LT1372IS8 [Linear]

500kHz and 1MHz High Efficiency 1.5A Switching Regulators; 在500kHz至1MHz的高效率1.5A开关稳压器
LT1372IS8
型号: LT1372IS8
厂家: Linear    Linear
描述:

500kHz and 1MHz High Efficiency 1.5A Switching Regulators
在500kHz至1MHz的高效率1.5A开关稳压器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总12页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1372/LT1377  
500kHz and 1MHz  
High Efficiency  
1.5A Switching Regulators  
U
DESCRIPTION  
FEATURES  
The LT®1372/LT1377 are monolithic high frequency  
switching regulators. They can be operated in all standard  
switching configurations including boost, buck, flyback,  
forward,invertingandCuk.A1.5Ahighefficiencyswitch  
is included on the die, along with all oscillator, control and  
protection circuitry. All functions of the LT1372/LT1377  
are integrated into 8-pin SO/PDIP packages.  
Faster Switching with Increased Efficiency  
Uses Small Inductors: 4.7µH  
All Surface Mount Components  
Only 0.5 Square Inch of Board Space  
Low Minimum Supply Voltage: 2.7V  
Quiescent Current: 4mA Typ  
Current Limited Power Switch: 1.5A  
Regulates Positive or Negative Outputs  
The LT1372/LT1377 typically consumes only 4mA quies-  
centcurrent and has higher efficiencythan previous parts.  
High frequency switching allows for very small inductors  
to be used. All surface mount components consume less  
than 0.5 square inch of board space.  
Shutdown Supply Current: 12µA Typ  
Easy External Synchronization  
8-Pin SO or PDIP Packages  
U
APPLICATIONS  
New design techniques increase flexibility and maintain  
ease of use. Switching is easily synchronized to an exter-  
nal logic level source. A logic low on the shutdown pin  
reduces supply current to 12µA. Unique error amplifier  
circuitry can regulate positive or negative output voltage  
while maintaining simple frequency compensation tech-  
niques. Nonlinear error amplifier transconductance re-  
duces output overshoot on start-up or overload recovery.  
Oscillator frequency shifting protects external compo-  
nents during overload conditions.  
Boost Regulators  
CCFL Backlight Driver  
Laptop Computer Supplies  
Multiple Output Flyback Supplies  
Inverting Supplies  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
12V Output Efficiency  
5V-to-12V Boost Converter  
100  
D1  
5V  
V
= 5V  
IN  
L1*  
MBRS120T3  
4.7µH  
V
OUT  
90  
80  
70  
60  
50  
12V  
5
V
IN  
R1  
4
8
2
53.6k  
1%  
ON  
V
SW  
S/S  
LT1372/LT1377  
FB  
OFF  
*COILCRAFT DO1608-472 (4.7µH) OR  
COILCRAFT DT3316-103 (10µH) OR  
SUMIDA CD43-4R7 (4.7µH) OR  
+
+
C1**  
22µF  
C4**  
22µF  
GND  
6, 7  
V
C
SUMIDA CD73-100KC (10µH) OR  
R2  
6.19k  
1%  
**AVX TPSD226M025R0200  
1
MAX I  
OUT  
C2  
0.047µF  
R3  
2k  
L1  
I
OUT  
C3  
4.7µH 0.25A  
10µH 0.35A  
0.0047µF  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
LT1372 • TA01  
LT1372 • TA02  
1
LT1372/LT1377  
W W W  
U
W
U
ABSOLUTE AXI U RATI GS  
Supply Voltage ....................................................... 30V  
Switch Voltage  
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART NUMBER  
TOP VIEW  
LT1372CN8 LT1372HVIN8  
LT1372HVCN8 LT1372IS8  
LT1372CS8 LT1372HVIS8  
LT1372HVCS8 LT1377CS8  
LT1372/LT1377 .................................................. 35V  
LT1372HV .......................................................... 42V  
S/S Pin Voltage....................................................... 30V  
Feedback Pin Voltage (Transient, 10ms) .............. ±10V  
Feedback Pin Current........................................... 10mA  
Negative Feedback Pin Voltage  
(Transient, 10ms)............................................. ±10V  
Operating Junction Temperature Range  
Commercial ........................................ 0°C to 125°C*  
Industrial ......................................... 40°C to 125°C  
Short Circuit ......................................... 0°C to 150°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
V
1
2
3
4
V
SW  
8
7
6
5
C
FB  
NFB  
S/S  
GND  
GND S  
V
IN  
LT1372IN8  
LT1377IS8  
S8 PART MARKING  
1377  
1372I 1372HI 1377I  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 100°C/ W (N8)  
JMAX = 125°C, θJA = 120°C/ W (S8)  
1372  
1372H  
T
Consult factory for Military grade parts.  
*Units shipped prior to Date Code 9552 are rated at 100°C maximum  
operating temperature.  
