
25  
20  
15  
25  
20  
15  
LT1498: N8, S8 PACKAGES  
LT1499: S14 PACKAGE  
LT1498: N8, S8 PACKAGES  
LT1499: S14 PACKAGE  
LT1498: N8, S8 PACKAGES  
LT1499: S14 PACKAGE  
V
V
= 5V, 0V  
CM  
V
V
= 5V, 0V  
CM  
V
V
= 5V, 0V  
CM  
S
S
S
= 0V  
= 5V  
= 0V TO 5V  
10  
5
10  
5
10  
5
0
0
0
–500  
–300  
–100  
100  
300  
500  
–500  
–300  
–100  
100  
300  
500  
–500  
–300  
–100  
100  
300  
500  
INPUT OFFSET VOLTAGE (μV)  
INPUT OFFSET VOLTAGE (μV)  
INPUT OFFSET VOLTAGE (μV)  
14989 G01  
14989 G02  
14989 G03  
Input Bias Current  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
vs Common Mode Voltage  
2.0  
1.5  
400  
300  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V, 0V  
V
S
= p15V  
S
T
= 125°C  
= 25°C  
A
T
V
S
= 5V, 0V  
A
200  
100  
T
= –55°C  
A
1.0  
0.5  
0
0
–100  
–200  
–300  
–400  
T
= 125°C  
A
T
= 25°C  
T = –55°C  
A
A
–25  
0
50  
75 100 125  
–50  
25  
0
16 20  
–2 –1  
1
2
3
4
5
6
0
4
8
12  
24 28 32 36  
TEMPERATURE (°C)  
COMMON MODE VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
14989 G05  
14989 G06  
14989 G04  
Output Saturation Voltage  
vs Load Current (Output High)  
Output Saturation Voltage  
vs Load Current (Output Low)  
Input Bias Current vs Temperature  
400  
300  
1000  
100  
10  
1000  
100  
10  
V
CM  
= p15V  
S
V
= 15V  
200  
V
= 5V, 0V  
S
NPN ACTIVE  
PNP ACTIVE  
V
= 5V  
CM  
100  
T
A
= 25°C  
A
0
T
T
= 125°C  
–100  
–200  
–300  
–400  
V
S
= p15V  
= –15V  
= –55°C  
A
V
CM  
T
A
= –55°C  
T
A
= 125°C  
A
V
= 5V, 0V  
S
V
= 0V  
CM  
T
= 25°C  
1
1
–50 –35 –20 –5 10 25 40 55 70 85 100  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
14989 G08  
14989 G09  
14989 G07  
14989fe  
10  
LT1498/LT1499  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.1Hz to 10Hz  
Minimum Supply Voltage  
Output Voltage Noise  
Noise Voltage Spectrum  
200  
180  
160  
140  
300  
250  
200  
150  
100  
50  
V
= 5V, 0V  
V
V
= p2.5V  
CM  
S
S
= 0V  
120  
100  
V
= 2.5V  
CM  
PNP ACTIVE  
80  
60  
40  
20  
0
V
= 4V  
CM  
NPN ACTIVE  
T
= 85°C  
T = 70°C  
A
A
NONFUNCTIONAL  
T
= –55°C  
A
T
A
= 25°C  
0
4
1
2
3
5
1
10  
100  
1000  
0
10  
TOTAL SUPPLY VOLTAGE (V)  
TIME (1s/DIV)  
FREQUENCY (Hz)  
14989 G12  
14989 G10  
14989 G11  
Noise Current Spectrum  
Gain and Phase vs Frequency  
CMRR vs Frequency  
10  
9
70  
60  
180  
144  
108  
72  
120  
110  
100  
90  
V
= 5V, 0V  
R
V
V
= 10k  
= p1.5V  
= p15V  
L
S
S
S
50  
8
7
40  
PHASE  
6
5
30  
36  
80  
V
S
= p15V  
20  
0
70  
V
S
= p2.5V  
GAIN  
4
3
2
1
0
10  
–36  
–72  
–108  
–144  
–180  
60  
V
= 4V  
CM  
0
50  
NPN ACTIVE  
–10  
–20  
–30  
40  
V
= 2.5V  
30  
CM  
PNP ACTIVE  
20  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1
10  
100  
1000  
10000  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
14989 G13  
14989 G14  
14989 G15  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
PSRR vs Frequency  
Channel Separation vs Frequency  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–50  
–60  
–70  
–80  
20  
18  
100  
90  
80  
70  
60  
50  
40  
V
= p2.5V  
V
V
= p15V  
= p1V  
S
S
P-P  
OUT  
R
= 2k  
L
16  
14  
12  
PHASE MARGIN  
POSITIVE SUPPLY  
–90  
NEGATIVE SUPPLY  
–100  
10  
8
GAIN BANDWIDTH  
–110  
–120  
–130  
–140  
–150  
6
4
2
0
30  
20  
10  
0
–10  
