LT1206CR#TR [Linear]

暂无描述;
LT1206CR#TR
型号: LT1206CR#TR
厂家: Linear    Linear
描述:

暂无描述

放大器
文件: 总16页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1206  
250mA/60MHz Current  
Feedback Amplifier  
U
DESCRIPTIO  
EATURE  
S
F
The LT1206 is a current feedback amplifier with high  
output current drive capability and excellent video char-  
acteristics. The LT1206 is stable with large capacitive  
loads, and can easily supply the large currents required  
by the capacitive loading. A shutdown feature switches  
the device into a high impedance, low current mode,  
reducing dissipation when the device is not in use. For  
lower bandwidth applications, the supply current can be  
reduced with a single external resistor. The low differen-  
tial gain and phase, wide bandwidth, and the 250mA  
minimum output current drive make the LT1206 well  
suited to drive multiple cables in video systems.  
250mA Minimum Output Drive Current  
60MHz Bandwidth, AV = 2, RL = 100Ω  
900V/µs Slew Rate, AV = 2, RL = 50Ω  
0.02% Differential Gain, AV = 2, RL = 30Ω  
0.17° Differential Phase, AV = 2, RL = 30Ω  
High Input Impedance, 10MΩ  
Wide Supply Range, ±5V to ±15V  
Shutdown Mode: IS < 200µA  
Adjustable Supply Current  
Stable with CL = 10,000pF  
U
APPLICATIO S  
The LT1206 is manufactured on Linear Technology’s  
proprietary complementary bipolar process.  
Video Amplifiers  
Cable Drivers  
RGB Amplifiers  
Test Equipment Amplifiers  
Buffers  
U
TYPICAL APPLICATIO S  
Large-Signal Response, CL = 10,000pF  
Noninverting Amplifier with Shutdown  
15V  
V
IN  
+
V
OUT  
LT1206 COMP  
S/D**  
C
COMP  
0.01µF*  
–15V  
R
R
F
15V  
*OPTIONAL, USE WITH CAPACITIVE LOADS  
**GROUND SHUTDOWN PIN FOR  
NORMAL OPERATION  
G
5V  
24k  
ENABLE  
LT1206 • TA01  
74C906  
LT1206 • TA02  
VS = ±15V  
R
L = ∞  
RF = RG = 3k  
1
LT1206  
W W W  
U
ABSOLUTE AXI U RATI GS  
Supply Voltage ..................................................... ±18V  
Input Current .................................................... ±15mA  
Output Short-Circuit Duration (Note 1) ....... Continuous  
Specified Temperature Range (Note 2) ...... 0°C to 70°C  
Operating Temperature Range  
LT1206C ........................................... 40°C to 85°C  
Junction Temperature......................................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER PART  
ORDER PART  
+
+
+
V
1
2
3
4
8
7
6
5
V
NC  
–IN  
1
2
3
4
V
8
7
6
5
NUMBER  
NUMBER  
OUT  
–IN  
+IN  
OUT  
LT1206CS8**  
LT1206CN8**  
+IN  
V
V
S/D*  
COMP  
S/D*  
COMP  
PART MARKING  
1206  
S8 PACKAGE  
8-LEAD PLASTIC SO  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
θJA = 100°C/W  
θ
JA 60°C/W  
FRONT VIEW  
FRONT VIEW  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
OUT  
V
7
6
5
4
3
2
1
OUT  
V
7
6
5
4
3
2
1
COMP  
COMP  
+
+
LT1206CY**  
LT1206CR**  
V
V
S/D*  
+IN  
–IN  
S/D*  
+IN  
–IN  
TAB IS  
TAB IS  
+
+
V
V
Y PACKAGE  
7-LEAD TO-220  
R PACKAGE  
7-LEAD PLASTIC DD  
θJA 30°C/W  
*Ground shutdown pin for normal operation  
θJC = 5°C/W  
**See Note 2  
ELECTRICAL CHARACTERISTICS VCM = 0, ±5V VS ≤ ±15V, pulse tested, VS/D = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
T = 25°C  
±3  
±10  
±15  
mV  
mV  
OS  
A
Input Offset Voltage Drift  
Noninverting Input Current  
10  
µV/°C  
+
I
I
T = 25°C  
A
±2  
±5  
±20  
µA  
µA  
IN  
Inverting Input Current  
T = 25°C  
A
±10  
±60  
±100  
µA  
µA  
IN  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Noise Current Density  
Input Resistance  
f = 10kHz, R = 1k, R = 10, R = 0Ω  
3.6  
2
nV/Hz  
pA/Hz  
pA/Hz  
n
F
G
S
+i  
–i  
f = 10kHz, R = 1k, R = 10, R = 10k  
F G S  
n
n
f = 10kHz, R = 1k, R = 10, R = 10k  
30  
F
G
S
R
V
IN  
V
IN  
= ±12V, V = ±15V  
1.5  
0.5  
10  
5
MΩ  
MΩ  
IN  
S
= ±2V, V = ±5V  
S
C
IN  
Input Capacitance  
V = ±15V  
S
2
pF  
Input Voltage Range  
V = ±15V  
S
±12  
±2  
±13.5  
±3.5  
V
V
S
V = ±5V  
2
LT1206  
V
CM = 0, ±5V VS ≤ ±15V, pulse tested, VS/D = 0V, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CMRR  
Common-Mode Rejection Ratio  
V = ±15V, V = ±12V  
55  
50  
62  
60  
dB  
dB  
S
CM  
V = ±5V, V = ±2V  
S
CM  
Inverting Input Current  
Common-Mode Rejection  
V = ±15V, V = ±12V  
V = ±5V, V = ±2V  
S CM  
0.1  
0.1  
10  
10  
µA/V  
µA/V  
S
CM  
PSRR  
Power Supply Rejection Ratio  
V = ±5V to ±15V  
60  
77  
30  
dB  
S
Noninverting Input Current  
Power Supply Rejection  
V = ±5V to ±15V  
S
500  
5
nA/V  
Inverting Input Current  
Power Supply Rejection  
V = ±5V to ±15V  
S
0.7  
µA/V  
A
Large-Signal Voltage Gain  
V = ±15V, V  
= ±10V, R = 50Ω  
55  
55  
71  
68  
dB  
dB  
V
S
OUT  
L
V = ±5V, V  
= ±2V, R = 25Ω  
S
OUT  
L
R
OL  
Transresistance, V /I  
V = ±15V, V  