ELECTRICAL CHARACTERISTICS  
VIN = 5V, VC = 0.6V, VFB = VREF, VSW, S/S and NFB pins open, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
REF  
Reference Voltage  
Measured at Feedback Pin  
V = 0.8V  
C
1.230  
1.225  
1.245  
1.245  
1.260  
1.265  
V
V
I
Feedback Input Current  
V
= V  
REF  
250  
550  
900  
nA  
nA  
FB  
FB  
Reference Voltage Line Regulation  
Negative Feedback Reference Voltage  
2.7V V 25V, V = 0.8V  
0.01  
0.03  
%/V  
IN  
C
V
Measured at Negative Feedback Pin  
Feedback Pin Open, V = 0.8V  
2.540  
2.570  
2.490  
2.490  
2.440  
2.410  
V
V
NFB  
C
I
Negative Feedback Input Current  
V
= V  
45  
30  
0.01  
15  
0.05  
µA  
NFB  
NFB  
NFR  
Negative Feedback Reference Voltage  
Line Regulation  
2.7V V 25V, V = 0.8V  
%/V  
IN  
C
g
m
Error Amplifier Transconductance  
I = ±25µA  
1100  
700  
1500  
1900  
2300  
µmho  
µmho  
C
Error Amplifier Source Current  
Error Amplifier Sink Current  
Error Amplifier Clamp Voltage  
V
V
= V – 150mV, V = 1.5V  
120  
200  
350  
µA  
µA  
FB  
FB  
REF  
C
= V  
+ 150mV, V = 1.5V  
1400  
2400  
REF  
C
High Clamp, V = 1V  
Low Clamp, V = 1.5V  
1.70  
0.25  
1.95  
0.40  
2.30  
0.52  
V
V
FB  
FB  
A
V
Error Amplifier Voltage Gain  
500  
1
V/V  
V
V Pin Threshold  
C
Duty Cycle = 0%  
0.8  
1.25  
f
Switching Frequency  
2.7V V 25V  
LT1372  
IN  
450  
430  
400  
0.90  
0.86  
0.80  
500  
500  
550  
580  
580  
1.10  
1.16  
1.16  
kHz  
kHz  
kHz  
MHz  
MHz  
MHz  
0°C T 125°C  
J
40°C T < 0°C (I Grade)  
J
LT1377  
0°C T 125°C  
1
1
J
40°C T < 0°C (I Grade)  
J
2
LT1372/LT1377  
ELECTRICAL CHARACTERISTICS  
VIN = 5V, VC = 0.6V, VFB = VREF, VSW, S/S and NFB pins open, unless otherwise noted.  
SYMBOL PARAMETER  
Maximum Switch Duty Cycle  
CONDITIONS  
MIN  
TYP  
95  
MAX  
UNITS  
%
90  
Switch Current Limit Blanking Time  
Output Switch Breakdown Voltage  
130  
47  
260  
ns  
BV  
LT1372/LT1377  
LT1372HV  
35  
V
0°C T 125°C  
42  
40  
47  
V
V
J
40°C T < 0°C (I Grade)  
J
V
Output Switch “On” Resistance  
Switch Current Limit  
I
= 1A  
SW  
0.5  
0.8  
SAT  
I
Duty Cycle = 50%  
Duty Cycle = 80% (Note 1)  
1.5  
1.3  
1.9  
1.7  
2.7  
2.5  
A
A
LIM  
I  
I  
Supply Current Increase During Switch On-Time  
15  
25  
mA/A  
IN  
SW  
Control Voltage to Switch Current  
Transconductance  
2
A/V  
Minimum Input Voltage  
Supply Current  
2.4  
4
2.7  
5.5  
V
I
2.7V V 25V  
mA  
Q
IN  
Shutdown Supply Current  
2.7V V 25V, V 0.6V  
IN S/S  
0°C T 125°C  
12  
30  
50  
µA  
µA  
J
40°C T < 0°C (I Grade)  
J
Shutdown Threshold  
2.7V V 25V  
0.6  
5
1.3  
12  
2
V
µs  
µA  
IN  
Shutdown Delay  
25  
15  
S/S Pin Input Current  
Synchronization Frequency Range  
0V V 5V  
10  
S/S  
LT1372  
LT1377  
600  
1.2  
800  
1.6  
kHz  
MHz  
The  
denotes specifications which apply over the full operating  
Note 1: For duty cycles (DC) between 50% and 90%, minimum  
guaranteed switch current is given by I = 0.667 (2.75 – DC).  
temperature range.  