1
10  
100  
1000  
10000  
0.01  
0.1  
1
10  
100  
1000  
0
5
15  
20  
25  
30  
10  
FREQUENCY (kHz)  
TOTAL SUPPLY VOLTAGE (V)  
FREQUENCY (kHz)  
14989 G16  
14989 G18  
14989 G17  
14989fe  
11  
LT1498/LT1499  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Step  
Capacitive Load Handling  
Slew Rate vs Supply Voltage  
vs Settling Time to 0.01%  
70  
60  
50  
40  
30  
20  
10  
0
10  
8
9
8
V
A
= 5V, 0V  
= 1  
= 1k  
V
S
= p15V  
V
A
= 80% OF V  
S
S
V
OUT  
V
= –1  
NONINVERTING  
R
L
6
INVERTING  
RISING EDGE  
4
7
2
0
6
5
–2  
–4  
–6  
–8  
–10  
FALLING EDGE  
INVERTING  
4
3
NONINVERTING  
10  
100  
1000  
10000  
100000  
1.5  
2.0  
2.5  
3.0  
3.5  
0
4
8
12 16 20 24 28 32 36  
CAPACITIVE LOAD (pF)  
SETTLING TIME (μs)  
TOTAL SUPPLY VOLTAGE (V)  
14989 G19  
14989 G21  
14989 G20  
Open-Loop Gain  
Open-Loop Gain  
Warm-Up Drift vs Time  
20  
15  
4
3
2
1
10  
0
V
= p15V  
V
S
= 5V, 0V  
S
S8 PACKAGE, V = p2.5V  
S
10  
5
R
= 2k  
L
R
R
= 2k  
L
N8 PACKAGE, V = p2.5V  
S
R
L
= 10k  
–10  
–20  
–30  
–40  
LT1499CS, V = p2.5V  
S
0
0
= 10k  
L
S8 PACKAGE, V = p15V  
S
–5  
–1  
N8 PACKAGE, V = p15V  
S
–10  
–15  
–2  
–3  
–4  
LT1499CS, V = p15V  
S
–20  
0
5
1
2
4
–20 –15 –10 –5  
10 15 20  
0
5
6
3
80  
TIME AFTER POWER-UP (SEC)  
0
20 40 60  
100 120 140 160  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
14989 G22  
14989 G23  
14989 G24  
Total Harmonic Distortion + Noise  
vs Peak-to-Peak Voltage  
Total Harmonic Distortion + Noise  
vs Frequency  
1
0.1  
1
f = 1kHz  
V
V
= p1.5V  
S
R
= 10k  
= 2V  
P-P  
L
IN  
= 10k  
R
L
A
V
= 1  
A
S
= 1  
V
0.1  
V
= p1.5V  
A
S
= 1  
V
V
V
= p2.5V  
0.01  
0.001  
A
S
= –1  
V
V
= p1.5V  
A
V
= –1  
A
S
= –1  
V
0.01  
= p2.5V  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
0
1
2
3
4
)
5
INPUT VOLTAGE (V  
FREQUENCY (kHz)  
P-P  
14989 G25  
14989 G26  
14989fe  
12  
LT1498/LT1499  
TYPICAL PERFORMANCE CHARACTERISTICS  
5V Small-Signal Response  
5V Large-Signal Response  
14989 G27  
14989 G28  
V
A
V
= 5V  
= 1  
V
A
V
= 5V  
= 1  
200ns/DIV  
2μs/DIV  
S
V
S
V
= 20mV AT 50kHz  
= 4V AT 10kHz  
IN  
= 1k  
P-P  
IN  
= 1k  
P-P  
R
L
R
L
15V Small-Signal Response  
15V Large-Signal Response  
14989 G29  
14989 G30  
V
= p15V  
V
= p15V  
200ns/DIV  
2μs/DIV  
S
V
S
A
V
= 1  
A
V
= 1  
V
IN  
= 20mV AT 50kHz  
= 20V AT 10kHz  
IN  
P-P  
P-P  
R
= 1k  
R
= 1k  
L
L
APPLICATIONS INFORMATION  
Rail-to-Rail Input and Output  
The PNP differential input pair is active for input common  
mode voltages, V , between the negative supply to  
CM  
The LT1498/LT1499 are fully functional for an input and  
output signal range from the negative supply to the posi-  
tive supply. Figure 1 shows a simplified schematic of the  
amplifier. The input stage consists of two differential am-  
plifiers, a PNP stage (Q1/Q2) and an NPN stage (Q3/Q4)  
which are active over different ranges of input common  
mode voltage. A complementary common emitter output  
stage(Q14/Q15)isemployedallowingtheoutputtoswing  
from rail-to-rail. The devices are fabricated on Linear  
Technology’s proprietary complementary bipolar process  
to ensure very similar DC and AC characteristics for the  
output devices (Q14/Q15).  
approximately 1.3V below the positive supply. As V  
CM  
