LT1222CN8 [Linear]

500MHz Operational Amplifier; 500MHz的运算放大器
LT1222CN8
型号: LT1222CN8
厂家: Linear    Linear
描述:

500MHz Operational Amplifier
500MHz的运算放大器

运算放大器
文件: 总12页 (文件大小:313K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1222  
500MHz, 3nV/Hz, AV 10  
Operational Amplifier  
U
DESCRIPTIO  
EATURE  
S
F
Gain-Bandwidth: 500MHz  
The LT1222 is a low noise, very high speed operational  
amplifier with superior DC performance. The LT1222 is  
stable in a noise gain of 10 or greater without compensa-  
tion, or the part can be externally compensated for lower  
closed-loop gain at the expense of lower bandwidth and  
slew rate. It features reduced input offset voltage, lower  
input bias currents, lower noise and higher DC gain than  
devices with comparable bandwidth and slew rate. The  
circuit is a single gain stage that includes proprietary DC  
gain enhancement circuitry to obtain precision with high  
speed. Thehighgainandfastsettlingtimemakethecircuit  
an ideal choice for data acquisition systems. The circuit is  
also capable of driving capacitive loads which makes it  
useful in buffer or cable driver applications. The compen-  
sation node can also be used to clamp the output swing.  
Gain of 10 Stable Uncompensated  
Slew Rate: 200V/µs  
Input Noise Voltage: 3nV/Hz  
C-LoadTM Op Amp Drives Capacitive Loads  
External Compensation Pin  
Maximum Input Offset Voltage: 300µV  
Maximum Input Bias Current: 300nA  
Maximum Input Offset Current: 300nA  
Minimum Output Swing Into 500: ±12V  
Minimum DC Gain: 100V/mV, RL = 500Ω  
Settling Time to 0.1%: 75ns, 10V Step  
Settling Time to 0.01%: 120ns, 10V Step  
Differential Gain: 0.4%, AV = 2, RL = 150Ω  
Differential Phase: 0.1°, AV = 2, RL = 150Ω  
O U  
The LT1222 is a member of a family of fast, high perfor-  
mance amplifiers that employ Linear Technology  
Corporation’s advanced complementary bipolar process-  
ing. For unity-gain stable applications the LT1220 can be  
used, and for gains of 4 or greater the LT1221 can be used.  
PPLICATI  
A
S
Wideband Amplifiers  
Buffers  
Active Filters  
Video and RF Amplification  
Cable Drivers  
8-, 10-, 12-Bit Data Acquisition Systems  
and LTC are registered trademarks and LT is a trademark of Linear Technology Corporation.  
C-Load is a trademark of Linear Technology Cortporation.  
U
TYPICAL APPLICATION  
AV = 10 with Output Clamping  
AV = 1, CC = 30pF Pulse Response  
15V  
3k  
1N5711  
6
1N5711  
1N4148  
0.1µF  
3
2
5
+
V
IN  
LT1222  
V
0.5V  
OUT  
909Ω  
100Ω  
LT1222 • TA01  
LT1222 • TA02  
VIN = 100mV  
f = 5MHz  
RF = RG = 1k  
S = ±15V  
V
1
LT1222  
W W W  
U
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V) ............................. 36V  
Differential Input Voltage ........................................ ±6V  
Input Voltage .......................................................... ±VS  
Output Short-Circuit Duration (Note 1)........... Indefinite  
Specified Temperature Range  
Operating Temperature Range  
LT1222C........................................... 40°C TO 85°C  
LT1222M ......................................... 55°C to 125°C  
Maximum Junction Temperature (See Below)  
Plastic Package ............................................... 150°C  
