LT1395 [Linear]

Single/Dual/Quad 400MHz Current Feedback Amplifier; 单/双/四核400MHz的电流反馈放大器
LT1395
型号: LT1395
厂家: Linear    Linear
描述:

Single/Dual/Quad 400MHz Current Feedback Amplifier
单/双/四核400MHz的电流反馈放大器

放大器
文件: 总12页 (文件大小:200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1395/ LT1396/ LT1397  
Sing le / Dua l/ Qua d 400MHz  
Curre nt Fe e d b a c k Am p lifie r  
U
FEATURES  
DESCRIPTIO  
The LT®1395/LT1396/LT1397 are single/dual/quad  
400MHzcurrentfeedbackamplifiers withan800V/µs slew  
rate and the ability to drive up to 80mA of output current.  
400MHz Bandwidth on ±5V (AV = 1)  
350MHz Bandwidth on ±5V (AV = 2, –1)  
0.1dB Gain Flatness: 100MHz (AV = 1, 2 and –1)  
High Slew Rate: 800V/µs  
Wide Supply Range: ±2V(4V) to ±6V(12V)  
80mA Output Current  
Low Supply Current: 4.6mA/Amplifier  
LT1395: SO-8 Package  
The LT1395/LT1396/LT1397 operate on all supplies from  
a single 4V to ±6V. At ±5V, they draw 4.6mA of supply  
current per amplifier.  
The LT1395/LT1396/LT1397 are manufactured on Linear  
Technologys proprietarycomplementarybipolarprocess.  
They have standard single/dual/quad pinouts and they are  
optimized for use on supply voltages of ±5V.  
LT1396: SO-8 and MSOP Packages  
LT1397: SO-14 and SSOP-16 Packages  
U
, LTC and LT are registered trademarks of Linear Technology Corporation.  
APPLICATIO S  
Cable Drivers  
Video Amplifiers  
MUX Amplifiers  
High Speed Portable Equipment  
IF Amplifiers  
U
TYPICAL APPLICATIO  
Unity-Gain Video Loop-Through Amplifier  
Loop-Through Amplifier  
Frequency Response  
R
63.4Ω  
R
R
R
F2  
G2  
G1  
F1  
10  
1.02k  
255Ω  
255Ω  
0
NORMAL SIGNAL  
–10  
1/2  
LT1396  
1/2  
LT1396  
–20  
V
OUT  
V
+
V
3.01k  
3.01k  
IN  
IN  
+
+
–30  
–40  
1% RESISTORS  
FOR A GAIN OF G:  
= G (V – V )  
IN  
0.67pF  
12.1k  
0.67pF  
12.1k  
COMMON MODE SIGNAL  
V
+
OUT  
IN  
–50  
–60  
R
R
= R  
F2  
= (G + 3) R  
F1  
G1  
F2  
100 1k  
10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
R
F2  
BNC INPUTS  
R
=
G2  
G + 3  
TRIM CMRR WITH R  
HIGH INPUT RESISTANCE DOES NOT LOAD CABLE  
EVEN WHEN POWER IS OFF  
1395/6/7 TA02  
G1  
1395/6/7 TA01  
1
LT1395/ LT1396/ LT1397  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V) ........................... 12.6V Operating Temperature Range (Note 4) . 40°C to 85°C  
Input Current (Note 2) ....................................... ±10mA Specified Temperature Range (Note 5).. 40°C to 85°C  
Output Current................................................. ±100mA Storage Temperature Range ................ 65°C to 150°C  
Differential Input Voltage (Note 2) ........................... ±5V Junction Temperature (Note 6)............................ 150°C  
Output Short-Circuit Duration (Note 3)........ Continuous  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
TOP VIEW  
+
OUT A 1  
IN A 2  
8 V  
7 OUT B  
6
5
+
V
NC  
IN  
+IN  
1
2
3
4
8
7
6
5
NC  
OUT A  
IN A  
+IN A  
1
2
3
4
8
7
6
5
+
+
V
+IN A 3  
IN A  
+IN B  
+
OUT B  
IN A  
+IN B  
+
+
V
4
OUT  
NC  
+
MS8 PACKAGE  
V
V
8-LEAD PLASTIC MSOP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 150°C/W  
TJMAX = 150°C, θJA = 250°C/W  
TJMAX = 150°C, θJA = 150°C/W  
ORDER PART NUMBER  
LT1395CS8  
ORDER PART NUMBER  
LT1396CMS8  
ORDER PART NUMBER  
LT1396CS8  
S8 PART MARKING  
1395  
MS8 PART MARKING  
LTDY  
S8 PART MARKING  
1396  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
7
8
OUT D  
IN D  
+IN D  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
OUT A  
IN A  
+IN A  
OUT D  
IN D  
+IN D  
OUT A  
IN A  
+IN A  
+
+
+
+
+
+
V
V
V
V
+IN C  