LIM  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Switch Saturation Voltage  
vs Switch Current  
Switch Current Limit  
vs Duty Cycle  
Minimum Input Voltage  
vs Temperature  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
150°C  
100°C  
25°C  
25°C AND  
125°C  
–55°C  
–55°C  
75 100  
125 150  
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
SWITCH CURRENT (A)  
1.6 1.8 2.0  
0
10 20 30 40 50 60 70 80 90 100  
DUTY CYCLE (%)  
–50 –25  
0
25 50  
0
TEMPERATURE (°C)  
LT1372 • G02  
LT1372 • G03  
LT1372 • G01  
3
LT1372/LT1377  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Error Amplifier Output Current  
vs Feedback Pin Voltage  
Shutdown Delay and Threshold  
vs Temperature  
Minimum Synchronization  
Voltage vs Temperature  
20  
18  
16  
14  
12  
10  
8
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
400  
300  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
f
f
= 700kHz (LT1372)  
= 1.4MHz (LT1377)  
SYNC  
SYNC  
25°C  
–55°C  
SHUTDOWN THRESHOLD  
SHUTDOWN DELAY  
200  
125°C  
100  
LT1377  
LT1372  
0
6
–100  
–200  
–300  
4
2
0
75 100  
–0.3  
–0.2  
–0.1  
V
0.1  
–50  
50  
100 125  
150  
–50 –25  
0
25 50  
125 150  
–25  
0
25  
75  
REF  
TEMPERATURE (°C)  
FEEDBACK PIN VOLTAGE (V)  
TEMPERATURE (°C)  
LT1372 • G04  
LT1372 • G05  
LT1372 • G06  
S/S Pin Input Current  
vs Voltage  
Switching Frequency  
Error Amplifier Transconductance  
vs Temperature  
vs Feedback Pin Voltage  
2000  
1800  
1600  
1400  
1200  
1000  
800  
5
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
IN  
= 5V  
I (V )  
V (FB)  
C
g
=
m
4
3
2
1
0
–1  
–2  
–3  
–4  
–5  
600  
400  
200  
0
–50 –25  
100  
125  
150  
–1  
0
1
2
3
4
5
6
7
8
9
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
FEEDBACK PIN VOLTAGE (V)  
25 50  
0
75  
TEMPERATURE (°C)  
S/S PIN VOLTAGE (V)  
LT1372 • G07  
LT1372 • G08  
LT1372 • G09  
VC Pin Threshold and High  
Clamp Voltage vs Temperature  
Feedback Input Current  
vs Temperature  
Negative Feedback Input Current  
vs Temperature  
0
–10  
–20  
–30  
–40  
–50  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
=V  
REF  
V
=V  
NFR  
FB  
NFB  
V
HIGH CLAMP  
C
V
THRESHOLD  
C
–50  
50  
125  
100  
–50  
50  
100 125  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
LT1372 • G11  
–25  
0
25  
75  
150  
–25  
0
25  
75  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1372 • G10  
LT1372 • G12  
4
LT1372/LT1377  
U
U
U
PIN FUNCTIONS  
VC (Pin 1): The Compensation pin is used for frequency  
compensation, current limiting and soft start. It is the  
output of the error amplifier and the input of the current  
comparator. Loop frequency compensation can be per-  
formed with an RC network connected from the VC pin to  
ground.  
VIN (Pin5):Bypassinputsupplypinwith10µFormore.The  
part goes into undervoltage lockout when VIN drops below  
2.5V. Undervoltage lockout stops switching and pulls the  
VC pin low.  
GND S (Pin 6): The ground sense pin is a “clean” ground.  
The internal reference, error amplifier and negative feed-  
back amplifier are referred to the ground sense pin. Con-  
nect it to ground. Keep the ground path connection to the  
output resistor divider and the VC compensation network  
free of large ground currents.  
FB (Pin 2): The Feedback pin is used for positive output  
voltage sensing and oscillator frequency shifting. It is the  
inverting input to the error amplifier. The noninverting  
input of this amplifier is internally tied to a 1.245V  
reference. Load on the FB pin should not exceed 250µA  
when the NFB pin is used. See Applications Information.  
GND (Pin 7): The ground pin is the emitter connection of  
thepowerswitchandhaslargecurrentsflowingthroughit.  
It should be connected directly to a good quality ground  
plane.  
NFB (Pin 3): The Negative Feedback pin is used for  
negative output voltage sensing. It is connected to the  
inverting input of the negative feedback amplifier through  
a 100k source resistor.  
VSW (Pin 8): The switch pin is the collector of the power  
switch and has large currents flowing through it. Keep the  
traces to the switching components as short as possible to  
minimize radiation and voltage spikes.  
S/S (Pin 4): Shutdown and Synchronization Pin. The S/S  
pin is logic level compatible. Shutdown is active low and  
the shutdown threshold is typically 1.3V. For normal  
operation, pull the S/S pin high, tie it to VIN or leave it  
floating. To synchronize switching, drive the S/S pin be-  
tween 600kHz and 800kHz (LT1372) or 1.2MHz to 1.6MHz  
(LT1377).  
W
BLOCK DIAGRAM  
V
SW  
IN  
SHUTDOWN  
DELAY AND RESET  
LOW DROPOUT  
2.3V REG  
S/S  
ANTI-SAT  
LOGIC  
DRIVER  
SWITCH  
SYNC  
OSC  
5:1 FREQUENCY  
SHIFT  
+
NFBA  
100k  
50k  
NFB  
FB  
COMP  
+
+
EA  
IA  
0.08Ω  
A
V
6  
V
C
1.245V  
REF  
GND LT1372 • BD  
GND SENSE  
5
LT1372/LT1377  
U
OPERATION  
The LT1372/LT1377 are current mode switchers. This  
means that switch duty cycle is directly controlled by  
switch current rather than by output voltage. Referring to  
the block diagram, the switch is turned “On” at the start of  
eachoscillatorcycle.ItisturnedOffwhenswitchcurrent  
reachesapredeterminedlevel. Controlofoutputvoltageis  
obtained by using the output of a voltage sensing error  
amplifier to set current trip level. This technique has  
several advantages. First, it has immediate response to  
input voltage variations, unlike voltage mode switchers  
which have notoriously poor line transient response.  