Ceramic Package ............................................. 175°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
LT1222C (Note 2)................................... 0°C to 70°C  
LT1222M ......................................... 55°C to 125°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NULL  
NUMBER  
NULL  
–IN  
1
2
3
4
NULL  
8
7
6
5
+
8
V
+
1
3
V
SPECIAL  
ORDER  
CONSULT  
FACTORY  
LT1222CN8  
LT1222MJ8  
LT1222CS8  
NULL  
–IN  
+IN  
7
5
+IN  
V
OUT  
6
2
V
OUT  
V
NC  
NC  
J8 PACKAGE  
N8 PACKAGE  
4
8-LEAD CERAMIC DIP 8-LEAD PLASTIC DIP  
S8 PART MARKING  
1222  
V
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
H PACKAGE  
8-LEAD TO-5 METAL CAN  
TJMAX = 175°C, θJA = 100°C/W (J)  
TJMAX = 150°C, θJA = 130°C/W (N)  
TJMAX = 150°C, θJA = 190°C/W (S)  
TJMAX = 175°C, θJA = 150°C/W  
Consult factory for Industrial grade parts.  
VS = ±15V, TA = 25°C, VCM = 0V, unless otherwise specified.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 3)  
MIN  
TYP  
100  
100  
100  
3
MAX  
300  
300  
300  
UNITS  
µV  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
OS  
I
I
nA  
nA  
OS  
B
e
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
n
i
2
n
R
V
= ±12V  
CM  
Differential  
20  
12  
45  
12  
MΩ  
kΩ  
IN  
C
Inut Capacitance  
2
14  
13  
pF  
V
V
IN  
Input Voltage Range (Positive)  
Input Voltage Range (Negative)  
12  
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Output Swing  
V
= ±12V  
100  
98  
120  
110  
200  
13  
dB  
dB  
CM  
V = ±5V to ±15V  
S
A
V
V
= ±10V, R = 500Ω  
100  
12  
V/mV  
±V  
VOL  
OUT  
OUT  
OUT  
L
R = 500Ω  
L
I
Output Current  
V
= ±12V  
24  
26  
mA  
OUT  
SR  
Slew Rate  
Full Power Bandwidth  
Gain-Bandwidth  
(Note 4)  
10V Peak (Note 5)  
f = 1MHz  
150  
200  
3.2  
500  
V/µs  
MHz  
MHz  
GBW  
2
LT1222  
VS = ±15V, TA = 25°C, VCM = 0V, unless otherwise specified.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
t , t  
PARAMETER  
CONDITIONS  
A = 10, 10% to 90%, 0.1V  
MIN  
TYP  
2.4  
45  
MAX  
UNITS  
ns  
Rise Time, Fall Time  
Overshoot  
r
f
V
A = 10, 0.1V  
V
%
Propagation Delay  
Settling Time  
A = 10, 50% V to 50% V , 0.1V  
5.2  
ns  
V
IN  
OUT  
t
10V Step, 0.1%  
10V Step, 0.01%  
75  
120  
ns  
ns  
s
Differential Gain  
Differential Phase  
A = 2, C = 50pF, f = 3.58MHz, R = 150(Note 6)  
0.40  
0.15  
%
%
V
C
L
A = 10, C = 0pF, f = 3.58MHz, R = 1k (Note 6)  
V
C
L
A = 2, C = 50pF, f = 3.58MHz, R = 150(Note 6)  
0.10  
0.01  
DEG  
DEG  
V
C
L
A = 10, C = 0pF, f = 3.58MHz, R = 1k (Note 6)  
V
C
L
R
Output Resistance  
Supply Current  
A = 10, f = 1MHz  
V
0.1  
8
O
I
10.5  
mA  
S
VS = ±15V, 0°C TA 70°C, VCM = 0V, unless otherwise specified.  
SYMBOL  
PARAMETER  
Input Offset Voltage  
CONDITIONS  
(Note 3)  
MIN  
TYP  
100  
5
MAX  
600  
UNITS  
µV  
V
OS  
Input V Drift  
µV/°C  
nA  
OS  
I
I
Input Offset Current  
Input Bias Current  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Output Swing  
100  
100  
120  
110  
200  
13  
400  
400  
OS  
nA  
B
CMRR  
PSRR  
V
CM  
= ±12V  
100  
98  
dB  
dB  
V = ±5V to ±15V  
S
A
V
V
OUT  
= ±10V, R = 500Ω  
100  
12  
24  
V/mV  
±V  
mA  
VOL  
OUT  