IN C  
OUT C  
NC  
+IN B  
IN B  
OUT B  
+IN C  
IN C  
OUT C  
+IN B  
IN B  
OUT B  
NC  
+
+
+
+
8
S PACKAGE  
14-LEAD PLASTIC SO  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
TJMAX = 150°C, θJA = 100°C/W  
TJMAX = 150°C, θJA = 135°C/W  
ORDER PART NUMBER  
LT1397CS  
ORDER PART NUMBER  
LT1397CGN  
GN PART MARKING  
1397  
Consult factory for Industrial and Military grade parts.  
2
LT1395/ LT1396/ LT1397  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified operating temperature range, otherwise specifications are at TA = 25°C.  
For each amplifier: VCM = 0V, V = ±5V, pulse tested, unless otherwise noted. (Note 5)  
S
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
1
±10  
±12  
mV  
mV  
OS  
V /T  
Input Offset Voltage Drift  
Noninverting Input Current  
15  
10  
µV/°C  
OS  
+
I
IN  
±25  
±30  
µA  
µA  
I
IN  
Inverting Input Current  
10  
±50  
±60  
µA  
µA  
e
Input Noise Voltage Density  
Noninverting Input Noise Current Density  
Inverting Input Noise Current Density  
Input Resistance  
f = 1kHz, R = 1k, R = 10, R = 0Ω  
4.5  
6
nV/Hz  
pA/Hz  
pA/Hz  
MΩ  
n
F
G
S
+i  
f = 1kHz  
f = 1kHz  
n
–i  
25  
1
n
R
V
IN  
= ±3.5V  
0.3  
3.5  
IN  
C
Input Capacitance  
2.0  
pF  
IN  
V
Input Voltage Range, High  
V = ±5V  
4.0  
4.0  
V
V
INH  
S
V = 5V, 0V  
S
V
Input Voltage Range, Low  
Output Voltage Swing, High  
V = ±5V  
4.0  
1.0  
3.5  
V
V
INL  
S
V = 5V, 0V  
S
V
V = ±5V  
3.9  
3.7  
4.2  
V
V
V
OUTH  
S
V = ±5V  
S
V = 5V, 0V  
S
4.2  
V
Output Voltage Swing, Low  
Output Voltage Swing, High  
Output Voltage Swing, Low  
Common Mode Rejection Ratio  
V = ±5V  
4.2  
3.9  
3.7  
V
V
V
OUTL  
S
V = ±5V  
S
V = 5V, 0V  
S
0.8  
3.6  
V
V = ±5V, R = 150Ω  
3.4  
3.2  
V
V
V
OUTH  
S
L
V = ±5V, R = 150Ω  
S
L
V = 5V, 0V; R = 150Ω  
3.6  
S
L
V
V = ±5V, R = 150Ω  
3.6  
3.4  
3.2  
V
V
V
OUTL  
S
L
V = ±5V, R = 150Ω  
S
L
V = 5V, 0V; R = 150Ω  
0.6  
52  
10  
S
L
CMRR  
V
CM  
= ±3.5V  
42  
56  
dB  
–I  
Inverting Input Current  
Common Mode Rejection  
V
V
CM  
= ±3.5V  
= ±3.5V  
16  
22  
µA/V  
µA/V  
CMRR  
CM  
PSRR  
+I  
Power Supply Rejection Ratio  
V = ±2V to ±5V  
S
70  
1
dB  
Noninverting Input Current  
Power Supply Rejection  
V = ±2V to ±5V  
S
2
3
µA/V  
µA/V  
PSRR  
–I  
Inverting Input Current  
Power Supply Rejection  
V = ±2V to ±5V  
S
2
7
µA/V  
PSRR  
A
Large-Signal Voltage Gain  
V
= ±2V, R = 150Ω  
50  
40  
80  
65  
dB  
kΩ  
V
OUT  
L
R
OL  
Transimpedance, V /I  
V
OUT  
= ±2V, R = 150Ω  
100  
OUT IN  
L
I
Maximum Output Current  
Supply Current per Amplifier  
Slew Rate (Note 7)  
R = 0Ω  
L
mA  
mA  
V/µs  
OUT  
I
S
4.6  
6.5  
SR  
A = 1, R = 150Ω  
V
500  
800  
L
3dB BW  
–3dB Bandwidth  
A = 1, R = 374, R = 100Ω  
400  
300  
MHz  
MHz  
V
F
L
A = 2, R = R = 255, R = 100Ω  
V
F
G
L
0.1dB BW  
0.1dB Bandwidth  
A = 1, R = 374, R = 100Ω  
100  
100  
MHz  
MHz  
V
F
L
A = 2, R = R = 255, R = 100Ω  
V
F
G
L
3
LT1395/ LT1396/ LT1397  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified operating temperature range, otherwise specifications are at TA = 25°C.  
For each amplifier: VCM = 0V, V = ±5V, pulse tested, unless otherwise noted. (Note 5)  
S
SYMBOL  
t , t  
PARAMETER  
CONDITIONS  
R = R = 255, R = 100, V = 1V  
P-P  
MIN  
TYP  
1.3  
MAX  
UNITS  
ns  
Small-Signal Rise and Fall Time  
Propagation Delay  
r
f
F
G
L
OUT  
t
R = R = 255, R = 100, V = 1V  
P-P  
2.5  
ns  
PD  
F
G
L
OUT  
os  
Small-Signal Overshoot  
Settling Time  
R = R = 255, R = 100, V = 1V  
P-P  
10  
%
F
G
L
OUT  
t
0.1%, A = 1, R = R = 280, R = 150Ω  
25  
ns  
S