= ±10V, R = 50Ω  
100  
75  
260  
200  
kΩ  
kΩ  
OUT IN  
S
OUT  
L
V = ±5V, V  
= ±2V, R = 25Ω  
L
S
OUT  
V
Maximum Output Voltage Swing  
V = ±15V, R = 50, T = 25°C  
±11.5  
±10.0  
±2.5  
±12.5  
V
V
V
V
OUT  
S
L
A
V = ±5V, R = 25, T = 25°C  
±3.0  
S
L
A
±2.0  
I
I
Maximum Output Current  
Supply Current  
R = 1Ω  
L
250  
500  
20  
1200  
mA  
OUT  
S
V = ±15V, V = 0V, T = 25°C  
30  
35  
mA  
mA  
S
S/D  
A
Supply Current, R = 51k (Note 3)  
V = ±15V, T = 25°C  
12  
17  
200  
10  
mA  
µA  
S/D  
S
A
Positive Supply Current, Shutdown  
Output Leakage Current, Shutdown  
Slew Rate (Note 4)  
V = ±15V, V = 15V  
S
S/D  
V = ±15V, V = 15V  
µA  
S
S/D  
SR  
A = 2, T = 25°C  
400  
900  
0.02  
0.17  
60  
V/µs  
%
V
A
Differential Gain (Note 5)  
Differential Phase (Note 5)  
Small-Signal Bandwidth  
V = ±15V, R = 560, R = 560, R = 30Ω  
S F G L  
V = ±15V, R = 560, R = 560, R = 30Ω  
DEG  
MHz  
S
F
G
L
BW  
V = ±15V, Peaking 0.5dB  
S
R = R = 620, R = 100Ω  
F
G
L
V = ±15V, Peaking 0.5dB  
52  
43  
27  
MHz  
MHz  
MHz  
S
R = R = 649, R = 50Ω  
F
G
L
V = ±15V, Peaking 0.5dB  
S
R = R = 698, R = 30Ω  
F
G
L
V = ±15V, Peaking 0.5dB  
S
R = R = 825, R = 10Ω  
F
G
L
The  
denotes specifications which apply for 0°C T 70°C.  
A
beyond 0°C to 70°C. Industrial grade parts tested over 40°C to 85°C are  
available on special request. Consult factory.  
Note 1: Applies to short circuits to ground only. A short circuit between  
the output and either supply may permanently damage the part when  
operated on supplies greater than ±10V.  
Note 2: Commercial grade parts are designed to operate over the  
temperature range of 40°C to 85°C but are neither tested nor guaranteed  
Note 3: R is connected between the shutdown pin and ground.  
S/D  
Note 4: Slew rate is measured at ±5V on a ±10V output signal while  
operating on ±15V supplies with R = 1.5k, R = 1.5k and R = 400.  
F
G
L
Note 5: NTSC composite video with an output level of 2V.  
3
LT1206  
W
U
U
-
S ALL SIG AL BA DWIDTH  
IS = 20mA Typical, Peaking 0.1dB  
3dB BW  
(MHz)  
0.1dB BW  
(MHz)  
3dB BW  
(MHz)  
0.1dB BW  
(MHz)  
A
R
L
R
R
G
A
R
L
R
R
V
F
G
V
F
V = ±5V, R = 0Ω  
V = ±5V, R = 0Ω  
S
SD  
S
SD  
–1  
1
150  
30  
681  
768  
887  
768  
909  
1k  
681  
768  
887  
50  
35  
24  
66  
37  
23  
19.2  
17  
–1  
1
150  
30  
562  
649  
732  
619  
715  
806  
562  
649  
732  
48  
34  
22  
54  
36  
22.4  
21.4  
17  
10  
12.3  
10  
12.5  
150  
30  
10  
22.3  
17.5  
11.5  
150  
30  
10  
22.4  
17.5  
12  
2
150  
30  
10  
576  
649  
750  
576  
649  
750  
48  
35  
22.4  
20.7  
18.1  
11.7  
2
150  
30  
10  
665  
787  
931  
665  
787  
931  
55  
36  
22.5  
23  
18.5  
11.8  
10  
150  
30  
10  
442  
511  
649  
48.7  
56.2  
71.5  
40  
31  
20  
19.2  
16.5  
10.2  
10  
150  
30  
10  
487  
590  
768  
536  
64.9  
84.5  
44  
33  
20.7  
20.7  
17.5  
10.8  
IS = 10mA Typical, Peaking 0.1dB  
3dB BW  
(MHz)  
0.1dB BW  
(MHz)  
3dB BW  
(MHz)  
0.1dB BW  
(MHz)  
A
R
L
R
R
G
A
R
L
R
R
V
F
V
F
G
V = ±5V, R = 10.2k  
V = ±15V, R = 60.4k  
S
SD  
S
SD  
–1  
1
150  
30  
576  
681  
750  
665  
768  
845  
576  
681  
750  
35  
25  
17  
12.5  
8.7  
17.5  
12.6  
8.2  
–1  
1
150  
30  
634  
768  
866  
768  
909  
1k  
634  
768  
866  
41  
26.5  
17  
44  
28  
16.8  
19.1  
14  
10  
16.4  
10  
9.4  
150  
30  
10  
37  
25  
16.5  
150  
30  
10  
18.8  
14.4  
8.3  
2
150  
30  
10  
590  
681  
768  
590  
681  
768  
35  
25  
16.2  
16.8  
13.4  
8.1  
2
150  
30  
10  
649  
787  
931  
649  
787  
931  
40  
27  
16.5  
18.5  
14.1  
8.1  
10  
150  
30  
10  
301  
392  
499  
33.2  
43.2  
54.9  
31  
23  
15  
15.6  
11.9  
7.8  
10  
150  
30  
10  
301  
402  
590  
33.2  
44.2  
64.9  
33  
25  
15.3  
15.6  
13.3  
7.4  
IS = 5mA Typical, Peaking 0.1dB  
3dB BW  
(MHz)  
0.1dB BW  
(MHz)  
3dB BW  
(MHz)  
0.1dB BW  
(MHz)  
A
R
L
R
R
G
A
R
L
R
R
G
V
F
V
F
V = ±5V, R = 22.1k  
V = ±15V, R = 121k  
S
SD  
S
SD  
–1  
1
150  
30  
604  
715  
681  
604  
715  
681  
21  
10.5  
7.4  
–1  
1
150  
30  
619  
787  
825  
619  
787  
825  
25  
12.5  
8.5  
14.6  
10.5  
15.8  
10.5  
10  
6.0  
10  
5.4  
150  
30  
10  
768  
866  
825  
20  
14.1  
9.8  
9.6  
6.7  
5.1  
150  
30  
10  
845  
1k  
1k  
23  
15.3  
10  
10.6  
7.6  
5.2  
2
150  
30  
10  
634  
750  
732  
634  
750  
732  
20  
14.1  
9.6  
9.6  
7.2  
5.1  
2
150  
30  
10  
681  
845  
866  
681  
845  
866  
23  
15  
10  
10.2  
7.7  
5.4  
10  
150  
30  
10  
100  
100  
100  
11.1  
11.1  
11.1  
16.2  
13.4  
9.5  
5.8  
7.0  
4.7  
10  
150  
30  
10  
100  
100  
100  
11.1  
11.1  
11.1  
15.9  
13.6  
9.6  
4.5  
6
4.5  
4
LT1206  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Bandwidth and Feedback Resistance  
vs Capacitive Load for 0.5dB Peak  
Bandwidth vs Supply Voltage  
Bandwidth vs Supply Voltage  
10k  
100  
10  
1
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
BANDWIDTH  
PEAKING 0.5dB  
PEAKING 5dB  
A
= 2  
A
= 2  
PEAKING 0.5dB  
PEAKING 5dB  
V
L
V
L
R
= 10Ω  
R
= 100Ω  
R
F
R
F
= 560Ω  
= 750Ω  
R = 470Ω  
F
R = 560Ω  
F
R = 680Ω  
F
1k  
R
F
= 1k  
R = 750Ω  
F
FEEDBACK RESISTOR  
R
F
= 2k  
A
= 2  
V
L
R = 1k  
F
R
= ∞  
V
C
= ±15V  
S
R = 1.5k  
F
= 0.01µF  
COMP  
100  
1
10  
100  
1000  
10000  
4
12  
14  
16  
6
8
10  
18  
4
12  
14  
16  
6
8
10  
18  
CAPACITIVE LOAD (pF)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1206 • TPC03  
LT1206 • TPC02  
LT1206 • TPC01  
Bandwidth and Feedback Resistance  
vs Capacitive Load for 5dB Peak  
Bandwidth vs Supply Voltage  
Bandwidth vs Supply Voltage  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10k  
100  
A
= 10  
= 10Ω  
A
= 10  
= 100Ω  
PEAKING 0.5dB  
PEAKING 5dB  
PEAKING 0.5dB  
PEAKING 5dB  
V
L
V
L
BANDWIDTH  
R
R
R
F
=390Ω  
R
F
= 330Ω  
R = 560Ω  
F
1k  
10  
R = 680Ω  
F
R
R
= 470Ω  
= 680Ω  
F
R = 1k  
F
A
= +2  
F
V
L
FEEDBACK RESISTOR  
R = 1.5k  
F
R
= ∞  
V
C
= ±15V  
S
R
F
= 1.5k  
= 0.01µF  
COMP  
100  
1
10k  
16  
4
6
8
10  
12  
14  
16  
18  
4
12  
14  
6
8
10  
18  
1
10  
100  
1k  
CAPACITIVE LOAD (pF)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1206 • TPC05  
LT1206 • TPC04  
LT1206 • TPC06  
Spot Noise Voltage and Current  
vs Frequency  
Differential Phase  
vs Supply Voltage  
Differential Gain  
vs Supply Voltage  
100  
10  
1
0.50  
0.40  
0.30  
0.10  
0.08  
0.06  
R
V
= R = 560Ω  
F
G
A
= 2  
R
R
= 15Ω  
= 30Ω  
L
R
= 15Ω  
= 30Ω  
N PACKAGE  
L
L
–i  
n
R
A
= R = 560Ω  
F
V
G
R
= 2  
N PACKAGE  
0.20  
0.10  
0
0.04  
0.02  
0
L
R
= 50Ω  
L
e
n
R
R
= 50Ω  
L
i
n
= 150Ω  
L
R
7
= 150Ω  
L
5
7
9
11  
13  
15  
5
9
11  
13  
15  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1206 • TPC09  
LT1206 • TPC07  
LT1206 • TPC08  
5
LT1206  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs  
Ambient Temperature, VS = ±5V  
Supply Current vs  
Ambient Temperature, VS = ±15V  
Supply Current vs Supply Voltage  
24  
22  
20  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
V
S/D  
= 0V  
A
= 1  
A
= 1  
V
V
L
T = –40˚C  
R
= 0Ω  
J
R
= ∞  
R
= ∞  
L
SD  
R
= 0Ω  
SD  
N PACKAGE  
N PACKAGE  
T = 25˚C  
J
18  
16  
14  
R
R
= 10.2k  
= 22.1k  
R
R
= 60.4k  
= 121k  
SD  
SD  
T = 85˚C  
J
SD  
SD  
T = 125˚C  
J
12  
10  
0
0
50  
75 100 125  
4
12  
14  
16  
50  
–50  
–25  
0
25  
6
8
10  
18  
–50  
0
25  
75 100 125  
–25  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1206 • TPC10  
LT1206 • TPC12  
LT1206 • TPC11  
Supply Current  
vs Shutdown Pin Current  
Input Common-Mode Limit  
vs Junction Temperature  
Output Short-Circuit Current  
vs Junction Temperature  
+
V
20  
18  
16  
14  
12  
10  
8
1.0  
0.9  
V
S
= ±15V  
– 0.5  
–1.0  
–1.5  
–2.0  
2.0  
0.8  
0.7  
0.6  
0.5  
0.4  
SOURCING  
SINKING  
1.5  
6
1.0  
4
0.5  
2
0.3  
0
V
50  
TEMPERATURE (°C)  
100 125  
0
100  
200  
300  
400  
500  
–50 –25  
0
25  
75  
–50 –25  
0
100 125  
25  
50  
75  
TEMPERATURE (°C)  
SHUTDOWN PIN CURRENT (µA)  
LT1206 • TPC11  
LT1206 • TPC15  
LT1206 • TPC14  
Supply Current vs Large Signal  
Output Frequency (No Load)  
Output Saturation Voltage  
vs Junction Temperature  
Power Supply Rejection Ratio  
vs Frequency  
+
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
V
A
= 2  
V
= ±15V  
V
L
S
S
R
V
= 50Ω  
R
= 2k  
L
S
F
L
–1  
–2  
–3  
–4  
4
R
= ∞  
= ±15V  
NEGATIVE  
POSITIVE  
V
V
= ±15V  
R
= R = 1k  
G
= 20V  
OUT  
P-P  
R
= 50Ω  
L
R
R
= 50Ω  
L
L
3
2
= 2k  
1
V
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
–50 –25  
0
100 125  
25  
50  
75  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
LT1206 • TPC17  
LT1206 • TPC18  
LT1206 • TPC16  
6
LT1206  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Impedance in Shutdown  
vs Frequency  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Output Impedance vs Frequency  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
100  
10  
100k  
10k  
V
V
= ±15V  
V
I
= ±15V  
= 0mA  
A
= 1  
S
O
S
O
V
F
S
= 2V  
R = 1k  
P-P  
V
= ±15V  
R
= 121k  
2nd  
S/D  
R
L
= 10Ω  
3rd  
2nd  
R
= 0Ω  
S/D  
1
1k  
R
= 30Ω  
L
3rd  
0.1  
100  
0.01  
100k  
10  
100k  
1
2
3
4
5
6 7 8 9 10  
1M  
10M  
100M  
1M  
10M  
100M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT1206 • TPC21  
LT1206 • TPC19  
LT1206 • TPC20  
3rd Order Intercept vs Frequency  
Test Circuit for 3rd Order Intercept  
60  
50  
40  
30  
V
= ±15V  
S
L
F
G
+
R
= 50Ω  
R = 590Ω  
R
P
LT1206  
O
= 64.9Ω  
590Ω  
50Ω  
65Ω  
MEASURE INTERCEPT AT P  
O
LT1206 • TPC23  
20  
10  
0
10  
15  
20  
25  
30  
5
FREQUENCY (MHz)  
LT1206 • TPC22  
7
LT1206  
W
W
SI PLIFIED SCHE ATIC  
+
V
TO ALL  
CURRENT  
SOURCES  
Q5  
Q10  
Q2  
D1  
Q11  
Q6  
Q15  
Q18  
Q1  
Q17  
Q9  
V
1.25k  
+IN  
50Ω  
COMP  
V
C
C
–IN  
R
C
OUTPUT  
+
V
SHUTDOWN  
+
V
Q12  
Q3  
Q8  
Q16  
Q14  
D2  
Q4  
Q13  
Q7  
V
LT1206 • TC  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
The LT1206 is a current feedback amplifier with high  
output current drive capability. The device is stable with  
large capacitive loads and can easily supply the high  
currents required by capacitive loads. The amplifier will  
drive low impedance loads such as cables with excellent  
linearity at high frequencies.  
line when the response has 0.5dB to 5dB of peaking. The  
curves stop where the response has more than 5dB of  
peaking.  
For resistive loads, the COMP pin should be left open (see  
section on capacitive loads).  
Capacitive Loads  
Feedback Resistor Selection  
The LT1206 includes an optional compensation network  
for driving capacitive loads. This network eliminates most  
of the output stage peaking associated with capacitive  
loads, allowing the frequency response to be flattened.  
Figure 1 shows the effect of the network on a 200pF load.  
Without the optional compensation, there is a 5dB peak at  
40MHz caused by the effect of the capacitance on the  
output stage. Adding a 0.01µF bypass capacitor between  
theoutputandtheCOMPpinsconnectsthecompensation  
and completely eliminates the peaking. A lower value  
feedbackresistorcannowbeused, resultinginaresponse  
The optimum value for the feedback resistors is a function  
of the operating conditions of the device, the load imped-  
ance and the desired flatness of response. The Typical AC  
Performance tables give the values which result in the  
highest 0.1dB and 0.5dB bandwidths for various resistive  
loads and operating conditions. If this level of flatness is  
not required, a higher bandwidth can be obtained by use  
of a lower feedback resistor. The characteristic curves of  
Bandwidth vs Supply Voltage indicate feedback resistors  
for peaking up to 5dB. These curves use a solid line when  
the response has less than 0.5dB of peaking and a dashed  
8
LT1206  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
12  
a40pFcapacitorandthesupplycurrentistypically100µA.  
The shutdown pin is referenced to the positive supply  
through an internal bias circuit (see the simplified sche-  
matic). Aneasywaytoforceshutdownistouseopendrain  
(collector) logic. The circuit shown in Figure 2 uses a  
74C904 buffer to interface between 5V logic and the  
LT1206. The switching time between the active and shut-  
down states is less than 1µs. A 24k pull-up resistor  
speeds up the turn-off time and insures that the LT1206  
is completely turned off. Because the pin is referenced to  
the positive supply, the logic used should have a break-  
down voltage of greater than the positive supply voltage.  
No other circuitry is necessary as the internal circuit  
limits the shutdown pin current to about 500µA. Figure 3  
shows the resulting waveforms.  
V
S
= ±15V  
10  
8
R = 1.2k  
F
COMPENSATION  
6
4
2
R = 2k  
F
NO COMPENSATION  
0
R = 2k  
F
–2  
–4  
–6  
–8  
COMPENSATION  
1
10  
100  
FREQUENCY (MHz)  
LT1206 • F01  
Figure 1.  
which is flat to 0.35dB to 30MHz. The network has the  
greatest effect for CL in the range of 0pF to 1000pF. The  
graph of Maximum Capacitive Load vs Feedback Resistor  
can be used to select the appropriate value of feedback  
resistor. The values shown are for 0.5dB and 5dB peaking  
at a gain of 2 with no resistive load. This is a worst case  
condition, as the amplifier is more stable at higher gains  
and with some resistive load in parallel with the capaci-  
tance. Also shown is the 3dB bandwidth with the sug-  
gested feedback resistor vs the load capacitance.  
15V  
V
+
IN  
V
LT1206  
OUT  
S/D  
–15V  
R
R
F
15V  
24k  
G
5V  
Although the optional compensation works well with  
capacitive loads, it simply reduces the bandwidth when it  
is connected with resistive loads. For instance, with a 30Ω  
load, the bandwidth drops from 55MHz to 35MHz when  
thecompensationisconnected. Hence, thecompensation  
wasmadeoptional.Todisconnecttheoptionalcompensa-  
tion, leave the COMP pin open.  
ENABLE  
LT1206 • F02  
74C906  
Figure 2. Shutdown Interface  
Shutdown/Current Set  
If the shutdown feature is not used, the SHUTDOWN pin  
must be connected to ground or V.  
Theshutdownpincanbeusedtoeitherturnoffthebiasing  
for the amplifier, reducing the quiescent current to less  
than 200µA, or to control the quiescent current in normal  
operation.  
LT1206 • F3  
AV = 1  
R
PU = 24k  
The total bias current in the LT1206 is controlled by the  
current flowing out of the shutdown pin. When the shut-  
down pin is open or driven to the positive supply, the part  
is shut down. In the shutdown mode, the output looks like  
R
R
F = 825Ω  
L = 50Ω  
VIN = 1VP-P  
Figure 3. Shutdown Operation  
9
LT1206  
PPLICATI  
For applications where the full bandwidth of the amplifier  
is not required, the quiescent current of the device may be  
reducedbyconnectingaresistorfromtheshutdownpinto  
ground. The quiescent current will be approximately 40  
times the current in the shutdown pin. The voltage across  
the resistor in this condition is V+ – 3VBE. For example, a  
60k resistor will set the quiescent supply current to 10mA  
with VS = ±15V.  
O U  
W
U
A
S I FOR ATIO  
Slew Rate  
Unlike a traditional op amp, the slew rate of a current  
feedback amplifier is not independent of the amplifier gain  
configuration. There are slew rate limitations in both the  
input stage and the output stage. In the inverting mode,  
and for higher gains in the noninverting mode, the signal  
amplitude on the input pins is small and the overall slew  
rate is that of the output stage. The input stage slew rate  
is related to the quiescent current and will be reduced as  
the supply current is reduced. The output slew rate is set  
by the value of the feedback resistors and the internal  
capacitance. Larger feedback resistors will reduce the  
slew rate as will lower supply voltages, similar to the way  
the bandwidth is reduced. The photos (Figures 5a, 5b and  
5c) show the large-signal response of the LT1206 for  
various gain configurations. The slew rate varies from  
860V/µs for a gain of 1, to 1400V/µs for a gain of 1.  
Thephotos(Figures4aand4b)showtheeffectofreducing  
thequiescentsupplycurrentonthelarge-signalresponse.  
The quiescent current can be reduced to 5mA in the  
invertingconfigurationwithoutmuchchangeinresponse.  
In noninverting mode, however, the slew rate is reduced  
as the quiescent current is reduced.  
LT1206 • F04a  
RF = 750Ω  
RL = 50Ω  
IQ = 5mA, 10mA, 20mA  
S = ±15V  
V
Figure 4a. Large-Signal Response vs IQ, AV = –1  
LT1206 • F05a  
RF = 825Ω  
RL = 50Ω  
VS = ±15V  
Figure 5a. Large-Signal Response, AV = 1  
LT1206 • F04b  
RF = 750Ω  
L = 50Ω  
IQ = 5mA, 10mA, 20mA  
VS = ±15V  
R
Figure 4b. Large-Signal Response vs IQ, AV = 2  
LT1206 • F05b  
RF = RG = 750Ω  
L = 50Ω  
VS = ±15V  
R
Figure 5b. Large-Signal Response, AV = –1  
10  
LT1206  
O U  
W
U
PPLICATI  
A
S
I FOR ATIO  
the maximum allowable input voltage. To allow for some  
margin, it is recommended that the input signal be less  
than ±5V when the device is shut down.  
Capacitance on the Inverting Input  
Current feedback amplifiers require resistive feedback  
from the output to the inverting input for stable operation.  
Take care to minimize the stray capacitance between the  
output and the inverting input. Capacitance on the invert-  
ing input to ground will cause peaking in the frequency  
response (and overshoot in the transient response), but it  
does not degrade the stability of the amplifier.  
LT1206 • F04c  
RF = 750Ω  
RL = 50Ω  
Figure 5c. Large-Signal Response, AV = 2  
Power Supplies  
When the LT1206 is used to drive capacitive loads, the  
available output current can limit the overall slew rate. In  
the fastest configuration, the LT1206 is capable of a slew  
rateofover1V/ns. Thecurrentrequiredtoslewacapacitor  
at this rate is 1mA per picofarad of capacitance, so  
10,000pF would require 10A! The photo (Figure 6) shows  
thelargesignalbehaviorwithCL =10,000pF. Theslewrate  
isabout60V/µs,determinedbythecurrentlimitof600mA.  
The LT1206 will operate from single or split supplies from  
±5V (10V total) to ±15V (30V total). It is not necessary to  
use equal value split supplies, however the offset voltage  
and inverting input bias current will change. The offset  
voltage changes about 500µV per volt of supply mis-  
match. The inverting bias current can change as much as  
5µA per volt of supply mismatch, though typically the  
change is less than 0.5µA per volt.  
Thermal Considerations  
The LT1206 contains a thermal shutdown feature which  
protects against excessive internal (junction) tempera-  
ture. If the junction temperature of the device exceeds the  
protection threshold, the device will begin cycling be-  
tween normal operation and an off state. The cycling is not  
harmful to the part. The thermal cycling occurs at a slow  
rate, typically10mstoseveralseconds, whichdependson  
the power dissipation and the thermal time constants of  
the package and heat sinking. Raising the ambient tem-  
perature until the device begins thermal shutdown gives a  
good indication of how much margin there is in the  
thermal design.  
LT1206 • F06  
VS = ±15V  
F = RG = 3k  
RL = ∞  
R
Figure 6. Large-Signal Response, CL = 10,000pF  
Differential Input Signal Swing  
For surface mount devices heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Experiments have shown that the  
heat spreading copper layer does not need to be electri-  
cally connected to the tab of the device. The PCB material  
can be very effective at transmitting heat between the pad  
area attached to the tab of the device, and a ground or  
The differential input swing is limited to about ±6V by an  
ESD protection device connected between the inputs. In  
normal operation, the differential voltage between the  
input pins is small, so this clamp has no effect; however,  
in the shutdown mode the differential swing can be the  
same as the input swing. The clamp voltage will then set  
11  
LT1206  
PPLICATI  
power plane layer either inside or on the opposite side of  
the board. Although the actual thermal resistance of the  
PCB material is high, the length/area ratio of the thermal  
resistance between the layer is small. Copper board stiff-  
eners and plated through holes can also be used to spread  
the heat generated by the device.  
O U  
W
U
A
S I FOR ATIO  
Calculating Junction Temperature  
The junction temperature can be calculated from the  
equation:  
TJ = (PD × θJA) + TA  
where:  
Tables1and2listthermalresistanceforeachpackage.For  
the TO-220 package, thermal resistance is given for junc-  
tion-to-case only since this package is usually mounted to  
a heat sink. Measured values of thermal resistance for  
severaldifferentboardsizesandcopperareasarelistedfor  
each surface mount package. All measurements were  
taken in still air on 3/32" FR-4 board with 1oz copper. This  
data can be used as a rough guideline in estimating  
thermal resistance. The thermal resistance for each appli-  
cation will be affected by thermal interactions with other  
components as well as board size and shape.  
TJ = Junction Temperature  
TA = Ambient Temperature  
PD = Device Dissipation  
θJA = Thermal Resistance (Junction-to Ambient)  
As an example, calculate the junction temperature for the  
circuitinFigure7fortheN8,S8,andRpackagesassuming  
a 70°C ambient temperature.  
15V  
39mA  
I
+
Table 1. R Package, 7-Lead DD  
12V  
LT1206  
S/D  
330Ω  
COPPER AREA  
–12V  
THERMAL RESISTANCE  
f = 2MHz  
0.01µF  
TOPSIDE*  
BACKSIDE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
2k  
300pF  
2500 sq. mm 2500 sq. mm 2500 sq. mm  
1000 sq. mm 2500 sq. mm 2500 sq. mm  
25°C/W  
27°C/W  
35°C/W  
–15V  
2k  
LT1206 • F07  
125 sq. mm  
2500 sq. mm 2500 sq. mm  
Figure 7. Thermal Calculation Example  
*Tab of device attached to topside copper  
The device dissipation can be found by measuring the  
supply currents, calculating the total dissipation, and  
then subtracting the dissipation in the load and feedback  
network.  
Table 2. S8 Package, 8-Lead Plastic SOIC  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
2500 sq. mm 2500 sq. mm 2500 sq. mm  
1000 sq. mm 2500 sq. mm 2500 sq. mm  
60°C/W  
62°C/W  
65°C/W  
69°C/W  
73°C/W  
80°C/W  
83°C/W  
PD = (39mA × 30V) – (12V)2/(2k||2k) = 1.03W  
225 sq. mm  
100 sq. mm  
100 sq. mm  
100 sq. mm  
100 sq. mm  
2500 sq. mm 2500 sq. mm  
2500 sq. mm 2500 sq. mm  
1000 sq. mm 2500 sq. mm  
225 sq. mm 2500 sq. mm  
100 sq. mm 2500 sq. mm  
Then:  
TJ = (1.03W × 100°C/W) + 70°C = 173°C  
for the N8 package  
TJ = (1.03W × 65°C/W) × + 70°C = 137°C  
*Pins 1 and 8 attached to topside copper  
for the S8 with 225 sq. mm topside heat sinking  
TJ = (1.03W × 35°C/W) × + 70°C = 106°C  
for the R package with 100 sq. mm topside  
heat sinking  
Y Package, 7-Lead TO-220  
Thermal Resistance (Junction-to-Case) = 5°C/W  
N8 Package, 8-Lead DIP  
Thermal Resistance (Junction-to-Ambient) = 100°C/W  
Since the Maximum Junction Temperature is 150°C, the  
N8 package is clearly unacceptable. Both the S8 and R  
packages are usable.  
12  
LT1206  
U
TYPICAL APPLICATIO S  
Precision ×10 Hi Current Amplifier  
CMOS Logic to Shutdown Interface  
15V  
V
IN  
+
LT1097  
+
+
LT1206  
COMP  
S/D  
OUT  
24k  
LT1206  
S/D  
0.01µF  
500pF  
LT1206 • TA05  
5V  
–15V  
330Ω  
3k  
10k  
2N3904  
10k  
LT1206 • TA03  
OUTPUT OFFSET: < 500µV  
SLEW RATE: 2V/µs  
1k  
BANDWIDTH: 4MHz  
STABLE WITH C < 10nF  
L
Distribution Amplifier  
V
IN  
+
75CABLE  
75Ω  
Low Noise ×10 Buffered Line Driver  
LT1206  
S/D  
75Ω  
75Ω  
R
F
15V  
1µF  
15V  
1µF  
75Ω  
+
LT1206 • TA06  
+
+
R
G
LT1115  
+
OUTPUT  
75Ω  
LT1206  
S/D  
1µF  
+
0.01µF  
R
L
–15V  
1µF  
68pF  
+
Buffer AV = 1  
–15V  
560Ω  
909Ω  
560Ω  
V
+
IN  
LT1206  
COMP  
S/D  
V
*OPTIONAL, USE WITH CAPACITIVE LOADS  
**VALUE OF R DEPENDS ON SUPPLY  
F
VOLTAGE AND LOADING. SELECT  
FROM TYPICAL AC PERFORMANCE  
TABLE OR DETERMINE EMPIRICALLY  
OUT  
LT1206 • TA04  
0.01µF*  
100Ω  
R
O
= 32Ω  
L
V
= 5V  
RMS  
THD + NOISE = 0.0009% AT 1kHz  
= 0.004% AT 20kHz  
SMALL SIGNAL 0.1dB BANDWIDTH = 600kHz  
R **  
F
LT1206 • TA07  
13  
LT1206  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead Plastic DIP  
0.400  
(10.160)  
MAX  
8
7
6
3
5
4
0.250 ± 0.010  
(6.350 ± 0.254)  
1
2
0.130 ± 0.005  
0.300 – 0.320  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.128)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.025  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
–0.015  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0392  
R Package  
7-Lead Plastic DD  
0.060  
0.401 ± 0.015  
(1.524)  
(10.185 ± 0.381)  
0.175 ± 0.008  
0.050 ± 0.008  
(4.445 ± 0.203)  
(1.270 ± 0.203)  
15° TYP  
+0.008  
0.004  
+0.012  
–0.020  
+0.305  
–0.508  
–0.004  
0.331  
0.059  
(1.499)  
TYP  
+0.203  
–0.102  
0.102  
(
)
8.407  
(
)
0.105 ± 0.008  
(2.667 ± 0.203)  
0.050 ± 0.010  
(1.270 ± 0.254)  
0.030 ± 0.008  
(0.762 ± 0.203)  
0.050 ± 0.012  
(1.270 ± 0.305)  
+0.012  
–0.020  
+0.305  
–0.508  
0.022 ± 0.005  
(0.559 ± 0.127)  
0.143  
3.632  
(
)
DD7 0693  
14  
LT1206  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
SO8 0392  
Y Package  
7-Lead TO-220  
0.390 – 0.410  
(9.91 – 10.41)  
0.147 – 0.155  
(3.73 – 3.94)  
DIA  
0.169 – 0.185  
(4.29 – 4.70)  
0.045 – 0.055  
(1.14 – 1.40)  
0.235 – 0.258  
(5.97 – 6.55)  
0.103 – 0.113  
(2.62 – 2.87)  
0.560 – 0.590  
(14.22 – 14.99)  
0.620  
(15.75)  
TYP  
0.700 – 0.728  
(17.78 – 18.49)  
0.152 – 0.202  
(3.86 – 5.13)  
0.260 – 0.320  
(6.60 – 8.13)  
0.026 – 0.036  
(0.66 – 0.91)  
0.095 – 0.115  
(2.41 – 2.92)  
0.155 – 0.195  
(3.94 – 4.95)  
0.016 – 0.022  
0.045 – 0.055  
(1.14 – 1.40)  
(0.41 – 0.56)  
0.135 – 0.165  
(3.43 – 4.19)  
Y7 0893  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of circuits as described herein will not infringe on existing patent rights.  
15  
LT1206  
U.S. Area Sales Offices  
SOUTHEAST REGION  
Linear Technology Corporation  
17060 Dallas Parkway  
Suite 208  
Dallas, TX 75248  
Phone: (214) 733-3071  
FAX: (214) 380-5138  
SOUTHWEST REGION  
Linear Technology Corporation  
22141 Ventura Blvd.  
NORTHEAST REGION  
Linear Technology Corporation  
One Oxford Valley  
2300 E. Lincoln Hwy.,Suite 306  
Langhorne, PA 19047  
Phone: (215) 757-8578  
FAX: (215) 757-5631  
Suite 206  
Woodland Hills, CA 91364  
Phone: (818) 703-0835  
FAX: (818) 703-0517  
CENTRAL REGION  
Linear Technology Corporation  
Chesapeake Square  
NORTHWEST REGION  
Linear Technology Corporation  
782 Sycamore Dr.  
Linear Technology Corporation  
266 Lowell St., Suite B-8  
Wilmington, MA 01887  
Phone: (508) 658-3881  
FAX: (508) 658-2701  
229 Mitchell Court, Suite A-25  
Addison, IL 60101  
Phone: (708) 620-6910  
FAX: (708) 620-6977  
Milpitas, CA 95035  
Phone: (408) 428-2050  
FAX: (408) 432-6331  
International Sales Offices  
FRANCE  
KOREA  
TAIWAN  
Linear Technology S.A.R.L.  
Immeuble "Le Quartz"  
58 Chemin de la Justice  
92290 Chatenay Malabry  
France  
Linear Technology Korea Branch  
Namsong Building, #505  
Itaewon-Dong 260-199  
Yongsan-Ku, Seoul  
Korea  
Linear Technology Corporation  
Rm. 801, No. 46, Sec. 2  
Chung Shan N. Rd.  
Taipei, Taiwan, R.O.C.  
Phone: 886-2-521-7575  
FAX: 886-2-562-2285  
Phone: 33-1-41079555  
FAX: 33-1-46314613  
Phone: 82-2-792-1617  
FAX: 82-2-792-1619  
UNITED KINGDOM  
GERMANY  
SINGAPORE  
Linear Technology (UK) Ltd.  
The Coliseum, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
Phone: 44-276-677676  
FAX: 44-276-64851  
Linear Techonolgy GMBH  
Untere Hauptstr. 9  
D-85386 Eching  
Germany  
Phone: 49-89-3197410  
FAX: 49-89-3194821  
Linear Technology Pte. Ltd.  
101 Boon Keng Road  
#02-15 Kallang Ind. Estates  
Singapore 1233  
Phone: 65-293-5322  
FAX: 65-292-0398  
JAPAN  
Linear Technology KK  
5F YZ Bldg.  
4-4-12 Iidabashi, Chiyoda-Ku  
Tokyo, 102 Japan  
Phone: 81-3-3237-7891  
FAX: 81-3-3237-8010  
World Headquarters  
Linear Technology Corporation  
1630 McCarthy Blvd.  
Milpitas, CA 95035-7487  
Phone: (408) 432-1900  
FAX: (408) 434-0507  
06/24/93  
LT/GP 0993 10K REV 0 • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1993  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
16  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1206CR#TRPBF

LT1206 - 250mA/60MHz Current Feedback Amplifier; Package: DD PAK; Pins: 7; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1206CS8

250mA/60MHz Current Feedback Amplifier
Linear

LT1206CS8#PBF

LT1206 - 250mA/60MHz Current Feedback Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1206CS8#TR

LT1206 - 250mA/60MHz Current Feedback Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1206CS8#TRPBF

250mA/60MHz Current Feedback Amplifier
Linear

LT1206CS8TRPBF

250mA/60MHz Current Feedback Amplifier
Linear

LT1206CT7

250mA/60MHz Current Feedback Amplifi er
Linear

LT1206CT7#TR

IC OP-AMP, 15000 uV OFFSET-MAX, 60 MHz BAND WIDTH, PZFM7, PLASTIC, TO-220, 7 PIN, Operational Amplifier
Linear

LT1206CT7#TRPBF

IC OP-AMP, 15000 uV OFFSET-MAX, 60 MHz BAND WIDTH, PZFM7, LEAD FREE, PLASTIC, TO-220, 7 PIN, Operational Amplifier
Linear

LT1206CY

250mA/60MHz Current Feedback Amplifier
Linear

LT1206_07

250mA/60MHz Current Feedback Amplifi er
Linear

LT1206_11

250mA/60MHz Current Feedback Amplifier Adjustable Supply Current
Linear