moves further toward the positive supply, the transistor  
(Q5) will steer the tail current, I , to the current mirror  
1
(Q6/Q7) activating the NPN differential pair, and the PNP  
differential pair becomes inactive for the rest of the input  
common mode range up to the positive supply.  
The output is configured with a pair of complementary  
common emitter stages that enables the output to swing  
from rail to rail. Capacitors (C1 and C2) form local  
feedback loops that lower the output impedance at high  
frequencies.  
14989fe  
13  
LT1498/LT1499  
APPLICATIONS INFORMATION  
+
V
R3  
R4  
R5  
Q15  
Q12  
C2  
I
1
Q11  
Q13  
D1  
+IN  
R6  
V
Q5  
BIAS  
D2  
D5  
D6  
C
C
V
OUT  
–IN  
R7  
Q4 Q3  
Q1 Q2  
D3  
Q10  
BUFFER  
AND  
OUTPUT BIAS  
Q9  
R1  
Q8  
D4  
C1  
Q7  
Q6  
Q14  
R2  
V
14989 F01  
Figure 1. LT1498 Simplified Schematic Diagram  
Input Offset Voltage  
voltage exceeds either power supply by approximately  
700mV, D1/D2 or D3/D4 will turn on, forcing the output  
to the proper polarity. For the phase reversal protection to  
work properly, the input current must be less than 5mA.  
If the amplifier is to be severely overdriven, an external  
resistor should be used to limit the overdrive current.  
The offset voltage changes depending upon which input  
stage is active. The input offsets are random, but are  
trimmed to less than 475μV. To maintain the precision  
characteristics of the amplifier, the change of V over the  
OS  
entire input common mode range (CMRR) is guaranteed  
to be less than 425μV on a single 5V supply.  
Furthermore, the LT1498/LT1499’s input stages are pro-  
tected by a pair of back-to-back diodes, D5/D6. When a  
differential voltage of more than 0.7V is applied to the  
inputs, these diodes will turn on, preventing the Zener  
breakdown of the input transistors. The current in D5/D6  
should be limited to less than 10mA. Internal resistors R6  
and R7 (700Ω total) limit the input current for differential  
input signals of 7V or less. For larger input levels, a re-  
sistor in series with either or both inputs should be used  
to limit the current. Worst-case differential input voltage  
usually occurs when the output is shorted to ground. In  
addition, the amplifier is protected against ESD strikes up  
to 3kV on all pins.  
Input Bias Current  
The input bias current polarity also depends on the input  
common mode voltage, as described in the previous sec-  
tion. WhenthePNPdifferentialpairisactive, theinputbias  
currents flow out of the input pins; they flow in opposite  
directionwhentheNPNinputstageisactive.Theoffseterror  
due to input bias current can be minimized by equalizing  
the noninverting and inverting input source impedances.  
This will reduce the error since the input offset currents  
are much less than the input bias currents.  
Overdrive Protection  
Capacitive Load  
To prevent the output from reversing polarity when the  
input voltage exceeds the power supplies, two pair of  
crossing diodes D1 to D4 are employed. When the input  
The LT1498/LT1499 are designed for ease of use. The  
amplifier can drive a capacitive load of more than 10nF  
14989fe  
14  
LT1498/LT1499  
APPLICATIONS INFORMATION  
without oscillation at unity gain. When driving a heavy  
capacitive load, the bandwidth is reduced to maintain  