V
F
G
L
dG  
dP  
Differential Gain (Note 8)  
Differential Phase (Note 8)  
R = R = 255, R = 150Ω  
0.02  
0.04  
%
F
G
L
R = R = 255, R = 150Ω  
DEG  
F
G
L
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 6: T is calculated from the ambient temperature TA and the  
J
of a device may be impaired.  
power dissipation PD according to the following formula:  
Note 2: This parameter is guaranteed to meet specified performance  
LT1395CS8: T = TA + (PD • 150°C/W)  
J
through design and characterization. It has not been tested.  
LT1396CS8: T = TA + (PD • 150°C/W)  
J
Note 3: A heat sink may be required depending on the power supply  
voltage and how many amplifiers have their outputs short circuited.  
LT1396CMS8: T = TA + (PD • 250°C/W)  
J
LT1397CS14: T = TA + (PD • 100°C/W)  
J
Note 4: The LT1395C/LT1396C/LT1397C are guaranteed functional over  
the operating temperature range of 40°C to 85°C.  
LT1397CGN16: T = TA + (PD • 135°C/W)  
J
Note 7: Slew rate is measured at ±2V on a ±3V output signal.  
Note 5: The LT1395C/LT1396C/LT1397C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT1395C/LT1396C/LT1397C are  
designed, characterized and expected to meet specified performance from  
40°C and 85°C but is not tested or QA sampled at these temperatures.  
For guaranteed I-grade parts, consult the factory.  
Note 8: Differential gain and phase are measured using a Tektronix  
TSG120YC/NTSC signal generator and a Tektronix 1780R Video  
Measurement Set. The resolution of this equipment is 0.1% and 0.1°.  
Ten identical amplifier stages were cascaded giving an effective  
resolution of 0.01% and 0.01°.  
W U  
TYPICAL AC PERFOR A CE  
SMALL SIGNAL  
3dB BW (MHz)  
SMALL SIGNAL  
0.1dB BW (MHz)  
SMALL SIGNAL  
PEAKING (dB)  
V (V)  
S
A
V
R ()  
L
R ()  
F
R ()  
G
±5  
±5  
±5  
1
2
100  
100  
100  
374  
255  
280  
400  
350  
350  
100  
100  
100  
0.1  
0.1  
0.1  
255  
280  
–1  
U W  
TYPICALPERFOR A CE CHARACTERISTICS  
Closed-Loop Gain vs Frequency  
(AV = 1)  
Closed-Loop Gain vs Frequency  
(AV = 2)  
Closed-Loop Gain vs Frequency  
(AV = 1)  
0
–2  
–4  
–6  
0
–2  
–4  
–6  
6
4
2
0
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
1397 G01  
V = ±5V  
S
V = ±5V  
S
FREQUENCY (Hz)  
V = ±5V  
S
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1397 G03  
1397 G02  
VIN = –10dBm  
VIN = –10dBm  
VIN = –10dBm  
RF = RG = 255Ω  
RL = 100Ω  
RF = 374Ω  
RL = 100Ω  
RF = RG = 280Ω  
RL = 100Ω  
4
LT1395/ LT1396/ LT1397  
U W  
TYPICALPERFOR A CE CHARACTERISTICS  
Large-Signal Transient Response  
(AV = 1)  
Large-Signal Transient Response  
(AV = 2)  
Large-Signal Transient Response  
(AV = 1)  
1395/6/7 G04  
1395/6/7 G05  
1395/6/7 G06  
V = ±5V  
S
TIME (10ns/DIV)  
V = ±5V  
S
TIME (10ns/DIV)  
V = ±5V  
S
TIME (10ns/DIV)  
VIN = ±2.5V  
VIN = ±1.25V  
VIN = ±2.5V  
RF = 374Ω  
RL = 100Ω  
RF = RG = 255Ω  
RL = 100Ω  
RF = RG = 280Ω  
RL = 100Ω  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Maximum Undistorted Output  
Voltage vs Frequency  
PSRR vs Frequency  
8
7
6
5
4
3
2
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
40  
T = 25°C  
A
R = R = 255Ω  
F
G
R = 100Ω  
L
A = +1  
A = +2  
V
V = ±5V  
V
S
50  
V
OUT  
= 2VPP  
+PSRR  
PSRR  
60  
70  
HD3  
HD2  
80  
T
= 25°C  
A
90  
R = 374(A = 1)  
T = 25°C  
F V  
A
R = R = 255(A = 2)  
R = R = 255Ω  
F
L
G
V
F
G
R
= 100Ω  
R = 100Ω  
100  
110  
L
V = ±5V  
S
A = +2  
V
1M  
10M  
FREQUENCY (Hz)  
100M  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1397 G09  
1397 G08  
1397 G07  
Input Voltage Noise and Current  
Noise vs Frequency  