OUT  
L
R = 500Ω  
L
I
Output Current  
V
OUT  
= ±12V  
26  
SR  
Slew Rate  
(Note 4)  
150  
200  
8
V/µs  
mA  
I
Supply Current  
11  
S
VS = ±15V, 55°C TA 125°C, VCM = 0V, unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
100  
5
MAX  
UNITS  
µV  
µV/°C  
nA  
V
Input Offset Voltage  
(Note 3)  
600  
OS  
Input V Drift  
OS  
I
I
Input Offset Current  
100  
100  
120  
110  
200  
800  
OS  
Input Bias Current  
1000  
nA  
dB  
B
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Output Swing  
V
= ±12V  
98  
98  
50  
10  
12  
CM  
V = ±5V to ±15V  
S
dB  
A
V
V
= ±10V, R = 500Ω  
V/mV  
±V  
±V  
VOL  
OUT  
OUT  
L
R = 500Ω  
13  
13  
L
R = 1k  
L
I
Output Current  
V
V
= ±10V  
= ±12V  
20  
12  
26  
13  
mA  
mA  
OUT  
OUT  
OUT  
SR  
Slew Rate  
Supply Current  
(Note 4)  
110  
200  
8
V/µs  
mA  
I
11  
S
The  
denotes specifications which apply over the full temperature range.  
Note 3: Input offset voltage is pulse tested and is exclusive of warm-up drift.  
Note 4: Slew rate is measured between ±10V on an output swing of ±12V.  
Note 1: A heat sink may be required when the output is shorted indefinitely.  
Note 2: Commercial parts are designed to operate over 40°C to 85°C, but  
are not tested nor guaranteed beyond 0°C to 70°C. Industrial grade parts  
specified and tested over 40°C to 85°C are available on special request.  
Consult factory.  
Note 5: FPBW = SR/2πV .  
Note 6: Differential Gain and Phase are tested with five amps in series.  
Attenuators of 1/Gain are used as loads.  
P
3
LT1222  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Input Common-Mode Range  
vs Supply Voltage  
Supply Current vs Supply Voltage  
and Temperature  
Output Voltage Swing  
vs Supply Voltage  
20  
15  
10  
5
11  
10  
20  
15  
10  
5
T
= 25°C  
OS  
T
= 25°C  
A
A
L
V = 0.5mV  
R
= 500Ω  
V = 30mV  
OS  
T = 125°C  
T = 25°C  
+V  
CM  
9
8
+V  
SW  
–V  
CM  
–V  
SW  
7
6
5
T = 55°C  
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1222 • TPC01  
LT1222 • TPC02  
LT1222 • TPC03  
Output Voltage Swing  
vs Resistive Load  
Input Bias Current  
vs Input Common-Mode Voltage  
Open-Loop Gain  
vs Resistive Load  
30  
25  
500  
400  
120  
110  
100  
90  
T
= 25°C  
V
T
= ±15V  
= 25°C  
T = 25°C  
A
A
S
A
V = 30mV  
OS  
300  
V
S
= ±15V  
V
200  
+
20  
15  
10  
5
±15V SUPPLIES  
I
B
100  
I
B
= ±5V  
0
S
–100  
200  
300  
80  
70  
±5V SUPPLIES  
1k  
–400  
–500  
0
10  
100  
10k  
–15 –10  
–5  
0
5
10  
15  
10  
100  
1k  
10k  
LOAD RESISTANCE ()  
INPUT COMMON-MODE VOLTAGE (V)  
LOAD RESISTANCE ()  
LT1222 • TPC04  
LT1222 • TPC05  
LT1222 • TPC06  
Output Short-Circuit Current  
vs Temperature  
Power Supply Rejection Ratio  
vs Frequency  
Input Noise Spectral Density  
1000  
100  
100  
10  
50  
45  
40  
35  
30  
25  
20  
120  
100  
V
= ±5V  
V
T
= ±15V  
S
A
V
T
= ±15V  
= 25°C  
S
S
A
= 25°C  
= 101  
A
V
S
R
= 100k  
+PSRR  
80  
60  
i
n
–PSRR  
10  
1
1
40  
20  
0
e
n
0.1  
100k  
10  
100  
1k  
10k  
50 25  
0
25  
50  
75 100 125  
100  
1k  
10k 100k  
1M  
10M 100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT1222 • TPC08  
LT1222 • TPC07  
LT1222 • TPC09  
4