stability. Figures 2a and 2b illustrate the stability of the  
device for small-signal and large-signal conditions with  
capacitive loads. Both the small-signal and large-signal  
transient response with a 10nF capacitive load are well  
behaved.  
C
= 0pF  
L
C
= 500pF  
L
C
L
= 10nF  
Feedback Components  
14989 F02a  
V
A
= 5V  
= 1  
S
V
To minimize the loading effect of feedback, it is possible  
to use the high value feedback resistors to set the gain.  
However, caremustbetakentoinsurethatthepoleformed  
by the feedback resistors and the total input capacitance  
at the inverting input does not degrade the stability of the  
amplifier. For instance, the LT1498/LT1499 in a noninvert-  
ing gain of 2, set with two 30k resistors, will probably  
oscillate with 10pF total input capacitance (5pF input  
capacitance + 5pF board capacitance). The amplifier has  
a 2.5MHz crossing frequency and a 60° phase margin at  
6dB of gain. The feedback resistors and the total input  
capacitance create a pole at 1.06MHz that induces 67° of  
phase shift at 2.5MHz! The solution is simple, either lower  
the value of the resistors or add a feedback capacitor of  
10pF of more.  
Figure 2a. LT1498 Small-Signal Response  
C
= 0pF  
L
C
= 500pF  
L
C
L
= 10nF  
14989 F02b  
V
A
= 5V  
= 1  
S
V
Figure 2b. LT1498 Large-Signal Response  
TYPICAL APPLICATIONS  
1A Voltage Controlled Current Source  
0.5Ω  
1A Voltage Controlled Current Sink  
+
V
+
V
+
V
1k  
I
R
L
OUT  
1k  
V
+
IN  
100Ω  
500pF  
1/2 LT1498  
Si9410DY  
100Ω  
500pF  
1/2 LT1498  
Si9430DY  
1k  
V
+
1k  
IN  
I
+
R
L
OUT  
V
– V  
IN  
I
=
OUT  
0.5Ω  
0.5Ω  
V
0.5Ω  
IN  
I
=
OUT  
14989 TA03  
t < 1μs  
r
14989 TA04  
t < 1μs  
r
14989fe  
15  
LT1498/LT1499  
TYPICAL APPLICATION  
Input Bias Current Cancellation  
R
R
F
G
SIGNAL  
AMP  
V
OUT  
1/2 LT1498  
+
V
IN  
1M  
+
CANCELLATION  
AMP  
1/2 LT1498  
22pF  
1M  
14989 TA05  
INPUT BIAS CURRENT LESS THAN 50nA  
+
FOR 500mV ≤ V ≤ (V – 500mV)  
IN  
PACKAGE DESCRIPTION  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 .015*  
(6.477 0.381)  
1
2
3
.130 .005  
.300 – .325  
.045 – .065  
(3.302 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
(3.048)  
MIN  
.020  
(0.508)  
MIN  
+.035  
–.015  
.325  
.018 .003  
(0.457 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
14989fe  
16  
LT1498/LT1499  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
14989fe  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LT1498/LT1499  
PACKAGE DESCRIPTION  
S Package  
14-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.337 – .344  
.045 .005  
(8.560 – 8.738)  
.050 BSC  
NOTE 3  
13  
12  
11  
10  
8
14  
N
9
N
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
1
2
3
N/2  
N/2  
7
.030 .005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° 8° TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S14 0502  
NOTE:  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
1. DIMENSIONS IN  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
14989fe  
18  
LT1498/LT1499  
REVISION HISTORY (Revision history begins at Rev E)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
E
10/09 Edit in Absolute Maximum Ratings  
2
14989fe  
19  
LT1498/LT1499  
TYPICAL APPLICATION  
Bidirectional Current Sensor  