Maximum Capacitive Load  
vs Feedback Resistor  
Output Impedance vs Frequency  
1000  
100  
100  
10  
1000  
100  
10  
R = R = 255  
F
G
R = 50Ω  
L
A = +2  
V
V = ±5V  
S
1
–i  
n
+i  
n
10  
1
0.1  
0.01  
e
R = R  
n
F
G
A = +2  
V
V = ±5V  
S
PEAKING 5dB  
2100 2700 3300  
FEEDBACK RESISTANCE ()  
1
10 30 100 300 1k 3k 10k 30k 100k  
FREQUENCY (Hz)  
300  
900  
1500  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
1397 G11  
1397 G10  
1397 G13  
5
LT1395/ LT1396/ LT1397  
U W  
TYPICALPERFOR A CE CHARACTERISTICS  
Capacitive Load  
vs Output Series Resistor  
Output Voltage Swing  
vs Temperature  
Supply Current vs Supply Voltage  
40  
30  
20  
10  
0
5
4
6
5
R = R = 255  
F
G
V = ±5V  
S
OVERSHOOT < 2%  
R = 100k  
R = 150  
L
3
L
2
4
1
3
2
V = ±5V  
S
0
–1  
–2  
–3  
–4  
–5  
R = 100k  
L
R = 150Ω  
L
1
0
10  
100  
CAPACITIVE LOAD (pF)  
1000  
0
1
2
3
4
5
6
7
8
9
–50  
0
25  
50  
75  
125  
–25  
100  
SUPPLY VOLTAGE (±V)  
AMBIENT TEMPERATURE (°C)  
1397 G14  
1397 G15  
1397 G16  
Input Bias Currents  
vs Temperature  
Positive Supply Current per  
Amplifier vs Temperature  
Input Offset Voltage  
vs Temperature  
15  
12  
9
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
V = ±5V  
S
V = ±5V  
V = ±5V  
S
S
+
I
B
I
B
6
3
0.5  
–1.0  
0
50  
100 125  
–50 –25  
0
25  
75  
–25  
0
50  
75 100 125  
25  
0
50  
75 100 125  
–50  
25  
50  
25  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
1397 G19  
1397 G17  
1397 G18  
Square Wave Response  
Propagation Delay  
Rise Time and Overshoot  
OS = 10%  
1395/6/7 G22  
RL = 100Ω  
TIME (10ns/DIV)  
RF = RG = 255Ω  
f = 10MHz  
1395/6/7 G20  
1395/6/7 G21  
tPD = 2.5ns  
tr = 1.3ns  
AV = +2  
TIME (500ps/DIV)  
A = +2  
V
TIME (500ps/DIV)  
RL = 100Ω  
RF = RG = 255Ω  
RL = 100Ω  
RF = RG = 255Ω  
6
LT1395/ LT1396/ LT1397  
U
U
U
PIN FUNCTIONS  
LT1395CS8  
OUT B (Pin 7): B Channel Output.  
NC (Pin 1): No Connection.  
IN (Pin 2): Inverting Input.  
+IN (Pin 3): Noninverting Input.  
OUT C (Pin 8): C Channel Output.  
IN C (Pin 9): Inverting Input of C Channel Amplifier.  
+IN C (Pin 10):Noninverting Input of C Channel Amplifier.  
V(Pin 11): Negative Supply Voltage, Usually 5V.  
+IND(Pin12):NoninvertingInputofDChannelAmplifier.  
IN D (Pin 13): Inverting Input of D Channel Amplifier.  
OUT D (Pin 14): D Channel Output.  
V(Pin 4): Negative Supply Voltage, Usually 5V.  
NC (Pin 5): No Connection.  
OUT (Pin 6): Output.  
V+ (Pin 7): Positive Supply Voltage, Usually 5V.  
NC (Pin 8): No Connection.  
LT1397CGN  
LT1396CMS8, LT1396CS8  
OUT A (Pin 1): A Channel Output.  
OUT A (Pin 1): A Channel Output.  
IN A (Pin 2): Inverting Input of A Channel Amplifier.  
+IN A (Pin 3): Noninverting Input of A Channel Amplifier.  
V+ (Pin 4): Positive Supply Voltage, Usually 5V.  
+IN B (Pin 5): Noninverting Input of B Channel Amplifier.  
IN B (Pin 6): Inverting Input of B Channel Amplifier.  
OUT B (Pin 7): B Channel Output.  
IN A (Pin 2): Inverting Input of A Channel Amplifier.  
+IN A (Pin 3): Noninverting Input of A Channel Amplifier.  
V(Pin 4): Negative Supply Voltage, Usually 5V.  
+IN B (Pin 5): Noninverting Input of B Channel Amplifier.  
IN B (Pin 6): Inverting Input of B Channel Amplifier.  
OUT B (Pin 7): B Channel Output.  
NC (Pin 8): No Connection.  
V+ (Pin 8): Positive Supply Voltage, Usually 5V.  
NC (Pin 9): No Connection.  
OUT C (Pin 10): C Channel Output.  
LT1397CS  
IN C (Pin 11): Inverting Input of C Channel Amplifier.  
+IN C (Pin 12):Noninverting Input of C Channel Amplifier.  
V(Pin 13): Negative Supply Voltage, Usually 5V.  