LT1222  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Common-Mode Rejection Ratio  
vs Frequency  
Output Swing and Error  
Output Swing and Error  
vs Settling Time (Inverting)  
vs Settling Time (Noninverting)  
120  
100  
10  
8
10  
8
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
S
A
S
A
V
T
= ±15V  
= 25°C  
S
A
6
4
6
4
10mV  
1mV  
10mV  
1mV  
1mV  
80  
60  
2
0
2
0
–2  
–4  
–2  
–4  
40  
20  
0
10mV  
10mV  
1mV  
–6  
–8  
–6  
–8  
–10  
–10  
0
25  
50  
75  
100  
125  
1k  
100k  
1M  
10M  
100M  
0
25  
50  
75  
100  
125  
10k  
FREQUENCY (Hz)  
SETTLING TIME (ns)  
SETTLING TIME (ns)  
LT1222 • TPC12  
LT1222 • TPC10  
LT1222 • TPC11  
Voltage Gain and Phase  
vs Frequency  
Frequency Response  
vs Capacitive Load  
Closed-Loop Output Impedance  
vs Frequency  
120  
100  
80  
100  
80  
30  
28  
26  
24  
10  
1
V
= ±15V  
V
= ±15V  
= 25°C  
= 10  
V
= ±15V  
= 25°C  
= –10  
S
A
V
S
S
A
V
T
T
A
V
= ±15V  
A
C = 100pF  
C = 50pF  
S
V
= ±5V  
S
60  
V
= ±5V  
S
22  
20  
60  
40  
20  
0
40  
20  
0
0.1  
C = 0  
18  
16  
14  
12  
10  
C = 500pF  
C = 1000pF  
0.01  
T
= 25°C  
1k  
A
0.001  
20  
100  
10k  
100k  
1M 10M 100M  
1
10  
100  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
LT1222 • TPC15  
LT1222 • TPC13  
LT1222 • TPC14  
Total Harmonic Distortion  
vs Frequency  
Gain-Bandwidth vs Temperature  
Slew Rate vs Temperature  
0.01  
0.001  
550  
525  
500  
475  
450  
425  
400  
275  
250  
225  
200  
175  
150  
125  
V
V
= ±15V  
RMS  
= 500Ω  
V
= ±15V  
S
O
L
S
V
A
C
= ±15V  
= –10  
S
V
C
= 3V  
R
= 0  
+
(SR ) + (SR )  
2
SR =  
A
= ±10  
V
0.0001  
10  
100  
1k  
10k  
100k  
50 25  
0
25  
50  
75 100 125  
50 25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1222 • TPC18  
LT1222 • TPC16  
LT1222 • TPC17  
5
LT1222  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Large Signal, AV = 10,  
CL = 10,000pF  
Large Signal, AV = 10  
Small Signal, AV = 10  
LT1222 • TPC19  
LT1222 • TPC20  
LT1222 • TPC21  
V
S = ±15V f = 20kHz  
VS = ±15V f = 5MHz  
VIN = 20mV  
VS = ±15V f = 2MHz  
IN = 2V  
RF = 909Ω  
RF = 909Ω  
V
G = 100Ω  
RF = 909Ω  
RG = 100Ω  
VIN = 2V  
R
G = 100Ω  
R
Small Signal, AV = 10,  
CL = 1,000pF  
Large Signal, AV = 10  
Small Signal, AV = 10  
LT1222 • TPC22  
LT1222 • TPC23  
LT1222 • TPC24  
V
S = ±15V f = 5MHz  
f = 2MHz  
V
S = ±15V f = 500kHz  
RF = 1k  
G = 100(75)  
R
F = 1k  
VS = ±15V  
IN = 2V  
R
R
F = 1k  
G = 100(75)  
V
IN = 20mV  
V
IN = 15mV  
R
V
RG = 100(75)  
U
W U U  
APPLICATIONS INFORMATION  
The LT1222 is stable in noise gains of 10 or greater and  
may be inserted directly into HA2520/2/5, HA2541/2/4,  
AD817, AD847, EL2020, EL2044 and LM6361 applica-  
tions, provided that the nulling circuitry is removed and  
the amplifier configuration has a high enough noise gain.  
The suggested nulling circuit for the LT1222 is shown in  
the following figure.  
Layout and Passive Components  
The LT1222 amplifier is easy to apply and tolerant of less  
than ideal layouts. For maximum performance (for ex-  
ample, fast settling time) use a ground plane, short lead  
lengthsandRF-qualitybypasscapacitors(0.01µFto0.1µF).  
For high drive current applications use low ESR bypass  