A1 forces a voltage equal to (I )(R  
) across R . This  
L
SENSE A  
voltage is then amplified at the Charge Out by the ratio of  
A bidirectional current sensor for battery-powered sys-  
tems is shown in Figure 3. Two outputs are provided: one  
proportional to charge current, the other proportional  
to discharge current. The circuit takes advantage of the  
LT1498’s rail-to-rail input range and its output phase  
reversal protection. During the charge cycle, the op amp  
R over R . In this mode, the output of A2 remains high,  
B
A
keeping Q2 off and the Discharge Out low, even though  
the (+) input of A2 exceeds the positive power supply.  
During the discharge cycle, A2 and Q2 are active and the  
operation is similar to the charge cycle.  
I
L
R
SENSE  
CHARGE  
0.1Ω  
V
V
BATTERY  
BATTERY  
DISCHARGE  
R
R
R
A
A
A
+
+
A2  
A1  
1/2 LT1498  
1/2 LT1498  
R
A
Q2  
MTP23P06  
Q1  
MTP23P06  
R
R
B
A
DISCHARGE CHARGE  
V
= I  
R
SENSE  
O
L
(
)
OUT  
OUT  
FOR R = 1k, R = 10k  
A
B
R
R
B
B
V
O
L
= 1V/A  
I
14989 F03  
Figure 3. Bidirectional Current Sensor  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC®1152  
Rail-to-Rail Input and Output, Zero-Drift Op Amp  
High DC Accuracy, 10μV V  
, 100nV/°C Drift, 1MHz GBW, 1V/μs  
OS(MAX)  
Slew Rate, Max Supply Current 2.2mA  
LT1211/LT1212 Dual/Quad 14MHz, 7V/μs, Single Supply Precision Op Amps  
LT1213/LT1214 Dual/Quad 28MHz, 12V/μs, Single Supply Precision Op Amps  
LT1215/LT1216 Dual/Quad 23MHz, 50V/μs, Single Supply Precision Op Amps  
LT1366/LT1367 Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps  
Input Common Mode Includes Ground, 275μV V  
Drift, Max Supply Current 1.8mA per Op Amp  
, 6μV/°C Max  
, 6μV/°C Max  
, Max Supply  
OS(MAX)  
OS(MAX)  
OS(MAX)  
Input Common Mode Includes Ground, 275μV V  
Drift, Max Supply Current 3.5mA per Op Amp  
Input Common Mode Includes Ground, 450μV V  
Current 6.6mA per Op Amp  
475μV V  
, 400kHz GBW, 0.13V/μs Slew Rate, Max Supply  
OS(MAX)  
Current 520μA per Op Amp  
LT1490/LT1491 Dual/Quad Micropower, Rail-to-Rail Input and Output Op Amps Max Supply Current 50μA per Op Amp, 200kHz GBW, 0.07V/μs Slew  
+
Rate, Operates with Inputs 44V Above V Independent of V  
LT1884/LT1885 Dual/Quad, Rail-to-Rail Output Picoamp Input Precision Op Amps I = 650μA, V < 50μV, I < 400pA  
CC  
OS  
B
14989fe  
LT 1009 REV E • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1499CSTRPBF

Driving A-to-D Converters
Linear

LT1499IS

Driving A-to-D Converters
Linear

LT1499IS#PBF

LT1499 - 10MHz, 6V/&#181;s, Quad Rail-to-Rail Input and Output Precision C-Load Op Amps; Package: SO; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1499IS#TRPBF

LT1499 - 10MHz, 6V/&#181;s, Quad Rail-to-Rail Input and Output Precision C-Load Op Amps; Package: SO; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1499ISPBF

Driving A-to-D Converters
Linear

LT1499ISTR

Driving A-to-D Converters
Linear

LT1499ISTRPBF

Driving A-to-D Converters
Linear

LT1499_15

10MHz, 6V/s, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps
Linear

LT14CT26A102J1000

linear positive miniature tempco thermistor
KOA

LT14CT26A102J4500

linear positive miniature tempco thermistor
KOA

LT14CT26R102J1000

linear positive miniature tempco thermistor
KOA

LT14CT26R102J4500

linear positive miniature tempco thermistor
KOA