+IND(Pin14):NoninvertingInputofDChannelAmplifier.  
IN D (Pin 15): Inverting Input of D Channel Amplifier.  
OUT D (Pin 16): D Channel Output.  
OUT A (Pin 1): A Channel Output.  
IN A (Pin 2): Inverting Input of A Channel Amplifier.  
+IN A (Pin 3): Noninverting Input of A Channel Amplifier.  
V+ (Pin 4): Positive Supply Voltage, Usually 5V.  
+IN B (Pin 5): Noninverting Input of B Channel Amplifier.  
IN B (Pin 6): Inverting Input of B Channel Amplifier.  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Feedback Resistor Selection  
resistor, the closed-loop gain and the load resistor. The  
LT1395/LT1396/LT1397 have been optimized for ±5V  
supply operation and have a 3dB bandwidth of 400MHz  
at a gain of 1 and 350MHz at a gain of 2. Please refer to the  
resistor selection guide in the Typical AC Performance  
table.  
Thesmall-signalbandwidthoftheLT1395/LT1396/LT1397  
is set by the external feedback resistors and the internal  
junction capacitors. As a result, the bandwidth is a func-  
tion of the supply voltage, the value of the feedback  
7
LT1395/ LT1396/ LT1397  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
Capacitance on the Inverting Input  
the feedback resistor and internal capacitance. At a gain  
of 2 with 255feedback and gain resistors and ±5V  
supplies, theoutputslewrateis typically800V/µs. Larger  
feedback resistors will reduce the slew rate as will lower  
supply voltages.  
Current feedback amplifiers require resistive feedback  
from the output to the inverting input for stable operation.  
Take care to minimize the stray capacitance between the  
output and the inverting input. Capacitance on the invert-  
ing input to ground will cause peaking in the frequency  
response (and overshoot in the transient response).  
Differential Input Signal Swing  
To avoid any breakdown condition on the input transis-  
tors, thedifferentialinputswingmustbelimitedto±5V. In  
normal operation, the differential voltage between the  
input pins is small, so the ±5V limit is not an issue.  
Capacitive Loads  
The LT1395/LT1396/LT1397 can drive many capacitive  
loads directly when the proper value of feedback resistor  
is used. The required value for the feedback resistor will  
increaseas loadcapacitanceincreases andas closed-loop  
gaindecreases. Alternatively, asmallresistor(5to35)  
canbeputinseries withtheoutputtoisolatethecapacitive  
loadfromtheamplifieroutput. This has theadvantagethat  
the amplifier bandwidth is only reduced when the capaci-  
tive load is present. The disadvantage is that the gain is a  
function of the load resistance. See the Typical Perfor-  
mance Characteristics curves.  
Buffered RGB to Color-Difference Matrix  
An LT1397 can be used to create buffered color-differ-  
ence signals from RGB inputs (Figure 1). In this applica-  
tion, the R input arrives via 75coax. It is routed to the  
noninverting input of LT1397 amplifier A1 and to a 845Ω  
resistor R8. There is also an 82.5termination resistor  
R11, which yields a 75input impedance at the R input  
when considered in parallel with R8. R8 connects to the  
inverting input of a second LT1397 amplifier (A2), which  
also sums the weighted G and B inputs to create a  
–0.5 • Y output. LT1397 amplifier A3 then takes the  
–0.5 • Y output and amplifies it by a gain of –2, resulting  
in the Y output. Amplifier A1 is configured in a noninvert-  
ing gain of 2 with the bottom of the gain resistor R2 tied  
to the Y output. The output of amplifier A1 thus results in  
the color-difference output R-Y.  
Power Supplies  