Second, it reduces the 90° phase shift at mid-frequencies  
in the energy storage inductor. This greatly simplifies  
closed-loop frequency compensation under widely vary-  
ing input voltage or output load conditions. Finally, it  
allows simple pulse-by-pulse current limiting to provide  
maximum switch protection under output overload or  
short conditions. A low dropout internal regulator pro-  
vides a 2.3V supply for all internal circuitry. This low  
dropout design allows input voltage to vary from 2.7V to  
25V with virtually no change in device performance. A  
500kHz(LT1372)or1MHz(LT1377)oscillatoristhebasic  
clock for all internal timing. It turns “On” the output switch  
via the logic and driver circuitry. Special adaptive anti-sat  
circuitry detects onset of saturation in the power switch  
and adjusts driver current instantaneously to limit switch  
saturation. Thisminimizesdriverdissipationandprovides  
very rapid turn-off of the switch.  
put overshoot on start-up or overload recovery. When  
the feedback voltage exceeds the reference by 40mV,  
error amplifier transconductance increases ten times,  
whichreducesoutputovershoot.Thefeedbackinputalso  
invokes oscillator frequency shifting, which helps pro-  
tect components during overload conditions. When the  
feedback voltage drops below 0.6V, the oscillator fre-  
quencyisreduced5:1.Lowerswitchingfrequencyallows  
full control of switch current limit by reducing minimum  
switch duty cycle.  
UniqueerroramplifiercircuitryallowstheLT1372/LT1377  
to directly regulate negative output voltages. The negative  
feedback amplifier’s 100k source resistor is brought out  
fornegativeoutputvoltagesensing. TheNFBpinregulates  
at 2.49V while the amplifier output internally drives the  
FB pin to 1.245V. This architecture, which uses the same  
main error amplifier, prevents duplicating functions and  
maintainseaseofuse. ConsultLinearTechnologyMarket-  
ing for units that can regulate down to 1.25V.  
The error signal developed at the amplifier output is  
brought out externally. This pin (VC) has three different  
functions. Itisusedforfrequencycompensation, current  
limit adjustment and soft starting. During normal regula-  
tor operation this pin sits at a voltage between 1V (low  
outputcurrent)and 1.9V(highoutputcurrent). Theerror  
amplifierisacurrentoutput(gm)type, sothisvoltagecan  
be externally clamped for lowering current limit. Like-  
wise, acapacitorcoupledexternalclampwillprovidesoft  
start. Switch duty cycle goes to zero if the VC pin is pulled  
below the control pin threshold, placing the LT1372/  
LT1377 in an idle mode.  
A 1.245V bandgap reference biases the positive input of  
the error amplifier. The negative input of the amplifier is  
broughtoutforpositiveoutputvoltagesensing.Theerror  
amplifier has nonlinear transconductance to reduce out-  
U U  
W
U
APPLICATIO S I FOR ATIO  
Positive Output Voltage Setting  
V
OUT  
The LT1372/LT1377 develops a 1.245V reference (VREF  
)
R1  
R2  
R1  
V
= V  
1 +  
OUT  
REF  
(
)
from the FB pin to ground. Output voltage is set by  
connecting the FB pin to an output resistor divider  
(Figure 1). The FB pin bias current represents a small  
errorandcanusuallybeignoredforvaluesofR2upto7k.  
The suggested value for R2 is 6.19k. The NFB pin is  
normally left open for positive output applications.  
FB  
PIN  
V
OUT  
1.245  
R1 = R2  
– 1  
(
)
R2  
V
REF  
LT1372 • F01  
Figure 1. Positive Output Resistor Divider  
6
LT1372/LT1377  
U U  
W
U
APPLICATIO S I FOR ATIO  
Positive fixed voltage versions are available (consult  
Linear Technology marketing).  
Shutdown and Synchronization  
The dual function S/S pin provides easy shutdown and  
synchronization. It is logic level compatible and can be  
pulledhigh, tiedtoVIN orleftfloatingfornormaloperation.  
A logic low on the S/S pin activates shutdown, reducing  
the part’s supply current to 12µA. Typical synchronization  
rangeisfrom1.05to1.8timesthepart’snaturalswitching  
frequency, but is only guaranteed between 600kHz and  
800kHz (LT1372) or 1.2MHz and 1.6MHz (LT1377). A  
12µs resetable shutdown delay network guarantees the  
part will not go into shutdown while receiving a synchro-  
nization signal.  
Negative Output Voltage Setting  
The LT1372/LT1377 develops a 2.49V reference (VNFR  
)
from the NFB pin to ground. Output voltage is set by  
connecting the NFB pin to an output resistor divider  
(Figure 2). The 30µA NFB pin bias current (INFB) can  
cause output voltage errors and should not be ignored.  
ThishasbeenaccountedforintheformulainFigure2. The  
suggested value for R2 is 2.49k. The FB pin is normally left  
open for negative output application. See Dual Polarity  
Output Voltage Sensing for limitatins on FB pin loading  
when using the NFB pin.  
Cautionshouldbeusedwhensynchronizingabove700kHz  
(LT1372) or 1.4MHz (LT1377) because at higher sync  
frequenciestheamplitudeoftheinternalslopecompensa-  
tion used to prevent subharmonic switching is reduced.  
This type of subharmonic switching only occurs when the  
duty cycle of the switch is above 50%. Higher inductor  
values will tend to eliminate problems.  
–V  
OUT  
R1  
R2  
–V  
= V  
NFB  
1 +  
+ I  
(R1)  
NFB  
OUT  
(
)
R1  
I
NFB  
NFB  
PIN  
V
– 2.49  
OUT  
R1 =  
R2  
2.49  
R2  
6
+
30 × 10–  
V
NFR  
(
)
(
)
LT1372 • F02  
Thermal Considerations  
Figure 2. Negative Output Resistor Divider  
Care should be taken to ensure that the worst-case input  
voltage and load current conditions do not cause exces-  
sive die temperatures. The packages are rated at 120°C/W  
for SO (S8) and 130°C/W for PDIP (N8).  
Dual Polarity Output Voltage Sensing  
Certain applications benefit from sensing both positive  
and negative output voltages. One example is the “Dual  
Output Flyback Converter with Overvoltage Protection”  
circuit shown in the Typical Applications section. Each  
output voltage resistor divider is individually set as de-  
scribed above. When both the FB and NFB pins are used,  
the LT1372/LT1377 acts to prevent either output from  
going beyond its set output voltage. For example in this  
application,ifthepositiveoutputweremoreheavilyloaded  
than the negative, the negative output would be greater  
and would regulate at the desired set-point voltage. The  
positive output would sag slightly below its set-point  
voltage. This technique prevents either output from going  
unregulated high at no load. Please note that the load on  
the FB pin should not exceed 250µA when the NFB pin is  
used. This situation occurs when the resistor dividers are  
used at both FB and NFB. True load on FB is not the full  
divider current unless the positive output is shorted to  
ground. See Dual Output Flyback Converter application.  
Average supply current (including driver current) is:  
IIN = 4mA + DC (ISW/60 + ISW × 0.004)  
ISW = switch current  
DC = switch duty cycle  
Switch power dissipation is given by:  
PSW = (ISW)2 × RSW × DC  
RSW = output switch “On” resistance  
Total power dissipation of the die is the sum of supply  
current times supply voltage plus switch power:  
PD(TOTAL) = (IIN × VIN) + PSW  
7
LT1372/LT1377  
U U  
W
U
APPLICATIO S I FOR ATIO  
Choosing the Inductor  
radiation, or whether it needs a closed core like a toroid  
to prevent EMI problems. One would not want an open  
core next to a magnetic storage media for instance!  
This is a tough decision because the rods or barrels are  
temptingly cheap and small, and there are no helpful  
guidelines to calculate when the magnetic field radia-  
tion will be a problem.  
For most applications the inductor will fall in the range of  
2.2µH to 22µH. Lower values are chosen to reduce physi-  
cal size of the inductor. Higher values allow more output  
current because they reduce peak current seen by the  
power switch, which has a 1.5A limit. Higher values also  
reduce input ripple voltage and reduce core loss.  
4. Start shopping for an inductor which meets the re-  
quirements of core shape, peak current (to avoid  
saturation), averagecurrent(tolimitheating)andfault  
current.Iftheinductorgetstoohot,wireinsulationwill  
melt and cause turn-to-turn shorts. Keep in mind that  
allgoodthingslikehighefficiency,lowprofileandhigh  
temperature operation will increase cost, sometimes  
dramatically.  
When choosing an inductor you might have to consider  
maximum load current, core and copper losses, allowable  
component height, output voltage ripple, EMI, fault  
current in the inductor, saturation, and of course, cost.  
Thefollowingprocedureissuggestedasawayofhandling  
thesesomewhatcomplicatedandconflictingrequirements.  
1. Assume that the average inductor current for a boost  
converter is equal to load current times VOUT/VIN and  
decide whether or not the inductor must withstand  
continuous overload conditions. If average inductor  
current at maximum load current is 0.5A, for instance,  
a 0.5A inductor may not survive a continuous 1.5A  
overload condition. Also be aware that boost convert-  
ers are not short circuit protected, and that under  
outputshortconditions, inductorcurrentislimitedonly  
by the available current of the input supply.  
5. After making an initial choice, consider the secondary  
things like output voltage ripple, second sourcing, etc.  
Use the experts in the Linear Technology application  
department if you feel uncertain about the final choice.  
They have experience with a wide range of inductor  
types and can tell you about the latest developments in  
low profile, surface mounting, etc.  
Output Capacitor  
2. Calculate peak inductor current at full load current to  
ensure that the inductor will not saturate. Peak current  
can be significantly higher than output current, espe-  
cially with smaller inductors and lighter loads, so don’t  
omit this step. Powdered iron cores are forgiving be-  
cause they saturate softly, whereas ferrite cores satu-  
rate abruptly. Other core materials fall in between  
somewhere. The following formula assumes continu-  
ous mode operation but it errors only slightly on the  
high side for discontinuous mode, so it can be used for  
all conditions.  
The output capacitor is normally chosen by its effective  
seriesresistance,(ESR),becausethisiswhatdetermines  
output ripple voltage. At 500kHz, any polarized capacitor  
is essentially resistive. To get low ESR takes volume, so  
physically smaller capacitors have high ESR. The ESR  
range for typical LT1372 and LT1377 applications is  
0.05to 0.5. A typical output capacitor is an AVX type  
TPS, 22µF at 25V, with a guaranteed ESR less than 0.2.  
This is a “D” size surface mount solid tantalum capacitor.  
TPS capacitors are specially constructed and tested for  
low ESR, so they give the lowest ESR for a given volume.  
To further reduce ESR, multiple output capacitors can be  
used in parallel. The value in microfarads is not particu-  
larly critical, and values from 22µF to greater than 500µF  
work well, but you cannot cheat mother nature on ESR.  
Ifyoufindatiny22µFsolidtantalumcapacitor,itwillhave  
high ESR, and output ripple voltage will be terrible. Table  
1 shows some typical solid tantalum surface mount  
capacitors.  
V
V
V (V  
2(f)(L)(V  
– V )  
OUT  
IN OUT IN  
I
= I  
×
OUT  
+
PEAK  
)
IN  
OUT  
V = Minimum Input Voltage  
IN  
f = 500kHz Switching Frequency (LT1372) or  
1MHz Switching Frequency (LT1377)  
3. Decide if the design can tolerate an “open” core geom-  
etry like a rod or barrel, which have high magnetic field  
8
LT1372/LT1377  
U U  
W
U
APPLICATIO S I FOR ATIO  
Table 1. Surface Mount Solid Tantalum Capacitor  
ESR and Ripple Current  
0.3(V )(V  
– V )  
IN  
)
IN OUT  
I
=
RIPPLE  
E CASE SIZE  
ESR (MAX )  
RIPPLE CURRENT (A)  
(f)(L)(V  
OUT  
AVX TPS, Sprague 593D  
AVX TAJ  
0.1 to 0.3  
0.7 to 0.9  
0.7 to 1.1  
0.4  
f = 500kHz Switching frequency (LT1372) or,  
1MHz Switching frequency (LT1377)  
D CASE SIZE  
AVX TPS, Sprague 593D  
AVX TAJ  
0.1 to 0.3  
0.9 to 2.0  
0.7 to 1.1  
0.36 to 0.24  
Theinputcapacitorcanseeaveryhighsurgecurrentwhen  
a battery or high capacitance source is connected “live”  
andsolidtantalumcapacitorscanfailunderthiscondition.  
Several manufacturers have developed a line of solid  
tantalum capacitors specially tested for surge capability  
(AVX TPS series, for instance), but even these units may  
fail if the input voltage approaches the maximum voltage  
rating of the capacitor. AVX recommends derating capaci-  
torvoltageby2:1forhighsurgeapplications. Ceramicand  
aluminum electrolytic capacitors may also be used and  
have a high tolerance to turn-on surges.  
C CASE SIZE  
AVX TPS  
AVX TAJ  
0.2 (Typ)  
1.8 to 3.0  
0.5 (Typ)  
0.22 to 0.17  
B CASE SIZE  
AVX TAJ  
2.5 to 10  
0.16 to 0.08  
Many engineers have heard that solid tantalum capacitors  
are prone to failure if they undergo high surge currents.  
This is historically true and type TPS capacitors are  
speciallytestedforsurgecapability,butsurgeruggedness  
is not a critical issue with the output capacitor. Solid  
tantalum capacitors fail during very high turn-on surges,  
which do not occur at the output of regulators. High  
discharge surges, such as when the regulator output is  
dead shorted, do not harm the capacitors.  
Ceramic Capacitors  
Higher value, lower cost ceramic capacitors are now  
becomingavailableinsmallercasesizes.Thesearetempt-  
ing for switching regulator use because of their very low  
ESR. Unfortunately, the ESR is so low that it can cause  
loop stability problems. Solid tantalum capacitor ESR  
generatesaloopzeroat5kHzto50kHzthatisinstrumen-  
tal in giving acceptable loop phase margin. Ceramic ca-  
pacitors remain capacitive to beyond 300kHz and usually  
resonate with their ESL before ESR becomes effective.  
They are appropriate for input bypassing because of their  
highripplecurrentratingsandtoleranceofturn-onsurges.  
Linear Technology plans to issue a Design Note on the use  
of ceramic capacitors in the near future.  
Single inductor boost regulators have large RMS ripple  
current in the output capacitor, which must be rated to  
handle the current. The formula to calculate this is:  
Output Capacitor Ripple Current (RMS)  
DC  
1 – DC  
I
(RMS) = I  
= I  
RIPPLE  
OUT  
V
OUT  
– V  
IN  
IN  
OUT  
V
Input Capacitors  
Output Diode  
The input capacitor of a boost converter is less critical due  
tothefactthattheinputcurrentwaveformistriangularand  
does not contain large squarewave currents as is found in  
the output capacitor. Capacitors in the range of 10µF to  
100µFwithanESRof0.3orlessworkwelluptofull1.5A  
switch current. Higher ESR capacitors may be acceptable  
at low switch currents. Input capacitor ripple current for  
boost converter is :  
The suggested output diode (D1) is a 1N5818 Schottky or  
its Motorola equivalent, MBR130. It is rated at 1A average  
forward current and 30V reverse voltage. Typical forward  
voltage is 0.42V at 1A. The diode conducts current only  
during switch off time. Peak reverse voltage for boost  
converters is equal to regulator output voltage. Average  
forward current in normal operation is equal to output  
current.  
9
LT1372/LT1377  
U U  
W
U
APPLICATIO S I FOR ATIO  
Frequency Compensation  
(magnetic) radiation is minimized by keeping output di-  
ode, switch pin, and output bypass capacitor leads as  
short as possible. E field radiation is kept low by minimiz-  
ingthelengthandareaofalltracesconnectedtotheswitch  
pin. A ground plane should always be used under the  
switcher circuitry to prevent interplane coupling.  
Loopfrequencycompensationisperformedontheoutput  
of the error amplifier (VC pin) with a series RC network.  
The main pole is formed by the series capacitor and the  
output impedance (500k) of the error amplifier. The  
pole falls in the range of 2Hz to 20Hz. The series resistor  
creates a “zero” at 1kHz to 5kHz, which improves loop  
stability and transient response. A second capacitor,  
typically one-tenth the size of the main compensation  
capacitor, is sometimes used to reduce the switching  
frequency ripple on the VC pin. VC pin ripple is caused by  
output voltage ripple attenuated by the output divider and  
multiplied by the error amplifier. Without the second  
capacitor, VC pin ripple is:  
Thehighspeedswitchingcurrentpathisshownschemati-  
cally in Figure 3. Minimum lead length in this path is  
essential to ensure clean switching and low EMI. The path  
including the switch, output diode, and output capacitor is  
the only one containing nanosecond rise and fall times.  
Keep this path as short as possible.  
SWITCH  
NODE  
L1  
V
OUT  
1.245(V  
)(g )(R )  
m C  
RIPPLE  
(V  
HIGH  
FREQUENCY  
CIRCULATING  
PATH  
V Pin Ripple =  
C
V
LOAD  
IN  
)
OUT  
V
m
= Output ripple (V  
)
P–P  
RIPPLE  
g = Error amplifier transconductance  
(1500µmho)  
LT1372 • F03  
Figure 3  
R = Series resistor on V pin  
V
C
OUT  
C
= DC output voltage  
More Help  
To prevent irregular switching, VC pin ripple should be  
kept below 50mVP–P. Worst-case VC pin ripple occurs at  
maximum output load current and will also be increased  
if poor quality (high ESR) output capacitors are used. The  
addition of a 0.0047µF capacitor on the VC pin reduces  
switching frequency ripple to only a few millivolts. A low  
value for RC will also reduce VC pin ripple, but loop phase  
margin may be inadequate.  
For more detailed information on switching regulator  
circuits, please see Application Note 19. Linear Technol-  
ogyalsooffersacomputersoftwareprogram,SwitcherCAD,  
to assist in designing switching converters. SwitcherCAD  
will be updated in late 1995 for the LT1372 and LT1377. In  
addition, our applications department is always ready to  
lend a helping hand.  
Switch Node Considerations  
For maximum efficiency, switch rise and fall time are  
made as short as possible. To prevent radiation and high  
frequency resonance problems, proper layout of the com-  
ponents connected to the switch node is essential. B field  
10  
LT1372/LT1377  
U
TYPICAL APPLICATIONS N  
Positive-to-Negative Converter with Direct Feedback  
Dual Output Flyback Converter with Overvoltage Protection  
V
IN  
R2  
1.21k  
1%  
R1  
13k  
1%  
2.7V TO 16V  
T1*  
+
2
4
C1  
D2  
+
22µF  
C4  
P6KE-15A  
D3  
V
IN  
5
47µF  
MBRS140T3  
T1*  
2.7V TO 13V  
V
IN  
1N4148  
V
OUT  
1
3
4
8
3
–V  
ON  
OUT  
V
15V  
+
2, 3  
5
S/S  
SW  
OFF  
C1  
22µF  
–5V  
+
R2  
2.49k  
1%  
D1  
MBRS130LT3  
P6KE-20A  
C4  
LT1372/LT1377  
NFB  
GND  
6, 7  
47µF  
2
5
4
8
1N4148  
FB  
S/S  
V
IN  
V
R3  
2.49k  
1%  
4
8
3
6, 7  
ON  
+
V
SW  
C
OFF  
C5  
47µF  
1
LT1372/LT1377  
NFB  
GND  
6, 7  
1
–V  
OUT  
C2  
0.047µF  
R1  
2k  
*COILTRONICS CTX10-2 (407) 241-7876  
–15V  
R4  
12.1k  
1%  
MAX I  
OUT  
MBRS140T3  
C3  
0.0047µF  
V
C
I
V
IN  
OUT  
1
LT1372 • TA03  
0.3A 3V  
0.5A 5V  
0.75A 9V  
R5  
2.49k  
1%  
C2  
0.047µF  
R3  
2k  
C3  
0.0047µF  
*DALE LPE-4841-100MB (605) 665-9301  
LT1372 • TA04  
90% Efficient CCFL Supply  
Low Ripple 5V to 3V “Cuk”Converter  
5mA MAX  
LAMP  
C2  
27pF  
D1  
1N4148  
V
10  
OUT  
L1*  
V
IN  
–3V  
5V  
T1  
2
1
3
4
250mA  
V
IN  
5
4
3
2
1
4.5V  
+
TO 30V  
10µF  
C1  
0.1µF  
R1  
1k  
1%  
C2  
47µF  
16V  
5
4
7
6
8
V
V
SW  
IN  
Q1  
Q2  
+
+
C1  
22µF  
10V  
C6  
0.1µF  
S/S  
LT1372/LT1377  
GND NFB  
330Ω  
3
1
D2  
L1  
33µH  
2.7V TO  
5.5V  
GND S  
V
C
C3  
47µF  
16V  
1N4148  
+
D1**  
1N5818  
8
2.2µF  
+
5
C5  
0.0047µF  
R4  
2k  
V
R2  
4.99k  
1%  
IN  
562*  
10k  
4
ON  
S/S  
V
SW  
OFF  
C4  
0.047µF  
20k  
DIMMING  
LT1372/LT1377  
2
*SUMIDA CLS62-100L  
LT1372 • TA05  
V
FB  
**MOTOROLA MBR0520LT3  
GND  
6, 7  
V
C
PATENTS MAY APPLY  
0.1µF  
22k  
1N4148  
1
+
2µF  
OPTIONAL REMOTE  
DIMMING  
LT1372 • TA06  
C1 = WIMA MKP-20  
L1 = COILCRAFT DT3316-333  
Q1, Q2 = ZETEX ZTX849 OR ROHM 2SC5001  
T1 = COILTRONICS CTX 110609  
* = 1% FILM RESISTOR  
CCFL BACKLIGHT APPLICATION CIRCUITS  
CONTAINED IN THIS DATA SHEET ARE  
COVERED BY U.S. PATENT NUMBER 5408162  
AND OTHER PATENTS PENDING  
DO NOT SUBSTITUTE COMPONENTS  
COILTRONICS (407) 241-7876  
COILCRAFT (708) 639-6400  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of circuits as described herein will not infringe on existing patent rights.  
11  
LT1372/LT1377  
U
TYPICAL APPLICATIONS N  
2 Li-Ion Cell to 5V SEPIC Converter  
V
IN  
4V TO 9V  
L1A*  
10µH  
5
MBRS130LT3  
V
IN  
4
8
2
V
OUT  
5V  
ON  
V
C1 = AVX TPSD 336M020R0200  
C2 = TOKIN 1E105ZY5U-C103-F  
C3 = AVX TPSD107M010R0100  
S/S  
SW  
OFF  
C1  
33µF  
20V  
R2  
C2  
1µF  
LT1372/LT1377  
18.7k  
1%  
+
FB  
+
C3  
*SINGLE INDUCTOR WITH TWO WINDINGS  
100µF  
GND  
6, 7  
V
C
COILTRONICS CTX10-1  
10V  
L1B*  
10µH  
MAX I  
OUT  
1
I
V
IN  
R3  
6.19k  
1%  
OUT  
R1  
2k  
0.45A 4V  
0.55A 5V  
0.65A 7V  
0.72A 9V  
C5  
0.0047µF  
C4  
0.047µF  
LT1372 • TA07  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
7
6
5
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
0.125  
(3.175)  
MIN  
0.005  
(0.127)  
MIN  
0.015  
(0.380)  
MIN  
0.325  
1
2
4
3
–0.015  
+0.635  
8.255  
N8 0695  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0695  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Good for Up to V = 40V  
LT1172  
100kHz 1.25A Boost Switching Regulator  
12V 1.2A Monolithic Buck Converter  
Micropower 2A Boost Converter  
IN  
LTC®1265  
LT1302  
Converts 5V to 3.3V at 1A with 90% Efficiency  
Converts 2V to 5V at 600mA in SO8 Packages  
Steps Down from Up to 25V Using 4.7µH Inductors  
90% Efficient Boost Converter with Constant Frequency  
LT1376  
500kHz 1.5A Buck Switching Regulator  
Low Supply Current 250kHz 1.5A Boost Switching Regulator  
LT1373  
LT/GP 0996 5K REV A • PRINTED IN THE USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1995  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY