LT1221 [Linear]

150MHz Operational Amplifier; 150MHz的运算放大器
LT1221
型号: LT1221
厂家: Linear    Linear
描述:

150MHz Operational Amplifier
150MHz的运算放大器

运算放大器
文件: 总8页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1221  
150MHz, 250V/µs, AV 4  
Operational Amplifier  
U
DESCRIPTIO  
EATURE  
S
F
Gain-Bandwidth: 150MHz  
TheLT1221isaveryhighspeedoperationalamplifierwith  
superior DC performance. The LT1221 is stable in a noise  
gain of 4 or greater. It features reduced input offset  
voltage, lower input bias currents and higher DC gain than  
devices with comparable bandwidth and slew rate. The  
circuit is a single gain stage that includes proprietary DC  
gain enhancement circuitry to obtain precision with high  
speed. Thehighgainandfastsettlingtimemakethecircuit  
an ideal choice for data acquisition systems. The circuit is  
also capable of driving capacitive loads which makes it  
useful in buffer or cable driver applications.  
Gain of 4 Stable  
Slew Rate: 250V/µs  
Input Noise Voltage: 6nV/Hz  
C-LoadTM Op Amp Drives Capacitive Loads  
Maximum Input Offset Voltage: 600µV  
Maximum Input Bias Current: 300nA  
Maximum Input Offset Current: 300nA  
Minimum Output Swing Into 500: ±12V  
Minimum DC Gain: 50V/mV, RL = 500Ω  
Settling Time to 0.1%: 65ns, 10V Step  
Settling Time to 0.01%: 85ns, 10V Step  
Differential Gain: 0.08%, AV = 4, RL = 150Ω  
Differential Phase: 0.2°, AV = 4, RL = 150Ω  
O U  
The LT1221 is a member of a family of fast, high perfor-  
mance amplifiers that employ Linear Technology  
Corporation’s advanced complementary bipolar process-  
ing. For unity-gain stable applications the LT1220 can be  
used,andforgainsof10orgreatertheLT1222canbeused.  
PPLICATI  
A
S
Wideband Amplifiers  
Buffers  
Active Filters  
Video and RF Amplification  
Cable Drivers  
and LTC are registered trademarks and LT is a trademark of Linear Technology Corporation.  
C-Load is a trademark of Linear Technology Cortporation.  
8-, 10-, 12-Bit Data Acquisition Systems  
U
TYPICAL APPLICATION  
Summing Amplifier  
Summing Amplifier Large-Signal Response  
1k  
1k  
1k  
1k  
V
V
A
B
+
V
LT1221  
OUT  
V
C
LT1221 • TA01  
LT1221 • TA02  
f = 2MHz  
VS = ±15V  
IN = 10VP-P  
V
1
LT1221  
W W W  
U
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V) ............................. 36V  
Differential Input Voltage ........................................ ±6V  
Input Voltage .......................................................... ±VS  
Output Short-Circuit Duration (Note 1)........... Indefinite  
Specified Temperature Range  
Operating Temperature Range  
LT1221C........................................... 40°C TO 85°C  
LT1221M ......................................... 55°C to 125°C  
Maximum Junction Temperature (See Below)  
Plastic Package ............................................... 150°C  
Ceramic Package ............................................. 175°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
LT1221C (Note 2)................................... 0°C to 70°C  
LT1221M ......................................... 55°C to 125°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NULL  
NUMBER  
NULL  
–IN  
1
2
3
4
NULL  
8
7
6
5
+
8
V
+
1
3
V
SPECIAL  
ORDER  
CONSULT  
FACTORY  
LT1221CN8  
LT1221MJ8  
LT1221CS8  
NULL  
–IN  
+IN  
7
5
+IN  
V
OUT  
6
2
V
OUT  
V
NC  
NC  
J8 PACKAGE  
N8 PACKAGE  
4
8-LEAD CERAMIC DIP 8-LEAD PLASTIC DIP  
S8 PART MARKING  
1221  
V
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
H PACKAGE  
8-LEAD TO-5 METAL CAN  
TJMAX = 175°C, θJA = 100°C/W (J)  
TJMAX = 150°C, θJA = 130°C/W (N)  
TJMAX = 150°C, θJA = 190°C/W (S)  
TJMAX = 175°C, θJA = 150°C/W  
Consult factory for Industrial grade parts.  
VS = ±15V, TA = 25°C, VCM = 0V, unless otherwise specified.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 3)  
MIN  
TYP  
200  
100  
100  
6
MAX  
600  
300  
300  
UNITS  
µV  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
OS  
I
I
nA  
nA  
OS  
B
e
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
n
i
2
n
R
V
= ±12V  
CM  
Differential  
20  
12  
45  
80  
MΩ  
kΩ  
IN  
C
Inut Capacitance  
2
14  
13  
pF  
V
V
IN  
Input Voltage Range (Positive)  
Input Voltage Range (Negative)  
12  
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Output Swing  
V
= ±12V  
92  
90  
114  
110  
100  
13  
dB  
dB  
CM  
V = ±5V to ±15V  
S
A
V
V
= ±10V, R = 500Ω  
50  
12  
V/mV  
±V  
VOL  
OUT  
OUT  
OUT  
L
R = 500Ω  
L
I
Output Current  
V
= ±12V  
24  
26  
mA  
OUT  
SR  
Slew Rate  
Full Power Bandwidth  
Gain-Bandwidth  
(Note 4)  
10V Peak (Note 5)  
f = 1MHz  
200  
250  
4
V/µs  
MHz  
MHz  
GBW  
150  
2
LT1221  
VS = ±15V, TA = 25°C, VCM = 0V, unless otherwise specified.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
t , t  
PARAMETER  
CONDITIONS  
A = 4, 10% to 90%, 0.1V  
MIN  
TYP  
3.2  
10  
MAX  
UNITS  
ns  
Rise Time, Fall Time  
Overshoot  
r
f
V
A = 4, 0.1V  
%
V
Propagation Delay  
Settling Time  
A = 4, 50% V to 50% V , 0.1V  
5.4  
ns  
V
IN  
OUT  
t
10V Step, 0.1%  
10V Step, 0.01%  
65  
85  
ns  
ns  
s
Differential Gain  
Differential Phase  
f = 3.58MHz, R = 150(Note 6)  
0.08  
0.02  
%
%
L
f = 3.58MHz, R = 1k (Note 6)  
L
f = 3.58MHz, R = 150(Note 6)  
0.20  
0.05  
DEG  
DEG  
L
f = 3.58MHz, R = 1k (Note 6)  
L
R
Output Resistance  
Supply Current  
A = 4, f = 1MHz  
V
0.3  
8
O
I
10.5  
mA  
S
VS = ±15V, 0°C TA 70°C, VCM = 0V, unless otherwise specified.  
SYMBOL  
PARAMETER  
Input Offset Voltage  
CONDITIONS  
(Note 3)  
MIN  
TYP  
0.2  
15  
MAX  
1.5  
UNITS  
mV  
V
OS  
Input V Drift  
µV/°C  
nA  
OS  
I
I
Input Offset Current  
Input Bias Current  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Output Swing  
100  
100  
114  
110  
100  
13  
400  
400  
OS  
nA  
B
CMRR  
PSRR  
V
CM  
= ±12V  
92  
90  
dB  
dB  
V = ±5V to ±15V  
S
A
V
V
OUT  
= ±10V, R = 500Ω  
40  
V/mV  
±V  
mA  
VOL  
OUT  
OUT  
L
R = 500Ω  
12  
24  
L
I
Output Current  
V
OUT  
= ±12V  
26  
SR  
Slew Rate  
(Note 4)  
180  
250  
8
V/µs  
mA  
I
Supply Current  
11  
S
VS = ±15V, 55°C TA 125°C, VCM = 0V, unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.2  
MAX  
UNITS  
mV  
V
Input Offset Voltage  
(Note 3)  
2
OS  
Input V Drift  
15  
µV/°C  
nA  
OS  
I
I
Input Offset Current  
100  
100  
114  
110  
100  
800  
OS  
Input Bias Current  
1000  
nA  
dB  
B
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Output Swing  
V
= ±12V  
92  
90  
CM  
V = ±5V to ±15V  
dB  
S
A
V
V
= ±10V, R = 500Ω  
12.5  
10  
12  
V/mV  
±V  
±V  
VOL  
OUT  
OUT  
L
R = 500Ω  
R = 1k  
13  
13  
L
L
I
Output Current  
V
V
= ±10V  
= ±12V  
20  
12  
26  
13  
mA  
mA  
OUT  
OUT  
OUT  
SR  
Slew Rate  
Supply Current  
(Note 4)  
130  
250  
8
V/µs  
mA  
I
11  
S
The  
denotes specifications which apply over the full temperature range.  
Note 3: Input offset voltage is pulse tested and is exclusive of warm-up drift.  
Note 4: Slew rate is measured between ±10V on an output swing of ±12V.  
Note 1: A heat sink may be required when the output is shorted indefinitely.  
Note 2: Commercial parts are designed to operate over 40°C to 85°C, but  
are not tested nor guaranteed beyond 0°C to 70°C. Industrial grade parts  
specified and tested over 40°C to 85°C are available on special request.  
Consult factory.  
Note 5: FPBW = SR/2πV .  
Note 6: Differential Gain and Phase are tested in A = 4 with five amps in  
series. Attenuators of 1/4 are used as loads (36.5, 110and  
249, 750).  
P
V
3
LT1221  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Input Common-Mode Range  
vs Supply Voltage  
Supply Current vs Supply Voltage  
and Temperature  
Output Voltage Swing  
vs Supply Voltage  
20  
15  
10  
5
11  
10  
20  
15  
10  
5
T
= 25°C  
T
= 25°C  
OS  
A
L
A
R
= 500Ω  
V = 0.5mV  
V = 30mV  
OS  
T = 125°C  
T = 25°C  
+V  
–V  
9
8
CM  
+V  
SW  
CM  
–V  
SW  
7
6
5
T = –55°C  
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1221 • TPC01  
LT1221 • TPC02  
LT1221 • TPC03  
Output Voltage Swing  
vs Resistive Load  
Input Bias Current  
vs Input Common-Mode Voltage  
Open-Loop Gain  
vs Resistive Load  
30  
25  
500  
400  
300  
200  
100  
0
110  
100  
T
= 25°C  
= ±15V  
T
= 25°C  
T
= 25°C  
OS  
A
S
A
A
V
V = 30mV  
V
= ±15V  
S
+
20  
15  
10  
5
I
B
90  
80  
70  
60  
±15V SUPPLIES  
I
B
V
= ±5V  
S
–100  
–200  
–300  
±5V SUPPLIES  
400  
500  
0
10  
100  
1k  
10k  
–15 –10  
–5  
0
5
10  
15  
10  
100  
1k  
10k  
LOAD RESISTANCE ()  
INPUT COMMON-MODE VOLTAGE (V)  
LOAD RESISTANCE ()  
LT1221 • TPC04  
LT1221 • TPC05  
LT1221 • TPC06  
Output Short-Circuit Current  
vs Temperature  
Power Supply Rejection Ratio  
vs Frequency  
Input Noise Spectral Density  
1000  
100  
100  
10  
100  
80  
50  
45  
40  
35  
30  
25  
20  
V
= ±5V  
S
V
= ±15V  
= 25°C  
= 101  
V
T
= ±15V  
= 25°C  
S
A
V
+PSRR  
S
A
T
A
R
= 100k  
S
60  
40  
i
n
–PSRR  
10  
1
1
20  
10  
0
e
n
0.1  
100k  
10  
100  
1k  
10k  
100  
1k  
10k 100k  
1M  
10M 100M  
–50 –25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
LT1221 • TPC08  
LT1221 • TPC09  
LT1221 • TPC07  
4
LT1221  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Common-Mode Rejection Ratio  
vs Frequency  
Output Swing and Error  
Output Swing and Error  