The LT1395/LT1396/LT1397 will operate from single or  
split supplies from ±2V (4V total) to ±6V (12V total). It  
is not necessary to use equal value split supplies, how-  
ever the offset voltage and inverting input bias current  
will change. The offset voltage changes about 2.5mV per  
volt of supply mismatch. The inverting bias current will  
typicallychangeabout10µApervoltofsupplymismatch.  
The B input is similar to the R input. It arrives via 75Ω  
coax, and is routed to the noninverting input of LT1397  
amplifier A4, and to a 2320resistor R10. There is also  
a 76.8termination resistor R13, which yields a 75Ω  
input impedance when considered in parallel with R10.  
R10 also connects to the inverting input of amplifier A2,  
adding the B contribution to the Y signal as discussed  
above. Amplifier A4 is configured in a noninverting gain  
of 2 configuration with the bottom of the gain resistor R4  
tied to the Y output. The output of amplifier A4 thus  
results in the color-difference output B-Y.  
Slew Rate  
Unlike a traditional voltage feedback op amp, the slew rate  
of a current feedback amplifier is not independent of the  
amplifier gain configuration. In a current feedback ampli-  
fier,boththeinputstageandtheoutputstagehaveslewrate  
limitations.Intheinvertingmode,andforgains of2ormore  
inthenoninvertingmode,thesignalamplitudebetweenthe  
input pins is small and the overall slew rate is that of the  
outputstage.Forgains less than2inthenoninvertingmode,  
the overall slew rate is limited by the input stage.  
The G input also arrives via 75coax and adds its  
contributiontotheYsignalviaa432resistorR9, which  
is tied to the inverting input of amplifier A2. There is also  
a 90.9termination resistor R12, which yields a 75Ω  
The input slew rate of the LT1395/LT1396/LT1397 is  
approximately600V/µs andis setbyinternalcurrents and  
capacitances. The output slew rate is set by the value of  
8
LT1395/ LT1396/ LT1397  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
termination when considered in parallel with R9. Using  
superposition, it is straightforward to determine the  
output of amplifier A2. Although inverted, it sums the R,  
G and B signals in the standard proportions of 0.3R,  
0.59G and 0.11B that are used to create the Y signal.  
Amplifier A3 then inverts and amplifies the signal by 2,  
resulting in the Y output.  
is attenuated via resistors R6 and R7 such that amplifier  
A2s noninverting input sees 0.83Y. Using superposition,  
we can calculate the positive gain of A2 by assuming that  
R8 and R9 are grounded. This results in a gain of 2.41 and  
a contribution at the output of A2 of 2Y. The R-Y input is  
amplified by A2 with the gain set by resistors R8 and R10,  
giving an amplification of 1.02. This results in a contri-  
bution at the output of A2 of 1.02Y – 1.02R. The B-Y input  
is amplified by A2 with the gain set by resistors R9 and  
R10, giving an amplification of 0.37. This results in a  
contribution at the output of A2 of 0.37Y – 0.37B.  
+
75  
SOURCES  
R8  
845Ω  
A1  
R-Y  
1/4 LT1397  
R
R1  
255Ω  
R11  
82.5Ω  
R9  
432Ω  
R7  
G
B
255Ω  
R12  
90.9Ω  
Ifwenowsumthethreecontributions attheoutputofA2,  
we get:  
R10  
2320Ω  
R6  
127Ω  
R5  
255Ω  
R2  
255Ω  
R13  
A2  
76.8Ω  
1/4 LT1397  
A2OUT = 3.40Y – 1.02R – 0.37B  
+
A3  
It is important to remember though that Y is a weighted  
sum of R, G and B such that:  
Y
1/4 LT1397  
+
R4  
255Ω  
Y = 0.3R + 0.59G + 0.11B  
R3  
255Ω  
If we substitute for Y at the output of A2 we then get:  
ALL RESISTORS 1%  
= ±5V  
A4  
B-Y  
V
S