capacitors (1µF to 10µF tantalum). Sockets should be  
avoided when maximum frequency performance is re-  
quired. For more details see Design Note 50. Feedback  
resistors greater than 5k are not recommended because a  
pole is formed with the input capacitance which can cause  
peaking or oscillations. Stray capacitance on pin 5 should  
be minimized. Bias current cancellation circuitry is em-  
ployedontheinputsoftheLT1222sotheinputbiascurrent  
and input offset current have identical specifications. For  
this reason, matching the impedance on the inputs to  
reduce bias current errors is not necessary.  
Offset Nulling  
+
V
5k  
1
0.1µF  
3
2
8
+
7
4
6
LT1222  
0.1µF  
LT1222 • AI01  
V
6
LT1222  
U
W U U  
APPLICATIONS INFORMATION  
Output Clamping  
may be used to reduce overshoot, to allow the amplifier to  
be used in lower noise gains, or simply to reduce band-  
width. Table 1 shows gain and compensation capacitor  
vresus 3dBbandwidth, maximumfrequencypeakingand  
small-signal overshoot.  
Access to the internal compensation node at pin 5 allows  
the output swing of the LT1222 to be clamped. An example  
is shown on the first page of this data sheet. The compen-  
sation node is approximately one diode drop above the  
output and can source or sink 1.2mA. Back-to-back Schot-  
tky diodes clamp pin 5 to a diode drop above ground so the  
output is clamped to ±0.5V (the drop of the Schottkys at  
1.2mA). The diode reference is bypassed for good AC  
response. Thiscircuitisuseful for amplifyingthevoltageat  
false sum nodes used in settling time measurements.  
Table 1  
A
C (pF)  
C
f (MHz)  
3dB  
Max Peaking (dB)  
Overshoot (%)  
V
–1  
–1  
–1  
–1  
5
30  
50  
82  
150  
10  
20  
30  
50  
0
99  
4.2  
0.9  
0
36  
13  
0
70  
32  
13  
0
0
140  
100  
34  
3.8  
0
35  
5
Capacitive Loading  
5
The LT1222 is stable with capacitive loads. This is accom-  
plishedbysensingtheloadinducedoutputpoleandadding  
compensation at the amplifier gain node. As the capacitive  
load increases, both the bandwidth and phase margin  
decrease. There will be peaking in the frequency domain as  
shown in the curve of Frequency Response vs Capacitive  
Load. The small-signal transient response will have more  
overshoot as shown in the photo of the small-signal  
responsewith1000pFload.Thelarge-signalresponsewith  
a 10,000pF load shows the output slew rate being limited  
to 4V/µs by the short-circuit current. The LT1222 can drive  
coaxialcabledirectly, butforbestpulsefidelityaresistorof  
value equal to the characteristic impedance of the cable  
(i.e., 75) should be placed in series with the output. The  
other end of the cable should be terminated with the same  
value resistor to ground.  
5
0
1
5
15  
0
0
10  
10  
10  
10  
20  
20  
20  
150  
111  
40  
9.5  
0.2  
0
45  
10  
2
5
10  
20  
0
17  
0
0
82  
0.1  
0
10  
0
5
24  
10  
14  
0
0
For frequencies < 10MHz the frequency response of the  
amplifier is approximately:  
f = 1/[2π × 53Ω × (CC + 6pF) × (Noise Gain)]  
The slew rate is affected as follows:  
SR = 1.2mA/(CC + 6pF)  
Compensation  
An example would be a gain of –10 (noise gain of 11) and  
CC = 20pF which has 10.5MHz bandwidth and 46V/µs slew  
rate. It should be noted that the LT1222 is not stable in  
AV = 1 unless CC = 50pF and a 1k resistor is used as the  
feedback resistor. The 1k and input capacitance increase  
the noise gain at frequency to aid stability.  
The LT1222 has a typical gain-bandwidth product of  
500MHz which allows it to have wide bandwidth in high  
gain configurations (i.e., in a gain of 100, it will have a  
bandwidth of about 5MHz). For added flexibility the ampli-  
fierfrequencyresponsemaybeadjustedbyaddingcapaci-  
tance from pin 5 to ground. The compensation capacitor  
7
LT1222  
U
TYPICAL APPLICATIONS N  
VOS Null Loop  
Two Op Amp Instrumemtation Amplifier  
R5  
220Ω  
R4  
10k  
150k  
150k  
1
R1  
10k  
R2  
1k  
V
IN  
+
8
V
A
OUT  
= 1001  
LT1222  
V
+
R3  
1k  
25k  
+
LT1220  
V
LT1222  
IN  
OUT  
10k  
10k  
100pF  
25Ω  
V
+
GAIN = [R4/R3][1 + (1/2)(R2/R1 + R3/R4) + (R2 + R3)/R5] = 102  
TRIM R5 FOR GAIN  
LT1097  
100pF  
TRIM R1 FOR COMMON-MODE REJECTION  
LT1222 • TA03  
BW = 3MHz  
LT1222 • TA04  
+
W
W
SI PLIFIED SCHE ATIC  
+
V
7
NULL  
1
8
BIAS 2  
BIAS 1  
COMP  
5
6
OUT  
–IN  
2
+IN  
3
4
V
LT1222 • SS  
8
LT1222  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
H8 Package  
8-Lead TO-5 Metal Can  
0.335 – 0.370  
(8.509 – 9.398)  
DIA  
0.305 – 0.335  
(7.747 – 8.509)  
0.040  
(1.016)  
MAX  
0.027 – 0.045  
(0.686 – 1.143)  
45°TYP  
0.027 – 0.034  
(0.686 – 0.864)  
0.050  
(1.270)  
MAX  
0.165 – 0.185  
(4.191 – 4.699)  
0.200 – 0.230  
(5.080 – 5.842)  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
BSC  
0.500 – 0.750  
(12.700 – 19.050)  
0.010 – 0.045  
(0.254 – 1.143)  
0.110 – 0.160  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
0.016 – 0.021  
(0.406 – 0.533)  
NOTE: LEAD DIAMETER IS UNCONTROLLED BETWEEN  
THE REFERENCE PLANE AND SEATING PLANE.  
H8(5) 0592  
J8 Package  
8-Lead Ceramic Dip  
0.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
0.005  
(0.127)  
MIN  
6
5
4
8
7
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
2
3
0.200  
(5.080)  
MAX  
0.300 BSC  
(0.762 BSC)  
0.015 – 0.060  
(0.381 – 1.524)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.068  
(1.143 – 1.727)  
0.385 ± 0.025  
(9.779 ± 0.635)  
0.125  
3.175  
MIN  
0.100 ± 0.010  
0.014 – 0.026  
(2.540 ± 0.254)  
(0.360 – 0.660)  
J8 0694  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS.  
9
LT1222  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
N8 Package  
8-Lead Plastic Dip  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.015  
(0.380)  
MIN  
(3.175)  
MIN  
+0.025  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
–0.015  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0694  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTURSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm).  
10  
LT1222  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157*  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
SO8 0294  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1222  
U.S. Area Sales Offices  
SOUTHWEST REGION  
Linear Technology Corporation  
22141 Ventura Blvd.  
SOUTHEAST REGION  
Linear Technology Corporation  
17060 Dallas Parkway  
Suite 208  
NORTHEAST REGION  
Linear Technology Corporation  
3220 Tillman Drive, Suite 120  
Bensalem, PA 19020  
Suite 206  
Woodland Hills, CA 91364  
Phone: (818) 703-0835  
FAX: (818) 703-0517  
Dallas, TX 75248  
Phone: (214) 733-3071  
FAX: (214) 380-5138  
Phone: (215) 638-9667  
FAX: (215) 638-9764  
Linear Technology Corporation  
266 Lowell St., Suite B-8  
Wilmington, MA 01887  
Phone: (508) 658-3881  
FAX: (508) 658-2701  
NORTHWEST REGION  
Linear Technology Corporation  
782 Sycamore Dr.  
Milpitas, CA 95035  
Phone: (408) 428-2050  
FAX: (408) 432-6331  
CENTRAL REGION  
Linear Technology Corporation  
Chesapeake Square  
229 Mitchell Court, Suite A-25  
Addison, IL 60101  
Phone: (708) 620-6910  
FAX: (708) 620-6977  
International Sales Offices  
KOREA  
FRANCE  
TAIWAN  
Linear Technology Korea Branch  
Namsong Building, #505  
Itaewon-Dong 260-199  
Yongsan-Ku, Seoul  
Korea  
Linear Technology S.A.R.L.  
Immeuble "Le Quartz"  
58 Chemin de la Justice  
92290 Chatenay Malabry  
France  
Linear Technology Corporation  
Rm. 801, No. 46, Sec. 2  
Chung Shan N. Rd.  
Taipei, Taiwan, R.O.C.  
Phone: 886-2-521-7575  
FAX: 886-2-562-2285  
Phone: 82-2-792-1617  
FAX: 82-2-792-1619  
Phone: 33-1-41079555  
FAX: 33-1-46314613  
UNITED KINGDOM  
SINGAPORE  
GERMANY  
Linear Technology (UK) Ltd.  
The Coliseum, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
Linear Technology Pte. Ltd.  
507 Yishun Industrial Park A  
Singapore 2776  
Linear Techonolgy GmbH  
Untere Hauptstr. 9  
D-85386 Eching  
Phone: 65-753-2692  
FAX: 65-754-4113  
Germany  
Phone: 49-89-3197410  
FAX: 49-89-3194821  
Phone: 44-276-677676  
FAX: 44-276-64851  
JAPAN  
Linear Technology KK  
5F YZ Bldg.  
4-4-12 Iidabashi, Chiyoda-Ku  
Tokyo, 102 Japan  
Phone: 81-3-3237-7891  
FAX: 81-3-3237-8010  
World Headquarters  
Linear Technology Corporation  
1630 McCarthy Blvd.  
Milpitas, CA 95035-7487  
Phone: (408) 432-1900  
FAX: (408) 434-0507  
0794  
LT/GP 0894 5K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1992  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
12  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1222CN8#PBF

LT1222 - 500MHz, 3nV/rtHz, AV &gt;=10 Operational Amplifier; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1222CS8

500MHz Operational Amplifier
Linear

LT1222CS8#PBF

LT1222 - 500MHz, 3nV/rtHz, AV &gt;=10 Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1222CS8#TR

LT1222 - 500MHz, 3nV/rtHz, AV &gt;=10 Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1222IS8

500MHz, 3nV/☆Hz, AV ∶ 10 Operational Amplifier
Linear

LT1222IS8#PBF

LT1222 - 500MHz, 3nV/rtHz, AV &gt;=10 Operational Amplifier; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1222IS8#TR

LT1222 - 500MHz, 3nV/rtHz, AV &gt;=10 Operational Amplifier; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1222IS8#TRPBF

LT1222 - 500MHz, 3nV/rtHz, AV &gt;=10 Operational Amplifier; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1222M

500MHz Operational Amplifier
Linear

LT1222MJ8

500MHz Operational Amplifier
Linear

LT1222MJ88

IC OP-AMP, 600 uV OFFSET-MAX, CDIP8, CERDIP-8, Operational Amplifier
Linear

LT1222MN8

IC OP-AMP, PDIP8, PLASTIC, DIP-8, Operational Amplifier
Linear