vs Settling Time (Inverting)  
vs Settling Time (Noninverting)  
120  
100  
10  
8
10  
8
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
S
A
S
A
V
T
= ±15V  
= 25°C  
S
A
6
4
6
4
10mV  
1mV  
10mV  
1mV  
80  
60  
2
0
2
0
–2  
–4  
–2  
–4  
40  
20  
0
10mV  
1mV  
10mV  
1mV  
–6  
–8  
–6  
–8  
–10  
–10  
1k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
0
25  
75  
SETTLING TIME (ns)  
100  
125  
0
25  
75  
SETTLING TIME (ns)  
100  
125  
10k  
50  
50  
LT1221 • TPC10  
LT1220 • TPC11  
LT1221 • TPC12  
Voltage Gain and Phase  
vs Frequency  
Frequency Response  
vs Capacitive Load  
Closed-Loop Output Impedance  
vs Frequency  
100  
80  
100  
80  
24  
22  
20  
18  
10  
1
V
= ±15V  
V
= ±15V  
= 25°C  
= 4  
V
= ±15V  
= 25°C  
= 5  
S
A
V
S
S
A
V
T
T
A
A
C = 100pF  
V
= ±5V  
S
60  
60  
16  
14  
V
= ±15V  
S
C = 50pF  
40  
20  
40  
20  
0
0.1  
V
= ±5V  
S
12  
10  
8
C = 0  
0.01  
C = 500pF  
C = 1000pF  
0
6
T
= 25°C  
1k  
A
0.001  
–20  
–20  
4
100  
10k  
100k  
1M 10M 100M  
1
10  
FREQUENCY (MHz)  
100  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT1221 • TPC15  
LT1221 • TPC13  
LT1221 • TPC14  
Total Harmonic Distortion  
vs Frequency  
Gain-Bandwidth vs Temperature  
Slew Rate vs Temperature  
0.01  
0.001  
180  
170  
160  
150  
140  
130  
120  
325  
300  
275  
250  
225  
200  
175  
V
= ±15V  
V
V
= ±15V  
RMS  
= 500Ω  
S
O
L
S
V
A
= ±15V  
S
V
= 3V  
= 5  
R
+
A
= 4  
V
(SR ) + (SR )  
2
SR =  
A
= –4  
V
0.0001  
10  
100  
1k  
10k  
100k  
50 25  
0
25  
50  
75 100 125  
50 –25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1220 • TPC18  
LT1221 • TPC16  
LT1221 • TPC19  
5
LT1221  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Large Signal, AV = 4,  
CL = 10,000pF  
Small Signal, AV = 4  
Large Signal, AV = 4  
LT1221 • TPC19  
LT1221 • TPC20  
LT1221 • TPC21  
f = 5MHz  
f = 2MHz  
f = 20kHz  
VS = ±15V  
IN = 25mV  
VS = ±15V  
IN = 5VP-P  
V
S = ±15V  
V
V
V
IN = 5VP-P  
Small Signal, AV = 4,  
CL = 1,000pF  
Large Signal, AV = 4  
Small Signal, AV = 4  
LT1221 • TPC22  
LT1221 • TPC23  
LT1221 • TPC24  
f = 5MHz  
f = 2MHz  
f = 500kHz  
VS = ±15V  
IN = 25mV  
VS = ±15V  
IN = 5VP-P  
V
S = ±15V  
V
V
VIN = 42mV  
U
W U U  
APPLICATIONS INFORMATION  
TheLT1221isstableinnoisegainsof4orgreaterandmay  
beinserteddirectlyintoHA2520/2/5,HA2541/2/4,AD817,  
AD847, EL2020, EL2044 and LM6361 applications, pro-  
vided that the nulling circuitry is removed and the ampli-  
fier configuration has a high enough noise gain. The  
suggested nulling circuit for the LT1221 is shown in the  
following figure.  
Layout and Passive Components  
The LT1221 amplifier is easy to apply and tolerant of less  
than ideal layouts. For maximum performance (for ex-  
ample, fast settling time) use a ground plane, short lead  
lengthsandRF-qualitybypasscapacitors(0.01µFto0.1µF).  
For high drive current applications use low ESR bypass  
capacitors (1µF to 10µF tantalum). Sockets should be  
avoided when maximum frequency performance is re-  
quired, although low profile sockets can provide reason-  