1/4 LT1397  
1395/6/7 F01  
A2OUT = (1.02R – 1.02R) + 2G + (0.37B – 0.37B)  
= 2G  
+
Figure 1. Buffered RGB to Color-Difference Matrix  
Theback-terminationresistorR11thenhalves theoutput  
of A2 resulting in the G output.  
Buffered Color-Difference to RGB Matrix  
An LT1395 combined with an LT1396 can be used to  
create buffered RGB outputs from color-difference sig-  
nals (Figure 2). The R output is a back-terminated 75Ω  
signal created using resistor R5 and amplifier A1 config-  
ured for a gain of +2 via 255resistors R3 and R4. The  
noninverting input of amplifier A1 is connected via 1k  
resistors R1 and R2 to the Y and R-Y inputs respectively,  
resulting in cancellation of the Y signal at the amplifier  
input. The remaining R signal is then amplified by A1.  
R1  
1k  
Y
R2  
1k  
R5  
75  
+
A1  
R-Y  
R
1/2 LT1396  
R3  
267Ω  
R4  
267Ω  
R6  
205Ω  
R11  
75Ω  
+
R7  
1k  
A2  
G
LT1395  
R10  
267Ω  
R8  
261Ω  
The B output is also a back-terminated 75signal  
created using resistor R16 and amplifier A3 configured  
for a gain of +2 via 255resistors R14 and R15. The  
noninverting input of amplifier A3 is connected via 1k  
resistors R12 and R13 to the Y and B-Y inputs respec-  
tively, resulting in cancellation of the Y signal at the  
amplifier input. The remaining B signal is then amplified  
by A3.  
R9  
698Ω  
B-Y  
R12  
1k  
R16  
75Ω  
+
A3  
R13  
1k  
B
1/2 LT1396  
R14  
267Ω  
ALL RESISTORS 1%  
= ±5V  
V
S
R15  
267Ω  
1395/6/7 F02  
The G output is the most complicated of the three. It is a  
weighted sum of the Y, R-Y and B-Y inputs. The Y input  
Figure 2. Buffered Color-Difference to RGB Matrix  
9
LT1395/ LT1396/ LT1397  
W
W
, each amplifier  
SI PLIFIED SCHE ATIC  
+
V
IN  
OUT  
+IN  
V
1395/6/7 SS  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow 0.150)  
(LTC DWG # 05-08-1641)  
0.189 – 0.196*  
(4.801 – 4.978)  
0.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
0.229 – 0.244  
(5.817 – 6.198)  
0.150 – 0.157**  
(3.810 – 3.988)  
1
2
3
4
5
6
7
8
0.015 ± 0.004  
(0.38 ± 0.10)  
× 45°  
0.053 – 0.068  
(1.351 – 1.727)  
0.004 – 0.0098  
(0.102 – 0.249)  
0.007 – 0.0098  
(0.178 – 0.249)  
0° – 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.0250  
(0.635)  
BSC  
0.008 – 0.012  
(0.203 – 0.305)  
* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
GN16 (SSOP) 1098  
10  
LT1395/ LT1396/ LT1397  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.040 ± 0.006  
(1.02 ± 0.15)  
0.034 ± 0.004  
(0.86 ± 0.102)  
0.007  
(0.18)  
0° – 6° TYP  
0.118 ± 0.004**  
(3.00 ± 0.102)  
SEATING  
PLANE  
0.193 ± 0.006  
(4.90 ± 0.15)  
0.012  
(0.30)  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
0.0256  
(0.65)  
BSC  
MSOP (MS8) 1098  
1
2
3
4
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
3
4
2
SO8 1298  
S Package  
14-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.337 – 0.344*  
(8.560 – 8.738)  
0.010 – 0.020  
(0.254 – 0.508)  
14  
13  
12  
11  
10  
9
8
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.228 – 0.244  
0.150 – 0.157**  
(5.791 – 6.197)  
(3.810 – 3.988)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
0.016 – 0.050  
(0.406 – 1.270)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
S14 1298  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
5
6
7
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe onexisting patent rights.  
11  
LT1395/ LT1396/ LT1397  
U
O
TYPICAL APPLICATI  
Single Supply RGB Video Amplifier  
input. Assuming a 75source impedance for the signal  
driving V , the Thevenin equivalent signal arriving at  