able performance up to 50MHz. For more details see  
Design Note 50. Feedback resistors greater than 5k are not  
recommended because a pole is formed with the input  
capacitance which can cause peaking or oscillations.  
Offset Nulling  
+
V
5k  
1
0.1µF  
3
2
8
+
7
4
6
LT1221  
Input Considerations  
0.1µF  
Bias current cancellation circuitry is employed on the  
inputs of the LT1221 so the input bias current and input  
LT1221 • AI01  
V
6
LT1221  
U
W U U  
APPLICATIONS INFORMATION  
offsetcurrenthaveidenticalspecifications.Forthisreason,  
matching the impedance on the inputs to reduce bias  
current errors is not necessary.  
Compensation  
The LT1221 has a typical gain-bandwidth product of  
150MHz which allows it to have wide bandwidth in high  
gain configurations (i.e., in a gain of 10, it will have a  
bandwidth of about 15MHz). The amplifier is stable in a  
noisegainof4sotheratioofthesignalattheinvertinginput  
to the output must be 1/4 or less. Straightforward gain  
configurations of 4 or –3 are stable, but there are several  
others that allow the amplifier to be stable for lower signal  
gains (the noise gain, however, remains 4 or more). One  
example is the summing amplifier on the first page of this  
data sheet. Each input signal has a gain of –1 to the output,  
but it is easily seen that this configuration is equivalent to  
a gain of –3 as far as the amplifier is concerned. Another  
circuit is shown below with a DC gain of 1, but an AC gain  
of 5. The break frequency of the R-C combination across  
the amplifier inputs should be approximately a factor of 10  
lessthanthegain-bandwidthoftheamplifierdividedbythe  
high frequency gain (in this case 1/10 of 150MHz/5 or  
3MHz).  
Capacitive Loading  
The LT1221 is stable with capacitive loads. This is accom-  
plishedbysensingtheloadinducedoutputpoleandadding  
compensation at the amplifier gain node. As the capacitive  
load increases, both the bandwidth and phase margin  
decrease. There will be peaking in the frequency domain as  
shown in the curve of Frequency Response vs Capacitive  
Load. The small-signal transient response will have more  
overshoot as shown in the photo of the small-signal  
responsewith1000pFload.Thelarge-signalresponsewith  
a 10,000pF load shows the output slew rate being limited  
to 4V/µs by the short-circuit current. The LT1221 can drive  
coaxialcabledirectly, butforbestpulsefidelityaresistorof  
value equal to the characteristic impedance of the cable  
(i.e., 75) should be placed in series with the output. The  
other end of the cable should be terminated with the same  
value resistor to ground.  
U
TYPICAL APPLICATIONS N  
Lag Compensation  
20MHz, AV = 50 Instrumentation Amplifier  
+
V
IN  
LT1221  
V
OUT  
500Ω  
100pF  
+
+
10k  
V
IN  
LT1221  
2k  
1k  
1k  
A
= 1, f < 3MHz  
V
LT1221 • TA04  
1k  
1k  
250Ω  
+
LT1221  
V
OUT  
200pF  
Cable Driver  
250Ω  
10k  
+
V
IN  
75CABLE  
LT1221 • TA03  
75Ω  
LT1221  
V
OUT  
LT1221  
75Ω  
+
1.5k  
510Ω  
LT1221 • TA05  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LT1221  
W
W
SI PLIFIED SCHE ATIC  
+
V
7
NULL  
1
8
BIAS 1  
BIAS 2  
6
OUT  
–IN  
2
+IN  
3
4
V
LT1221 • SS  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
0.335 – 0.370  
(8.509 – 9.398)  
DIA  
0.305 – 0.335  
(7.747 – 8.509)  
0.027 – 0.045  
(0.686 – 1.143)  
45°TYP  
0.040  
(1.016)  
MAX  
0.027 – 0.034  
(0.686 – 0.864)  
0.050  
0.165 – 0.185  
(1.270)  
MAX  
(4.191 – 4.699)  
H8 Package  
8-Lead TO-5  
Metal Can  
0.200 – 0.230  
REFERENCE  
PLANE  
(5.080 – 5.842)  
SEATING  
PLANE  
BSC  
GAUGE  
PLANE  
0.500 – 0.750  
(12.700 – 19.050)  
0.010 – 0.045  
(0.254 – 1.143)  
0.110 – 0.160  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
0.016 – 0.021  
(0.406 – 0.533)  
NOTE: LEAD DIAMETER IS UNCONTROLLED BETWEEN  
THE REFERENCE PLANE AND SEATING PLANE.  
0.405  
(10.287)  
MAX  
0.005  
(0.127)  
MIN  
0.200  
(5.080)  
MAX  
0.300 BSC  
(0.762 BSC)  
CORNER LEADS OPTION  
(4 PLCS)  
6
5
4
8
7
0.015 – 0.060  
(0.381 – 1.524)  
0.023 – 0.045  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
J8 Package  
8-Lead Ceramic Dip  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
2
3
0.045 – 0.068  
(1.143 – 1.727)  
0.385 ± 0.025  
(9.779 ± 0.635)  
0.125  
3.175  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.014 – 0.026  
(0.360 – 0.660)  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER  
DIP/PLATE OR TIN PLATE LEADS.  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
8
7
6
5
N8 Package  
8-Lead Plastic Dip  
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
(3.175)  
MIN  
0.015  
(0.380)  
MIN  
+0.025  
–0.015  
1
2
4
3
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
+0.635  
8.255  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR  
PROTRUSIONS. MOLD FLASH OR PROTURSIONS SHALL  
NOT EXCEED 0.010 INCH (0.254mm).  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
8
7
6
5
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
S8 Package  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
8-Lead Plastic SOIC  
0.150 – 0.157*  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
1
2
3
4
LT/GP 0894 5K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1992  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
8
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1221C

150MHz Operational Amplifier
Linear

LT1221CH

IC OP-AMP, 600 uV OFFSET-MAX, 150 MHz BAND WIDTH, MBCY, Operational Amplifier
Linear

LT1221CN8

150MHz Operational Amplifier
Linear

LT1221CN8#PBF

LT1221 - 150MHz, 250V/&#181;s, AV &gt;/=4 Operational Amplifier; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1221CS8

150MHz Operational Amplifier
Linear

LT1221CS8#PBF

LT1221 - 150MHz, 250V/&#181;s, AV &gt;/=4 Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1221CS8#TRPBF

LT1221 - 150MHz, 250V/&#181;s, AV &gt;/=4 Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1221M

150MHz Operational Amplifier
Linear

LT1221MJ8

150MHz Operational Amplifier
Linear

LT1221_01

150MHz, 250V/ms, A 4 Operational Amplifier
Linear

LT1222

500MHz Operational Amplifier
Linear

LT1222C

500MHz Operational Amplifier
Linear