IN  
The LT1395 can be used with a single supply voltage of  
6V or more to drive ground-referenced RGB video. In  
Figure3,two1N4148diodes D1andD2havebeenplaced  
in series with the output of the LT1395 amplifier A1 but  
within the feedback loop formed by resistor R8. These  
diodes effectively level-shift A1s output downward by 2  
diodes, allowing the circuit output to swing to ground.  
A1s positive input is 3V + 0.4V , with a source imped-  
IN  
ance of 714. The combination of these two inputs gives  
anoutputatthecathodeofD2of2•V withnoadditional  
IN  
DC offset. The 75back termination resistor R9 halves  
the signal again such that VOUT equals a buffered version  
of V .  
IN  
It is important to note that the 4.7µF capacitor C1 has  
been added to provide enough current to maintain the  
voltage drop across diodes D1 and D2 when the circuit  
outputdrops lowenoughthatthediodes mightotherwise  
turn off. This means that this circuit works fine for  
continuous videoinput, butwillrequirethatC1chargeup  
after a period of inactivity at the input.  
Amplifier A1 is used in a positive gain configuration. The  
feedback resistor R8 is 255. The gain resistor is cre-  
ated from the parallel combination of R6 and R7, giving  
a Thevenin equivalent 63.5connected to 3.75V. This  
gives an AC gain of +5 from the noninverting input of  
amplifier A1 to the cathode of D2. However, the video  
input is also attenuated before arriving at A1s positive  
5V  
C1  
4.7µF  
V
S
R1  
R6  
6V TO 12V  
1000Ω  
84.5Ω  
D1  
D2  
R9  
75Ω  
+
V
OUT  
1N4148 1N4148  
A1  
LT1395  
R2  
1300Ω  
R3  
160Ω  
R8  
255Ω  
V
IN  
1395/6/7 TA03  
R4  
75Ω  
R7  
255Ω  
R5  
2.32Ω  
Figure 3. Single Supply RGB Video Amplifier (1 of 4 Channels)  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1227/LT1229/LT1230  
LT1252/LT1253/LT1254  
LT1398/LT1399  
140MHz Single/Dual/Quad Current Feedback Amplifier 1100V/µs Slew Rate, Single Adds Shutdown Pin  
Low Cost Video Amplifiers  
Single, Dual and Quad 100MHz Current Feedback Amplifiers  
300MHz Bandwidth, 0.1dB Flatness > 150MHz with Shutdown  
2.5ns Switching Time, 250MHz Bandwidth  
Dual/Triple Current Feedback Amplifiers  
Triple 2:1 Buffered Video Mulitplexer  
70MHz Single/Dual/Quad Op Amps  
LT1675  
LT1363/LT1364/LT1365  
1000V/µs Slew Rate, Voltage Feedback  
139567f LT/TP 0100 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1999  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1395CS5

Single/Dual/Quad 400MHz Current Feedback Amplifier
Linear

LT1395CS5#PBF

LT1395 - Single 400MHz Current Feedback Amplifier; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1395CS5#TR

LT1395 - Single 400MHz Current Feedback Amplifier; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1395CS5#TRM

暂无描述
Linear

LT1395CS5#TRMPBF

LT1395 - Single 400MHz Current Feedback Amplifier; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1395CS5#TRPBF

LT1395 - Single 400MHz Current Feedback Amplifier; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1395CS5-PBF

Single/Dual/Quad 400MHz Current Feedback Amplifier
Linear

LT1395CS5-TR

Single/Dual/Quad 400MHz Current Feedback Amplifier
Linear

LT1395CS5-TRPBF

Single/Dual/Quad 400MHz Current Feedback Amplifier
Linear

LT1395CS6

Single/Dual/Quad 400MHz Current Feedback Amplifier
Linear

LT1395CS6#TRM

LT1395 - Single 400MHz Current Feedback Amplifier; Package: SOT; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1395CS6#TRMPBF

LT1395 - Single 400MHz Current Feedback Amplifier; Package: SOT; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear