LT1158IN#TR [Linear]

Half Bridge Based MOSFET Driver, PDIP16;
LT1158IN#TR
型号: LT1158IN#TR
厂家: Linear    Linear
描述:

Half Bridge Based MOSFET Driver, PDIP16

驱动 光电二极管 接口集成电路 驱动器
文件: 总22页 (文件大小:244K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1158  
Half Bridge N-Channel  
Power MOSFET Driver  
FEATURES  
DESCRIPTION  
+
A single input pin on the LT®1158 synchronously controls  
two N-channel power MOSFETs in a totem pole configura-  
tion. Unique adaptive protection against shoot-through  
currents eliminates all matching requirements for the two  
MOSFETs. This greatly eases the design of high efficiency  
motor control and switching regulator systems.  
n
Drives Gate of Top Side MOSFET Above V  
n
Operates at Supply Voltages from 5V to 30V  
150ns Transition Times Driving 3000pF  
Over 500mA Peak Driver Current  
Adaptive Non-Overlap Gate Drives  
Continuous Current Limit Protection  
Auto Shutdown and Retry Capability  
Internal Charge Pump for DC Operation  
Built-In Gate Voltage Protection  
n
n
n
n
n
n
n
n
n
n
A continuous current limit loop in the LT1158 regulates  
short-circuit current in the top power MOSFET. Higher  
start-up currents are allowed as long as the MOSFET V  
does not exceed 1.2V. By returning the FAULT output to  
the enable input, the LT1158 will automatically shut down  
in the event of a fault and retry when an internal pull-up  
current has recharged the enable capacitor.  
DS  
Compatible with Current-Sensing MOSFETs  
TTL/CMOS Input Levels  
Fault Output Indication  
APPLICATIONS  
An on-chip charge pump is switched in when needed to  
turn on the top N-channel MOSFET continuously. Special  
circuitry ensures that the top side gate drive is safely  
maintained in the transition between PWM and DC opera-  
tion. The gate-to-source voltages are internally limited to  
14.5V when operating at higher supply voltages.  
n
PWM of High Current Inductive Loads  
n
Half Bridge and Full Bridge Motor Control  
n
Synchronous Step-Down Switching Regulators  
n
Three-Phase Brushless Motor Drive  
n
High Current Transducer Drivers  
n
Battery-Operated Logic-Level MOSFETs  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners. Protected by U.S. Patents including  
5365118.  
TYPICAL APPLICATION  
24V  
1N4148  
Top and Bottom Gate Waveforms  
0.1μF  
BOOST DR  
+
BOOST  
V
T GATE DR  
+
IRFZ34  
+
+
500μF  
LOW  
ESR  
+
10μF  
V
T GATE FB  
T SOURCE  
PWM  
0Hz TO  
100kHz  
+
+
INPUT  
SENSE  
LT1158  
R
SENSE  
0.015Ω  
LOAD  
ENABLE  
FAULT  
BIAS  
SENSE  
1158 TA02  
V
= 24V  
= 12Ω  
IN  
L
1μF  
R
B GATE DR  
B GATE FB  
IRFZ34  
0.01μF  
GND  
LT1158 TA01  
1158fb  
1
LT1158  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Supply Voltage (Pins 2, 10) ......................................36V  
Boost Voltage (Pin 16)..............................................56V  
Continuous Output Currents (Pins 1, 9, 15).........100mA  
Operating Temperature Range  
LT1158C................................................... 0°C to 70°C  
LT1158I................................................–40°C to 85°C  
Junction Temperature (Note 2)  
+
Sense Voltages (Pins 11, 12).................. –5V to V + 5V  
+
Top Source Voltage (Pin 13) ................... –5V to V + 5V  
LT1158C............................................................ 125°C  
LT1158I............................................................. 150°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec.) ................. 300°C  
Boost to Source Voltage (V16 – V13) ........ –0.3V to 20V  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
BOOST DR  
1
2
3
4
5
6
7
8
16 BOOST  
BOOST DR  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
BOOST  
+
+
V
15 T GATE DR  
V
T GATE DR  
T GATE FB  
T SOURCE  
BIAS  
ENABLE  
FAULT  
14  
13  
12  
11  
10  
9
T GATE FB  
T SOURCE  
BIAS  
ENABLE  
FAULT  
+
+
SENSE  
SENSE  
INPUT  
SENSE  
INPUT  
SENSE  
+
+
GND  
V
GND  
V
B GATE FB  
B GATE DR  
B GATE FB  
B GATE DR  
SW PACKAGE  
16-LEAD PLASTIC (WIDE) SO  
= 110°C/W  
N PACKAGE  
16-LEAD PLASTIC DIP  
= 70°C/W  
θ
θ
JA  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1158CN#PBF  
LT1158IN#PBF  
LT1158CSW#PBF  
LT1158ISW#PBF  
LEAD BASED FINISH  
LT1158CN  
TAPE AND REEL  
LT1158CN#TRPBF  
LT1158IN#TRPBF  
LT1158CSW#TRPBF  
LT1158ISW#TRPBF  
TAPE AND REEL  
LT1158CN#TR  
PART MARKING*  
PACKAGE DESCRIPTION  
16-Lead Plastic DIP  
16-Lead Plastic DIP  
TEMPERATURE RANGE  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
16-Lead Plastic (Wide) SO  
16-Lead Plastic (Wide) SO  
PACKAGE DESCRIPTION  
16-Lead Plastic DIP  
–40°C to 85°C  
TEMPERATURE RANGE  
0°C to 70°C  
PART MARKING*  
LT1158IN  
LT1158IN#TR  
16-Lead Plastic DIP  
–40°C to 85°C  
0°C to 70°C  
LT1158CSW  
LT1158CSW#TR  
LT1158ISW#TR  
16-Lead Plastic (Wide) SO  
16-Lead Plastic (Wide) SO  
LT1158ISW  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1158fb  
2
LT1158  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test Circuit, V+ = V16 = 12V, V11 = V12 = V13 = 0V, Pins 1 and 4 open,  
Gate Feedback pins connected to Gate Drive pins unless otherwise specified.  
LT1158I  
TYP  
LT1158C  
TYP MAX UNITS  
SYMBOL  
I + I  
PARAMETER  
CONDITIONS  
+
MIN  
MAX  
MIN  
DC Supply Current (Note 2) V = 30V, V16 = 15V, V4 = 0.5V  
2.2  
7
13  
3
10  
18  
2.2  
7
3
10  
18  
mA  
mA  
mA  
2
10  
+
+
V = 30V, V16 = 15V, V6 = 0.8V  
4.5  
8
4.5  
8
V = 30V, V16 = 15V, V6 = 2V  
13  
+
I
Boost Current  
V = V13 = 30V, V16 = 45V, V6 = 0.8V  
3
1.4  
5
4.5  
2
3
1.4  
5
4.5  
2
mA  
V
16  
l
l
l
l
l
V6  
Input Threshold  
0.8  
0.8  
I
Input Current  
V6 = 5V  
15  
1.4  
1.7  
35  
15  
1.4  
1.8  
35  
μA  
V
6
V4  
Enable Low Threshold  
Enable Hysteresis  
Enable Pullup Current  
Charge Pump Voltage  
V6 = 0.8V, Monitor V9  
V6 = 0.8V, Monitor V9  
V4 = 0V  
0.9  
1.3  
15  
1.15  
1.5  
25  
0.85  
1.2  
15  
1.15  
1.5  
25  
ΔV4  
V
I
μA  
4
+
+
l
l
V15  
9
40  
11  
43  
9
40  
11  
43  
V
V
V = 5V, V6 = 2V, Pin 16 open, V13 5V  
47  
17  
17  
2.5  
2
47  
17  
17  
2.5  
2
V = 30V, V6 = 2V, Pin16 open, V13 30V  
+
l
l
V9  
V1  
Bottom Gate “ON” Voltage  
Boost Drive Voltage  
V = V16 = 18V, V6 = 0.8V  
12  
12  
1
14.5  
14.5  
1.75  
1.5  
12  
12  
1
14.5  
14.5  
1.75  
1.5  
V
V
+
V = V16 = 18V, V6 = 0.8V, 100mA Pulsed Load  
+
V14 – V13 Top Turn-Off Threshold  
V = V16 = 5V, V6 = 0.8V  
V
+
V8  
Bottom Turn-Off Threshold  
Fault Output Leakage  
V = V16 = 5V, V6 = 2V  
1
1
V
+
l
I
V = 30V, V16 = 15V, V6 = 2V  
0.1  
1
0.1  
1
μA  
V
5
+
V5  
Fault Output Saturation  
V = 30V, V16 = 15V, V6 = 2V, I = 10mA  
0.5  
1
0.5  
1
5
+
V12 – V11 Fault Conduction Threshold V = 30V, V16 = 15V, V6 = 2V, I = 100μA  
90  
110  
150  
130  
85  
110  
150  
135  
mV  
5
+
V12 – V11 Current Limit Threshold  
V = 30V, V16 = 15V, V6 = 2V, Closed Loop  
130  
120  
170  
180  
120  
120  
180  
180  
mV  
mV  
l
+
V12 – V11 Current Limit Inhibit  
V = V12 = 12V, V6 = 2V, Decrease V11  
1.1  
1.25  
1.4  
1.1  
1.25  
1.4  
V
V
Threshold  
Until V15 Goes Low  
DS  
l
l
l
l
l
l
t
t
t
t
t
t
Top Gate Rise Time  
Top Gate Turn-Off Delay  
Top Gate Fall Time  
Pin 6 (+) Transition, Meas. V15 – V13 (Note 4)  
Pin 6 (–) Transition, Meas. V15 – V13 (Note 4)  
Pin 6 (–) Transition, Meas. V15 – V13 (Note 4)  
Pin 6 (–) Transition, Meas. V9 (Note 4)  
130  
350  
120  
130  
200  
100  
250  
550  
250  
250  
400  
200  
130  
350  
120  
130  
200  
100  
250  
550  
250  
250  
400  
200  
ns  
ns  
ns  
ns  
ns  
ns  
R
D
F
Bottom Gate Rise Time  
R
D
F
Bottom Gate Turn-Off Delay Pin 6 (+) Transition, Meas. V9 (Note 4)  
Bottom Gate Fall Time Pin 6 (+) Transition, Meas. V9 (Note 4)  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Dynamic supply current is higher due to the gate charge  
being delivered at the switching frequency. See typical performance  
characteristics and applications information.  
Note 4: Gate rise times are measured from 2V to 10V, delay times are  
Note 2: T is calculated from the ambient temperature T and power  
measured from the input transition to when the gate voltage has decreased  
to 10V, and fall times are measured from 10V to 2V.  
J
A
dissipation P according to the following formulas:  
D
LT1158IN, LT1158CN: T = T + (P × 70°C/W)  
J
A
D
LT1158ISW, LT1158CSW: T = T + (P × 110°C/W)  
J
A
D
1158fb  
3
LT1158  
TYPICAL PERFORMANCE CHARACTERISTICS  
DC Supply Current  
DC Supply Current  
Dynamic Supply Current (V+)  
14  
12  
14  
12  
30  
25  
20  
15  
10  
5
I
+ I + I  
10 16  
2
50% DUTY CYCLE  
V13 = 0V  
INPUT HIGH  
I
+ I + I  
10 16  
2
+
V
= 12V  
C
= 3000pF  
GATE  
+
V13 = V  
INPUT HIGH  
INPUT LOW  
10  
8
10  
+
INPUT LOW  
V
= 24V  
8
6
4
2
+
V
= 12V  
6
+
V
= 6V  
4
ENABLE LOW  
ENABLE LOW  
2
0
0
0
10  
20  
SUPPLY VOLTAGE (V)  
35 40  
50  
TEMPERATURE (°C)  
100 125  
0
5
15  
25 30  
–50 –25  
0
25  
75  
1
10  
INPUT FREQUENCY (kHz)  
100  
LT1158 G01  
LT1158 G02  
LT1158 G03  
Dynamic Supply Current  
Charge Pump Output Voltage  
Input Thresholds  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
50% DUTY CYCLE  
+
V
= 12V  
V(HIGH)  
–40°C  
+25°C  
+85°C  
NO LOAD  
C
= 10000pF  
GATE  
–40°C  
+25°C  
+85°C  
C
= 3000pF  
GATE  
10μA LOAD  
V(LOW)  
C
= 1000pF  
GATE  
0
0
1
10  
INPUT FREQUENCY (kHz)  
100  
30  
SUPPLY VOLTAGE (V)  
0
5
10  
20 25  
35 40  
0
20  
30 35  
15  
5
10 15  
25  
40  
SUPPLY VOLTAGE (V)  
LT1158 G04  
LT1158 G06  
LT1158 G05  
Enable Thresholds  
Fault Conduction Threshold  
Current Limit Threshold  
3.5  
3.0  
160  
150  
140  
130  
120  
110  
100  
90  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
CLOSED LOOP  
V11 = 0V  
V(HIGH)  
–40°C  
+85°C  
+25°C  
2.5  
2.0  
1.5  
1.0  
0.5  
+85°C  
+25°C  
+85°C  
+25°C  
–40°C  
–40°C  
+85°C  
–40°C  
+25°C  
V(LOW)  
80  
70  
0
60  
10  
20  
35 40  
0
5
15  
25 30  
0
20  
30 35  
0
20  
30 35  
5
10 15  
25  
40  
5
10 15  
25  
40  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
LT1158 G07  
LT1158 G08  
LT1158 G09  
1158fb  
4
LT1158  
TYPICAL PERFORMANCE CHARACTERISTICS  
Current Limit Inhibit  
VDS Threshold  
Bottom Gate Rise Time  
Bottom Gate Fall Time  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
V2 – V11  
C
= 10000pF  
GATE  
C
= 10000pF  
GATE  
–40°C  
+25°C  
+85°C  
C
= 3000pF  
= 1000pF  
C
= 3000pF  
= 1000pF  
GATE  
GATE  
C
GATE  
C
GATE  
0
0
5
15 20 25  
SUPPLY VOLTAGE (V)  
35  
5
15 20 25  
SUPPLY VOLTAGE (V)  
35  
0
10  
30  
40  
0
10  
30  
40  
0
20  
30 35  
5
10 15  
25  
40  
SUPPLY VOLTAGE (V)  
LT1158 G11  
LT1158 G12  
LT1158 G10  
Top Gate Rise Time  
Top Gate Fall Time  
Transition Times vs RGate  
800  
700  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
+
V
C
= 12V  
= 3000pF  
GATE  
C
= 10000pF  
GATE  
600  
500  
400  
300  
C
= 10000pF  
GATE  
RISE TIME  
C
= 3000pF  
= 1000pF  
GATE  
GATE  
FALL TIME  
C
= 3000pF  
= 1000pF  
GATE  
200  
100  
0
C
GATE  
C
0
0
5
15 20 25  
10  
SUPPLY VOLTAGE (V)  
35  
5
15 20 25  
10  
SUPPLY VOLTAGE (V)  
35  
70  
80 90 100  
0
30  
40  
0
30  
40  
0
10 20 30 40 50 60  
GATE RESISTANCE (Ω)  
LT1158 G13  
LT1158 G14  
LT1158 G15  
1158fb  
5
LT1158  
PIN FUNCTIONS  
BOOST DR (Pin 1): Recharges and clamps the bootstrap  
capacitor to 14.5V higher than pin 13 via an external  
diode.  
+
V (Pin10):Bottomsidedriversupply;mustbeconnected  
to the same supply as pin 2.  
SENSE (Pin 11): The floating reference for the current  
+
V (Pin 2): Main supply pin; must be closely decoupled  
limit comparator. Connects to the low side of a current  
shunt or Kelvin lead of a current-sensing MOSFET. When  
to the ground pin 7.  
+
pin 11 is within 1.2V of V , current limit is inhibited.  
BIAS (Pin 3): Decouple point for the internal 2.6V bias  
generator. Pin 3 cannot have any external DC loading.  
+
SENSE (Pin 12): Connects to the high side of the current  
shuntorsenseleadofacurrent-sensingMOSFET.Abuilt-in  
offsetbetweenpins11and12inconjunctionwithRSENSE  
sets the top MOSFET short-circuit current.  
ENABLE (Pin 4): When left open, the LT1158 operates  
normally. Pulling pin 4 low holds both MOSFETs off re-  
gardless of the input state.  
T SOURCE (Pin 13): Top side driver return; connects to  
MOSFET source and low side of the bootstrap capacitor.  
FAULT (Pin 5): Open collector NPN output which turns  
on when V12 – V11 exceeds the fault conduction thresh-  
old.  
TGATEFB(Pin14):Mustconnectdirectlytothetoppower  
MOSFET gate. The bottom MOSFET turn-on is inhibited  
untilV14V13hasdischargedto1.75V.Anon-chipcharge  
pump also feeds the top gate via pin 14.  
INPUT (Pin 6): Taking pin 6 high turns the top MOSFET on  
and bottom MOSFET off; pin 6 low reverses these states.  
Aninputlatchcaptureseachlowstate,ignoringanensuing  
high until pin 13 has gone below 2.6V.  
T GATE DR (Pin 15): The high current drive point for the  
top MOSFET. When a gate resistor is used, it is inserted  
between pin 15 and the gate of the MOSFET.  
B GATE FB (Pin 8): Must connect directly to the bottom  
power MOSFET gate. The top MOSFET turn-on is inhibited  
untilpin8hasdischargedto1.5V.Ahold-oncurrentsource  
also feeds the bottom gate via pin 8.  
BOOST (Pin 16): Top side driver supply; connects to the  
high side of the bootstrap capacitor and to a diode either  
+
+
from supply (V < 10V) or from pin 1 (V > 10V).  
B GATE DR (Pin 9): The high current drive point for the  
bottomMOSFET.Whenagateresistorisused,itisinserted  
between pin 9 and the gate of the MOSFET.  
1158fb  
6
LT1158  
BLOCK DIAGRAM  
+
BOOST  
16  
V
+
V
CHG  
PUMP  
BOOST DR  
1
2
15  
14  
T GATE DR  
T GATE FB  
+
+
V
V
15V  
BIAS  
GEN  
LOGIC  
INPUT  
3
BIAS  
+
T
25μA  
1.75V  
+
ENABLE  
4
5
13  
T SOURCE  
7.5V  
2.7V  
1.2V  
110mV  
FAULT  
+
+
12  
11  
SENSE  
S
SENSE  
+
O
2.6V  
7.5V  
+
10  
V
1-SHOT  
R
S
R
+
INPUT  
6
Q
Q
1.4V  
15V  
B GATE DR  
9
1-SHOT  
R
+
B
1.5V  
GND  
7
8
1158 FD  
B GATE FB  
1158fb  
7
LT1158  
TEST CIRCUIT  
150Ω  
2W  
16  
15  
14  
13  
12  
11  
10  
9
1
2
BOOST DR  
BOOST  
T GATE DR  
T GATE FB  
T SOURCE  
+
+
VN2222LL  
1μF  
V16  
+
V
+
0.01μF  
+
+
3
4
5
6
7
8
V
10μF  
BIAS  
2k  
1/2W  
3000pF  
+
ENABLE  
FAULT  
INPUT  
GND  
V14 – V13  
+
LT1158  
+
CLOSED  
LOOP  
V4  
SENSE  
3k  
1/2W  
100Ω  
+
SENSE  
V12  
V6  
+
50Ω  
+
V
V11  
B GATE FB  
B GATE DR  
3000pF  
+
V8  
LT1158 TC01  
(Refer to Functional Diagram)  
OPERATION  
The LT1158 self-enables via an internal 25μA pull-up on  
the enable pin 4. When pin 4 is pulled down, much of the  
input logic is disabled, reducing supply current to 2mA.  
Withpin4low, theinputstateisignoredandbothMOSFET  
gates are actively held low. With pin 4 enabled, one or the  
other of the 2 MOSFETs is turned on, depending on the  
state of the input pin 6: high for top side on, and low for  
bottom side on. The 1.4V input threshold is regulated and  
has 200mV of hysteresis.  
Whenever there is an input transition on pin 6, the LT1158  
followsalogicalsequencetoturnoffoneMOSFETandturn  
on the other. First, turn-off is initiated, then V is moni-  
GS  
tored until it has decreased below the turn-off threshold,  
and finally the other gate is turned on. An input latch gets  
reset by every low state at pin 6, but can only be set if the  
top source pin has gone low, indicating that there will be  
sufficient charge in the bootstrap capacitor to safely turn  
on the top MOSFET.  
In order to allow operation over 5V to 30V nominal supply  
voltages, an internal bias generator is employed to furnish  
constant bias voltages and currents. The bias generator is  
decoupled at pin 3 to eliminate any effects from switching  
transients. No DC loading is allowed on pin 3.  
In order to conserve power, the gate drivers only provide  
turn-on current for up to 2μs, set by internal one-shot  
circuits. Each LT1158 driver can deliver 500mA for 2μs,  
or 1000nC of gate charge––more than enough to turn on  
multiple MOSFETs in parallel. Once turned on, each gate  
is held high by a DC gate sustaining current: the bottom  
gate by a 100μA current source, and the top gate by an  
on-chip charge pump running at approximately 500kHz.  
The top and bottom gate drivers in the LT1158 each utilize  
two gate connections: 1) A gate drive pin, which provides  
theturn-onandturn-offcurrentsthroughanoptionalseries  
gate resistor; and 2) A gate feedback pin which connects  
directly to the gate to monitor the gate-to-source voltage  
and supply the DC gate sustaining current.  
The floating supply for the top side driver is provided by  
a bootstrap capacitor between the boost pin 16 and top  
sourcepin13.Thiscapacitorisrechargedeachtimepin13  
1158fb  
8
LT1158  
(Refer to Functional Diagram)  
OPERATION  
goeslowinPWMoperation,andismaintainedbythecharge  
pump when the top MOSFET is on DC. A regulated boost  
driver at pin 1 employs a source-referenced 15V clamp  
that prevents the bootstrap capacitor from overcharging  
comparator input pins 11 and 12 are normally connected  
across a shunt in the source of the top power MOSFET  
(or to a current-sensing MOSFET). When pin 11 is more  
+
than 1.2V below V and V12 – V11 exceeds the 110mV  
+
regardless of V or output transients.  
offset, FAULT pin 5 begins to sink current. During a short  
circuit, the feedback loop regulates V12 – V11 to 150mV,  
thereby limiting the top MOSFET current.  
TheLT1158providesacurrent-sensecomparatorandfault  
output circuit for protection of the top power MOSFET. The  
APPLICATIONS INFORMATION  
Power MOSFET Selection  
and the available heat sinking has a thermal resistance of  
20°C/W, the MOSFET junction temperature will be 125°C,  
and∂=0.007(12525)=0.7.Thismeansthattherequired  
Since the LT1158 inherently protects the top and bottom  
MOSFETsfromsimultaneousconduction,therearenosize  
or matching constraints. Therefore selection can be made  
R
of the MOSFET will be 0.089Ω/1.7 = 0.0523Ω,  
DS(ON)  
which can be satisfied by an IRFZ34.  
basedontheoperatingvoltageandR  
requirements.  
DS(ON)  
should be at least 2 • V  
The MOSFET BV  
, and  
Notethatthesecalculationsareforthecontinuousoperating  
condition; power MOSFETs can sustain far higher dissipa-  
DSS  
SUPPLY  
should be increased to 3 • V  
with frequent fault conditions. For the LT1158 maximum  
in harsh environments  
SUPPLY  
tionsduringtransients.AdditionalR  
)constraintsare  
DS(ON)  
operating supply of 30V, the MOSFET BV  
from 60V to 100V.  
should be  
discussed under Starting High In-Rush Current Loads.  
DSS  
TheMOSFETR  
isspecifiedatT =2Candisgener-  
J
DS(ON)  
ally chosen based on the operating efficiency required as  
longasthemaximumMOSFETjunctiontemperatureisnot  
exceeded. The dissipation in each MOSFET is given by:  
GATE DR  
LT1158  
GATE FB  
R
G
R
G
2
P=D I  
1+ ∂ R  
DS ON  
(
)
(
)
DS  
(
)
R : OPTIONAL 10Ω  
G
1158 F01  
where D is the duty cycle and ∂ is the increase in R  
DS(ON)  
Figure 1. Paralleling MOSFETs  
attheanticipatedMOSFETjunctiontemperature.Fromthis  
equation the required R  
can be derived:  
DS(ON)  
Paralleling MOSFETs  
MOSFETs can be paralleled. The MOSFETs will inherently  
share the currents according to their R ratio. The  
P
RDS ON  
=
(
)
2
D I  
1+ ∂  
DS(ON)  
(
)
)
(
DS  
LT1158 top and bottom drivers can each drive four power  
MOSFETs in parallel with only a small loss in switching  
speeds (see Typical Performance Characteristics). Indi-  
vidual gate resistors may be required to “decouple” each  
MOSFET from its neighbors to prevent high frequency  
oscillations—consult manufacturer’s recommendations.  
For example, if the MOSFET loss is to be limited to 2W  
when operating at 5A and a 90% duty cycle, the required  
R
would be 0.089Ω/(1 + ∂). (1 + ∂) is given for  
DS(ON)  
each MOSFET in the form of a normalized R  
vs  
DS(ON)  
temperature curve, but ∂ = 0.007/°C can be used as an  
approximationforlowvoltageMOSFETs. ThusifT =85°C  
A
1158fb  
9
LT1158  
APPLICATIONS INFORMATION  
If individual gate decoupling resistors are used, the gate  
feedback pins can be connected to any one of the gates.  
MOSFET Gate Drive Protection  
For supply voltages of over 8V, the LT1158 will protect  
standardN-channelMOSFETsfromunderorovervoltage  
gate drive conditions for any input duty cycle including  
DC. Gate-to-source Zener clamps are not required and  
not recommended since they can reduce operating  
efficiency.  
Driving multiple MOSFETs in parallel may restrict the  
operating frequency at high supply voltages to prevent  
over-dissipation in the LT1158 (see Gate Charge and  
DriverDissipationbelow).Whenthetotalgatecapacitance  
exceeds 10,000pF on the top side, the bootstrap capacitor  
should be increased proportionally above 0.1μF.  
A discontinuity in tracking between the output pulse  
width and input pulse width may be noted as the top side  
MOSFET approaches 100% duty cycle. As the input low  
signal becomes narrower, it may become shorter than  
the time required to recharge the bootstrap capacitor to  
a safe voltage for the top side driver. Below this duty cycle  
the output pulse width will stop tracking the input until  
the input low signal is <100ns, at which point the output  
will jump to the DC condition of top MOSFET “on” and  
bottom MOSFET “off.”  
Gate Charge and Driver Dissipation  
A useful indicator of the load presented to the driver by a  
power MOSFET is the total gate charge Q , which includes  
G
theadditionalchargerequiredbythegate-to-drainswing.Q  
G
is usually specified for V = 10V and V = 0.8V .  
GS  
DS  
DS(MAX)  
When the supply current is measured in a switching ap-  
plication, it will be larger than given by the DC electrical  
characteristics because of the additional supply current  
associated with sourcing the MOSFET gate charge:  
Low Voltage Operation  
dQ  
dt  
dQ  
G
dt  
G
The LT1158 can operate from 5V supplies (4.5V min) and  
in 6V battery-powered applications by using logic-level  
N-channel power MOSFETs. These MOSFETs have 2V  
ISUPPLY =IDC +  
+
TOP  
BOTTOM  
The actual increase in supply current is slightly higher  
due to LT1158 switching losses and the fact that the gates  
are being charged to more than 10V. Supply current vs  
switching frequency is given in the Typical Performance  
Characteristics.  
maximumthresholdvoltagesandguaranteedR  
limits  
DS(ON)  
at V = 4V. The switching speed of the LT1158, unlike  
GS  
CMOS drivers, does not degrade at low supply voltages.  
For operation down to 4.5V, the boost pin should be con-  
nected as shown in Figure 2 to maximize gate drive to the  
top side MOSFET. Supply voltages over 10V should not  
be used with logic-level MOSFETs because of their lower  
maximum gate-to-source voltage rating.  
The LT1158 junction temperature can be estimated by  
using the equations given in Note 1 of the electrical char-  
acteristics. For example, the LT1158SI is limited to less  
than 25mA from a 24V supply:  
5V  
N.C.  
T
= 85°C + (25mA • 24V • 110°C/W)  
= 151°C exceeds absolute maximum  
J
+
D1  
BOOST DR  
BOOST  
In order to prevent the maximum junction temperature  
from being exceeded, the LT1158 supply current must  
be checked with the actual MOSFETs operating at the  
maximum switching frequency.  
0.1μF  
T GATE DR  
T GATE FB  
T SOURCE  
LT1158  
LOGIC-LEVEL  
MOSFET  
D1: LOW-LEAKAGE SCHOTTKY  
BAT85 OR EQUIVALENT  
LT1158 F02  
Figure 2. Low Voltage Operation  
1158fb  
10  
LT1158  
APPLICATIONS INFORMATION  
Ugly Transient Issues  
regulators. Most step-down regulators use a high current  
Schottky diode to conduct the inductor current when the  
switch is off. The fractions of the oscillator period that the  
switch is on (switch conducting) and off (diode conduct-  
ing) are given by:  
In PWM applications the drain current of the top MOSFET  
is a square wave at the input frequency and duty cycle.  
To prevent large voltage transients at the top drain, a low  
ESR electrolytic capacitor must be used and returned to  
the power ground. The capacitor is generally in the range  
of 250μF to 5000μF and must be physically sized for  
the RMS current flowing in the drain to prevent heating  
and premature failure. In addition, the LT1158 requires a  
separate 10μF capacitor connected closely between pins  
2 and 7.  
VOUT  
SWITCHON=  
• TOTALPERIOD  
V
IN  
V VOUT  
IN  
SWITCHOFF=  
• TOTALPERIOD  
V
IN  
Note that for V > 2V , the switch is off longer than it  
IN  
OUT  
The LT1158 top source and sense pins are internally  
protected against transients below ground and above  
supply. However, the gate drive pins cannot be forced  
below ground. In most applications, negative transients  
coupled from the source to the gate of the top MOSFET  
do not cause any problems. However, in some high cur-  
rent (10A and above) motor control applications, negative  
transients on the top gate drive may cause early tripping  
of the current limit. A small Schottky diode (BAT85) from  
pin 15 to ground avoids this problem.  
is on, making the diode losses more significant than the  
switch. The worst case for the diode is during a short cir-  
cuit, when V  
approaches zero and the diode conducts  
OUT  
the short-circuit current almost continuosly.  
Figure 3 shows the LT1158 used to synchronously drive a  
pair of power MOSFETs in a step-down regulator applica-  
tion, where the top MOSFET is the switch and the bottom  
MOSFET replaces the Schottky diode. Since both conduc-  
tionpathshavelowlosses,thisapproachcanresultinvery  
high efficiency—from 90% to 95% in most applications.  
Switching Regulator Applications  
And for regulators under 5A, using low R  
N-channel  
DS(ON)  
MOSFETs eliminates the need for heatsinks.  
The LT1158 is ideal as a synchronous switch driver to  
improve the efficiency of step-down (buck) switching  
V
IN  
+
T GATE DR  
T GATE FB  
R
GS  
R
SENSE  
V
T SOURCE  
OUT  
+
LT1158  
+
SENSE  
SENSE  
FAULT  
REF  
PWM  
B GATE DR  
B GATE FB  
INPUT  
1158 F03  
Figure 3. Adding Synchronous Switching to a Step-Down Switching Regulator  
1158fb  
11  
LT1158  
APPLICATIONS INFORMATION  
100  
Current Limit in Switching Regulator Applications  
Current is sensed by the LT1158 by measuring the voltage  
acrossacurrentshunt(lowvaluedresistor).Normally,this  
shunt is placed in the source lead of the top MOSFET (see  
Short-Circuit Protection in Bridge Applications). However,  
in step-down switching regulator applications, the remote  
current sensing capability of the LT1158 allows the actual  
inductor current to be sensed. This is done by placing  
the shunt in the output lead of the inductor as shown in  
Figure 3. Routing of the SENSE and SENSE PC traces  
is critical to prevent stray pickup. These traces must be  
routed together at minimum spacing and use a Kelvin  
connection at the shunt.  
90  
FIGURE 12 CIRCUIT  
IN  
V
= 12V  
80  
70  
60  
+
1.5 2.0 2.5  
OUTPUT CURRENT (A)  
3.5  
4.0  
0
0.5 1.0  
3.0  
LT1158 F04  
Figure 4. Typical Efficiency Curve for Step-Down  
Regulator with Synchronous Switch  
When the voltage across R  
exceeds 110mV, the  
SENSE  
One fundamental difference in the operation of a step-  
down regulator with synchronous switching is that it  
never becomes discontinuous at light loads. The induc-  
tor current doesn’t stop ramping down when it reaches  
zero, but actually reverses polarity resulting in a constant  
ripple current independent of load. This does not cause  
any efficiency loss as might be expected, since the nega-  
LT1158FAULTpinbeginstoconduct.ByfeedingtheFAULT  
signal back to a control input of the PWM, the LT1158 will  
assume control of the duty cycle forming a true current  
mode loop to limit the output current:  
110mV  
RSENSE  
IOUT  
=
in current limit  
tive inductor current is returned to V when the switch  
IN  
In LT3525 based circuits, connecting the FAULT pin to  
the LT3525 soft-start pin accomplishes this function. In  
circuitswheretheLT1158inputisbeingdrivenwitharamp  
or sawtooth, the FAULT pin is used to pull down the DC  
level of the input.  
turns back on.  
The LT1158 performs the synchronous MOSFET drive  
and current sense functions in a step-down switching  
regulator. A reference and PWM are required to complete  
the regulator. Any voltage-mode PWM controller may be  
used, but the LT3525 is particularly well suited to high  
power, high efficiency applications such as the 10A circuit  
shown in Figure 13. In higher current regulators a small  
SchottkydiodeacrossthebottomMOSFEThelpstoreduce  
reverse-recovery switching losses.  
The constant off-time circuits shown in Figures 10 and 12  
are unique in that they also use the current sense during  
normal operation. The LT1431 output reduces the normal  
LT1158 110mV fault conduction threshold such that the  
FAULT pin conducts at the required load current, thus  
discharging the input ramp capacitor. In current limit the  
LT1431 output turns off, allowing the fault conduction  
threshold to reach its normal value.  
The LT1158 input pin can also be driven directly with a  
ramp or sawtooth. In this case, the DC level of the input  
waveform relative to the 1.4V threshold sets the LT1158  
duty cycle. In the 5V to 3.3V converter circuit shown in  
Figure11,anLT1431controlstheDClevelofatrianglewave  
generated by a CMOS 555. The Figure 10 and 12 circuits  
use an RC network to ramp the LT1158 input back up to  
its 1.4V threshold following each switch cycle, setting a  
constant off time. Figure 4 shows the efficiency vs output  
TheresistorR showninFigure3isnecessarytoprevent  
GS  
output voltage overshoot due to charge coupled into the  
gate of the top MOSFET by a large start-up dv/dt on V .  
IN  
If DC operation of the top MOSFET is required, R must  
GS  
be 330k or greater to prevent loading the charge pump.  
current for the Figure 12 regulator with V = 12V.  
IN  
1158fb  
12  
LT1158  
APPLICATIONS INFORMATION  
Low Current Shutdown  
(Figure 6). For the current-sensing MOSFET shown in  
Figure 7, the sense resistor is inserted between the sense  
and Kelvin leads.  
The LT1158 may be shutdown to a current level of 2mA by  
pulling the enable pin 4 low. In this state both the top and  
bottomMOSFETsareactivelyheldoffagainstanytransients  
which might occur on the output during shutdown. This  
is important in applications such as 3-phase DC motor  
control when one of the phases is disabled while the other  
two are switching.  
+
TheSENSE andSENSE PCtracesmustberoutedtogether  
at minimum spacing to prevent stray pickup, and a Kelvin  
connectionmustbeusedatthecurrentshuntforthe3-lead  
MOSFET. Using a twisted pair is the safest approach and  
is recommended for sense runs of several inches.  
If zero standby current is required and the load returns to  
ground, then a switch can be inserted into the supply path  
When the voltage across R  
exceeds 110mV, the  
SENSE  
LT1158 FAULT pin begins to conduct, signaling a fault  
condition.Thecurrentinashortcircuitrampsveryrapidly,  
limited only by the series inductance and ultimately the  
MOSFET and shunt resistance. Due to the response time  
of the LT1158 as shown in Figure 5. Resistor R ensures  
GS  
that the top MOSFET gate discharges, while the voltage  
across the bottom MOSFET goes to zero. The voltage drop  
across the P-channel supply switch must be less than  
+
V
300mV, andR mustbe330korgreaterforDCoperation.  
GS  
Thistechniqueisnotrecommendedforapplicationswhich  
+
T GATE DR  
require the LT1158 V sensing function.  
DS  
T GATE FB  
+
V
T SOURCE  
5V  
+
LT1158  
+
SENSE  
SENSE  
100k  
R
T GATE DR  
VP0300  
10k  
SENSE  
FAULT  
+
T GATE FB  
V
2N2222  
R
GS  
+
V
100k  
T SOURCE  
1158 F06  
LT1158  
CMOS  
ON/OFF  
+
LOAD  
TO OTHER  
CONTROL  
CIRCUITS  
Figure 6. Short-Circuit Protection with Standard MOSFET  
GND  
B GATE DR  
B GATE FB  
+
V
1158 F05  
+
T GATE DR  
Figure 5. Adding Zero Current Shutdown  
T GATE FB  
KELVIN  
SENSE  
Short-Circuit Protection in Bridge Applications  
T SOURCE  
R
5V  
SENSE  
LT1158  
+
SENSE  
The LT1158 protects the top power MOSFET from output  
shorts to ground, or in a full bridge application, shorts  
across the load. Both standard 3-lead MOSFETs and cur-  
rent-sensing5-leadMOSFETscanbeprotected.Thebottom  
MOSFET is not protected from shorts to supply.  
OUTPUT  
10k  
SENSE  
FAULT  
1158 F07  
Current is sensed by measuring the voltage across a cur-  
rent shunt in the source lead of a standard 3-lead MOSFET  
Figure 7. Short-Circuit Protection with Current-Sensing MOSFET  
1158fb  
13  
LT1158  
APPLICATIONS INFORMATION  
the value of R  
for the 5-lead MOSFET increases by  
of the LT1158 current limit loop, an initial current spike of  
SENSE  
the current sensing ratio (typically 1000 – 3000), thus  
eliminating the need for a low valued shunt. ΔV is in the  
range of 1V to 3V in most applications.  
from 2 to 5 times the final value will be present for a few  
μs, followed by an interval in which I = 0. The current  
DS  
spike is normally well within the safe operating area (SOA)  
of the MOSFET, but can be further reduced with a small  
(0.5μH) inductor in series with the output.  
Assuming a dead short, the MOSFET dissipation will rise  
to V  
• I . For example, with a 24V supply and I  
SUPPLY SC  
SC  
= 10A, the dissipation would be 240W. To determine how  
longtheMOSFETcanremainatthisdissipationlevelbefore  
it must be shut down, refer to the SOA curves given in  
the MOSFET data sheet. For example, an IRFZ34 would  
be safe if shut down within 10ms.  
A Tektronix A6303 current probe is highly recommended  
for viewing output fault currents.  
I
SC  
If Short-Circuit Protection is Not Required  
5μs/DIV  
In applications which do not require the current sense  
capability of the LT1158, the sense pins 11 and 12 should  
both be connected to pin 13, and the FAULT pin 5 left  
open. The enable pin 4 may still be used to shut down  
the device. Note, however, that when unprotected the top  
MOSFET can be easily (and often dramatically) destroyed  
by even a momentary short.  
LT1158 F08  
Figure 8. Top MOSFET Short-Circuit Turn-On current  
If neither the enable nor input pins are pulled low in  
response to the fault indication, the top MOSFET current  
will recover to a steady-state value I regulated by the  
LT1158 as shown in Figure 8:  
SC  
Self-Protection with Automatic Restart  
150mV  
ISC =  
When using the current sense circuits of Figures 6 and 7,  
RSENSE  
local shutdown can be achieved by connecting the FAULT  
150mV  
ISC  
RSENSE  
=
pin through resistor R to the enable pin as shown in  
F
Figure 9. An optional thermostat mounted to the load or  
2  
MOSFET heatsink can also be used to pull enable low.  
r 150mV  
RSENSE  
(
)
150mV  
ISC =  
1−  
Aninternal2Acurrentsourcenormallykeepstheenable  
ΔV  
+
capacitorCENchargedtothe7.5Vclampvoltage(ortoV ,  
2  
+
r 150mV  
(
)
150mV  
for V < 7.5V). When a fault occurs, CEN is discharged to  
RSENSE  
=
1−  
below the enable low threshold (1.15V typ) which shuts  
down both MOSFETs. When the FAULT pin or thermostat  
releases, CEN recharges to the upper enable threshold  
where restart is attempted. In a sustained short circuit,  
FAULT will again pull low and the cycle will repeat until the  
short is removed. The time to shut down for a DC input  
or thermal fault is given by:  
ISC  
ΔV  
r = current senseratio, ΔV = VGS = VGS VT  
The time for the current to recover to I following the  
initial current spike is approximately Q /0.5mA, where  
SC  
GS  
Q
is the MOSFET gate-to-source charge. I need not  
GS  
SC  
be set higher than the required start-up current for mo-  
t
= (100 + 0.8R ) C  
EN  
DC input  
SHUTDOWN  
F
tors (see Starting High In-Rush Current Loads). Note that  
1158fb  
14  
LT1158  
APPLICATIONS INFORMATION  
Notethatforthersteventonly,t  
isapproximately  
SENSE pin is within 1.2V of supply. Under these condi-  
tions the current is limited only by the R in series  
SHUTDOWN  
twice the above value since C is being discharged all  
EN  
DS(ON)  
the way from its quiescent voltage. Allowable values for  
R are from zero to 10k.  
F
with R  
. For a 5-lead MOSFET the current is limited  
SENSE  
DS(ON)  
by R  
alone, since R  
is not in the output path  
SENSE  
(see Figure 7). Again adjusting R  
the worst-case start currents are:  
for temperature,  
DS(ON)  
7.5V  
1.15V  
1.2V  
25μA  
7.5V  
ISTART  
=
=
3-Lead MOSFET  
5-Lead MOSFET  
allows inductive  
ENABLE  
1+ ∂ R  
)+ RSENSE  
(
(
)
DS ON  
(
+
C
EN  
1μF  
1.2V  
R
F
ISTART  
1k  
LT1158  
1+ ∂ R  
)
DS ON  
(
)
FAULT  
Properly sizing the MOSFET for I  
START  
loads with long time constants, such as motors with high  
mechanical inertia, to be started.  
OPTIONAL THERMOSTAT  
CLOSE ON RISE  
AIRPAX #67FXXX  
1158 F09  
Returning to the example used in Power MOSFET Selec-  
Figure 9. Self-Protection with Auto Restart  
tion, an IRFZ34 (R  
= 0.05Ω max) was selected for  
DS(ON)  
operationat5A.Iftheshort-circuitcurrentisalsosetat5A,  
what start current can be supported? From the equation  
t
becomes more difficult to analyze when the  
SHUTDOWN  
output is shorted with a PWM input. This is because the  
FAULT pin only conducts when fault currents are actually  
present in the MOSFET. FAULT does not conduct while the  
for R  
, a 0.03Ω shunt would be required, allowing  
SENSE  
the worst-case start current to be calculated:  
1.2V  
input is low in Figures 6 and 7 or during the interval I  
0 in Figure 8. Thus t  
the duty cycle of the current in the top MOSFET is low,  
maintaining the average MOSFET current at a relatively  
constant level.  
=
DS  
ISTART  
=
=10A  
will safely increase when  
1.7 0.05Ω+0.03Ω  
(
)
SHUTDOWN  
This calculation gives the minimum current which could  
be delivered with the IRFZ34 at T = 125°C without activat-  
J
ing the FAULT pin on the LT1158. If more start current is  
The length of time following shutdown before restart is  
attempted is given by:  
required, using an IRFZ44 (R  
= 0.028Ω max) would  
DS(ON)  
increase I  
to over 15A at T = 110°C, even though  
START  
J
the short-circuit current remains at 5A.  
1.5V  
25μA⎠  
tRESTART  
=
C = 6×104 C  
(
)
EN  
EN  
In order for the V sensing function to work properly, the  
DS  
supply pins for the LT1158 must be connected at the drain  
of the top MOSFET, which must be properly decoupled  
(see Ugly Transient Issues).  
In Figure 9, the top MOSFET would shut down after being  
in DC current limit for 0.9ms and try to restart at 60ms  
intervals, thus producing a duty cyle of 1.5% in short  
circuit. The resulting average top MOSFET dissipation  
during a short is easily measured by taking the product of  
the supply voltage and the average supply current.  
Driving Lamps  
Incandescent lamps represent a challenging load because  
they have much in common with a short circuit when cold.  
The top gate driver in the LT1158 can be configured to turn  
on large lamps while still protecting the power MOSFET  
Starting High In-Rush Current Loads  
TheLT1158hasaV sensingfunctionwhichallowsmore  
than I to flow in the top MOSFET providing that the  
DS  
SC  
1158fb  
15  
LT1158  
APPLICATIONS INFORMATION  
from a true short. This is done by using the current limit to  
control cold filament current in conjunction with the self-  
protection circuit of Figure 9. The reduced cold filament  
current also extends the life of the filament.  
down the top MOSFET. The LT1158 will then go into the  
automatic restart mode described in Self-Protection with  
Automatic Restart above.  
The time constant for an incandescent filament is tens  
A good guideline is to choose R  
to set I at ap-  
of milliseconds, which means that t  
will have  
SENSE  
SC  
SHUTDOWN  
proximately twice the steady state “on” current of the  
lamp(s). t is then made long enough to guar-  
antee that the lamp filaments heat and drop out of current  
limit before the enable capacitor discharges to the enable  
low threshold. For a short-circuit, the enable capacitor  
will continue to discharge below the threshold, shutting  
to be longer than in most other applications. This places  
increased SOA demands on the MOSFET during a short  
circuit, requiring that a larger than normal device be used.  
A protected high current lamp driver application is shown  
in Figure 18.  
SHUTDOWN  
TYPICAL APPLICATIONS  
5V TO 10V INPUT (USE LOGIC-LEVEL Q1, Q2)  
8V TO 20V INPUT (USE STANDARD Q1, Q2  
AND CONNECT BOOST DIODE TO PIN 1)  
1N4148  
100k  
s
16  
1
2
3
4
5
6
7
8
+
BOOST DR  
BOOST  
500μF  
Q1  
VP0300  
LOW ESR  
15  
14  
13  
12  
11  
10  
9
+
V
T GATE DR  
T GATE FB  
T SOURCE  
0.01μF  
SHORT-CIRCUIT  
CURRENT = 8A  
INSERT FOR  
ZERO POWER  
SHUTDOWN  
0.1μF  
680k  
BIAS  
L1  
R
S
22μH  
0.015Ω  
+3.3V/6A  
OUTPUT  
ENABLE  
FAULT  
INPUT  
GND  
+
100k  
+
+
10μF  
LT1158  
100Ω  
2N2222  
1000μF  
LOW ESR  
+
SENSE  
CMOS  
ON/OFF  
100Ω  
SENSE  
Q2  
+
V
Q1, Q2: IRLZ44 (LOGIC-LEVEL)  
IRFZ44 (STANDARD)  
B GATE FB  
B GATE DR  
1.62k  
1%  
24k  
1N4148  
1
510Ω  
L1: HURRICANE LAB  
HL-KK122T/BB  
8
7
6
5
1000pF  
0.05μF  
1k  
2
R : VISHAY/DALE TYPE LVR-3  
S
4.99k  
1%  
VISHAY/ULTRONIX RCS01, SM1  
ISOTEK CORP. ISA-PLAN SMR  
LT1431  
3
4
200pF  
CONSTANT OFF TIME CURRENT MODE CONTROL LOOP  
1
V
OUT  
FREQUENCY =  
WHERE t  
≈ 10μs  
OFF  
1 –  
(
)
t
V
LT1158 F10  
OFF  
IN  
Figure 10. High Efficiency 3.3V Step-Down Switching Regulator (Requires No Heatsinks)  
1158fb  
16  
LT1158  
TYPICAL APPLICATIONS  
DRIVER SUPPLY 10V TO 15V  
(CAN BE POWERED FROM V  
V
4.5V TO 6V  
IN  
IN  
WITH LOGIC-LEVEL Q1, Q2)  
0.33μF  
16k  
0.01μF  
+
+
BAS16  
10μF  
1
220μF  
10V  
16  
15  
14  
13  
12  
11  
10  
9
BOOST DR  
BOOST  
T GATE DR  
T GATE FB  
T SOURCE  
1
2
3
4
8
7
6
5
OS-CON s 4  
2
+
200pF  
V
Q1  
0.01μF  
SHORT-CIRCUIT  
CURRENT = 22A  
LT1431  
0.22μF  
3
4.99k  
1%  
BIAS  
500k  
L1  
R
S
8μH  
+
4
V
OUT  
ENABLE  
FAULT  
SHUTDOWN  
3.3k  
15A  
LT1158  
+
0.01Ω  
EA  
5
6
7
8
330μF  
6.3V  
AVX s 4  
+
SENSE  
1000pF  
1
2
3
4
8
7
6
5
INPUT  
SENSE  
470pF  
+
GND  
V
CMOS  
555  
24k  
R
X
Q2  
B GATE FB  
B GATE DR  
1%  
LT1158 F11  
L1: COILTRONICS CTX02-12171-1  
S
Q1, Q2: MTB75N05HD (USE WITH 10V TO 15V DRIVER SUPPLY)  
V
R
2.90V 3.05V 3.30V 3.45V 3.60V  
(1%) 806Ω 1.10k 1.62k 1.91k 2.21k  
OUT  
R : KRL/BANTRY SL-1R010J s 2  
MTB75N03HDL (USE WITH V DRIVER SUPLY)  
IN  
X
CMOS 555: LMC555 OR TLC555  
Figure 11. 5V to 3.XXV,15A Converter (Uses PC Board Area for Heatsink)  
8V TO 20V INPUT  
1N4148  
100k  
s
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
+
BOOST DR  
BOOST  
500μF  
IRFZ34  
510k  
VP0300  
LOW ESR  
+
V
T GATE DR  
T GATE FB  
T SOURCE  
SHORT-CIRCUIT  
CURRENT = 6A  
0.01μF  
INSERT FOR  
ZERO POWER  
SHUTDOWN  
BIAS  
0.1μF  
L1  
50μH  
R
S
20mΩ  
+5V/4A  
OUTPUT  
ENABLE  
FAULT  
INPUT  
GND  
+
100k  
+
10μF  
+
LT1158  
2N2222  
100Ω  
100Ω  
1000μF  
+
SENSE  
CMOS  
ON/OFF  
LOW ESR  
SENSE  
IRFZ44  
1N4148  
+
V
B GATE FB  
B GATE DR  
24k  
510Ω  
L1: COILTRONICS  
CTX50-5-52  
1
2
3
4
8
7
6
5
1000pF  
0.05μF  
1k  
R : VISHAY/DALE TYPE LVR-3  
S
VISHAY/ULTRONIX RCS01, SM1  
ISOTEK CORP. ISA-PLAN SMR  
LT1431  
CONSTANT OFF TIME CURRENT MODE CONTROL LOOP  
SEE FIGURE 4 FOR EFFICIENCY CURVE  
1
V
OUT  
FREQUENCY =  
WHERE t  
≈ 10μs  
OFF  
1 –  
(
)
LT1158 F12  
t
V
OFF  
IN  
Figure 12. High Efficiency 5V Step-Down Switching Regulator (Requires No Heatsinks)  
1158fb  
17  
LT1158  
TYPICAL APPLICATIONS  
INPUT  
30V MAX  
SHUTDOWN  
4.7k  
0.01μF  
1N4148  
4.7k  
1μF  
+
+
500μF EA  
LOW ESR  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
16  
15  
14  
13  
12  
11  
10  
9
BOOST DR  
BOOST  
0.1μF  
IRFZ44  
330k  
*
3.4k  
+
V
T GATE DR  
T GATE FB  
T SOURCE  
SHORT-CIRCUIT  
CURRENT = 15A  
+
0.01μF  
0.1μF  
10μF  
3
EXT  
BIAS  
L1  
R
SYNC  
S
30k  
70μH  
0.007Ω  
4
5
6
7
8
5V OR  
12V*  
1N4148  
1N4148  
ENABLE  
FAULT  
INPUT  
GND  
f = 25kHz  
0.01μF  
+
+
2.2nF  
LT3525  
LT1158  
+
SENSE  
1000μF  
LOW ESR  
SENSE  
27k  
1μF  
(2) IRFZ44  
+
V
*
330pF  
510Ω  
10k  
B GATE FB  
B GATE DR  
MBR340  
LT1158 F13  
* ADD THESE COMPONENTS TO IMPLEMENT  
LOW-DROPOUT 12V REGULATOR  
L1: MAGNETICS CORE #55585-A2  
30 TURNS 14GA MAGNET WIRE  
R : DALE TYPE LVR-3  
S
ULTRONIX RCS01  
Figure 13. 90% Efficiency 24V to 5V 10A Switching Regulator  
95% Efficiency 24V to 12V 10A Low Dropout Switching Regulator  
MOTOR SPEED  
0 TO 100%  
10V TO 30V  
5.1k  
1N4148  
10k  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
1N5231A  
10μF  
BOOST DR  
BOOST  
T GATE DR  
T GATE FB  
T SOURCE  
0.1μF  
+
1μF  
7.5k  
1000μF  
24Ω  
+
LOW ESR  
V
0.01μF  
1k  
+
Q1  
BIAS  
0.33μF  
510Ω  
1
2
3
4
8
7
6
5
ENABLE  
FAULT  
INPUT  
GND  
START CURRENT  
= 15A MINIMUM  
+
LT1158  
+
SENSE  
CMOS  
555  
0.02Ω  
13k  
SENSE  
2.2nF  
+
V
Q2  
24Ω  
-
B GATE FB  
B GATE DR  
THE CMOS 555 IS USED AS A 25kHz TRIANGLE-WAVE  
OSCILLATOR DRIVING THE LT1158 INPUT PIN. THE  
D.C. LEVEL OF THE TRIANGLE WAVE IS SET BY THE  
POTENTIOMETER ON THE CMOS 555 SUPPLY PIN, AND  
ALLOW ADJUSTMENT OF THE LT1158 DUTY CYCLE  
FROM 0 TO 100%.  
CMOS 555: LMC555 OR TLC555  
Q1, Q2: MTP35N06E  
LT1158 F14  
Figure 14. Potentiometer-Adjusted Open Loop Motor Speed Control with Short-Circuit Protection  
1158fb  
18  
LT1158  
TYPICAL APPLICATIONS  
7.2V  
NOMINAL  
+
BAT85  
100μF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
BOOST DR  
BOOST  
T GATE DR  
T GATE FB  
T SOURCE  
15Ω  
0.1μF  
+
V
+
0.01μF  
1k  
10μF  
BIAS  
Q1  
1N4148  
STOP  
(FREE RUN)  
ENABLE  
FAULT  
INPUT  
GND  
START CURRENT  
= 25A MINIMUM  
+
+
LT1158  
1μF  
+
SENSE  
R
S
0.015Ω  
PWM  
SENSE  
+
V
15Ω  
-
Q2  
B GATE FB  
B GATE DR  
LT1158 F15  
Q1, Q2: IRLZ44 (LOGIC-LEVEL)  
R : DALE TYPE LVR-3  
S
ULTRONIX RCS01  
Figure 15. High Efficiency 6-Cell NiCd Protected Motor Drive  
+
+
+
V
V
V
LT1158  
ENABLE  
LT1158  
ENABLE  
LT1158  
ENABLE  
F
A
FAULT  
FAULT  
F
FAULT  
F
C
B
INPUT  
INPUT  
INPUT  
5V  
SHUTDOWN  
POSITION FEEDBACK  
CONTROLS LT1158  
ENABLE INPUTS  
COMMUTATING LOGIC  
PWM CONTROLS  
LT1158 INPUTS  
1158 F16  
Figure 16. 3-Phase Brushless DC Motor Control  
1158fb  
19  
LT1158  
TYPICAL APPLICATIONS  
1N4148  
10V TO 30V  
470μF  
1
16  
15  
14  
13  
12  
11  
10  
9
BOOST DR  
BOOST  
0.1μF  
15Ω  
D1  
2
+
SIDE A: SHOWS  
STANDARD MOSFET  
CONNECTION  
+
V
T GATE DR  
T GATE FB  
T SOURCE  
Q1  
0.01μF  
3
LOW  
ESR  
BIAS  
4
ENABLE A  
FAULT A  
INPUT A  
ENABLE  
FAULT  
+
+
10μF  
LT1158  
5
6
7
8
+
SENSE  
R
S
0.015Ω  
INPUT  
SENSE  
Q2  
+
GND  
V
2.4k  
15Ω  
B GATE FB  
B GATE DR  
1N4148  
+
-
1
16  
15  
14  
13  
12  
11  
10  
9
470μF  
LOW  
ESR  
BOOST DR  
BOOST  
Q3  
15Ω  
SIDE B: SHOWS  
CURRENT-SENSING  
MOSFET CONNECTION  
2
3
4
5
6
7
8
+
V
T GATE DR  
T GATE FB  
T SOURCE  
0.01μF  
0.1μF  
D2  
BIAS  
+
ENABLE B  
ENABLE  
FAULT  
INPUT  
GND  
+ 10μF  
LT1158  
2.4k  
+
SENSE  
FAULT B  
INPUT B  
47Ω  
15Ω  
SENSE  
Q4  
Q1, Q3: IRF540 (STANDARD)  
IRC540 (SENSE FET)  
Q2, Q4: IRFZ44  
+
V
D1, D2: BAT83  
B GATE FB  
B GATE DR  
R : DALE TYPE LVR-3  
S
ULTRONIX RCS01  
LT1158 F17a  
Control Logic for Locked Anti-Phase Drive  
Motor stops if either side is shorted to ground  
Control Logic for Sign/Magnitude Drive  
5V  
5.1k  
ENABLE A  
ENABLE A  
FAULT A  
INPUT A  
0.01μF  
74HC132  
74HC02  
FAULT A  
INPUT A  
PWM  
PWM  
DIRECTION  
1N4148  
ENABLE B  
150k  
STOP  
ENABLE B  
(FREE RUN)  
+
FAULT B  
0.1μF  
FAULT B  
1μF  
1N4148  
INPUT B  
INPUT B  
1158F17b  
1158F17c  
Figure 17. 10A Full Bridge Motor Control  
1158fb  
20  
LT1158  
PACKAGE DESCRIPTION  
N Package  
16-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.770*  
(19.558)  
MAX  
14  
12  
10  
9
8
15  
13  
11  
16  
.255 .015*  
(6.477 0.381)  
2
1
3
4
6
5
7
.300 – .325  
(7.620 – 8.255)  
.130 .005  
(3.302 0.127)  
.045 – .065  
(1.143 – 1.651)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
+.035  
–.015  
.325  
.120  
(3.048)  
MIN  
.018 .003  
(0.457 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
–0.381  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
N16 1002  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 .005  
.398 – .413  
.030 .005  
TYP  
(10.109 – 10.490)  
NOTE 4  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 .005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
N/2  
8
1
2
3
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
× 45°  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S16 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
1158fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
21  
LT1158  
TYPICAL APPLICATION  
12V  
1N4148  
+
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1000μF  
BOOST DR  
BOOST  
IRCZ44  
+
V
T GATE DR  
T GATE FB  
T SOURCE  
+
0.01μF  
6.2k  
10μF  
0.1μF  
BIAS  
+
ENABLE  
FAULT  
INPUT  
GND  
+
10μF  
LT1158  
12V  
55W  
+
MBR330  
SENSE  
51Ω  
ON/OFF  
SENSE  
+
V
B GATE FB  
B GATE DR  
I
t
t
: 10A  
SC  
SHUTDOWN  
= 50ms  
= 600ms  
LT1158 F18  
RESTART  
Figure 18. High Current Lamp Driver with Short-Circuit Protection  
1158fb  
LT 0309 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
© LINEAR TECHNOLOGY CORPORATION 1994  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1158IS

Half Bridge N-Channel Power MOSFET Driver
Linear

LT1158IS#TR

IC 15 A HALF BRDG BASED MOSFET DRIVER, PDSO16, SOIC-16, MOSFET Driver
Linear

LT1158ISW

Half Bridge N-Channel Power MOSFET Driver
LINEAR_DIMENS

LT1158ISW#TR

Half Bridge Based MOSFET Driver, PDSO16
Linear

LT1158ISW#TRPBF

LT1158 - Half Bridge N-Channel Power MOSFET Driver; Package: SO; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1160

Half-/Full-Bridge N-Channel Power MOSFET Drivers
Linear

LT1160

Half-/Full-Bridge N-Channel Power MOSFET Drivers
Linear System

LT1160CN

Half-/Full-Bridge N-Channel Power MOSFET Drivers
Linear

LT1160CN

Half-/Full-Bridge N-Channel Power MOSFET Drivers
Linear System

LT1160CS

Half-/Full-Bridge N-Channel Power MOSFET Drivers
Linear

LT1160CS

Half-/Full-Bridge N-Channel Power MOSFET Drivers
Linear System

LT1160CS#TR

LT1160 - Half-/Full-Bridge N-Channel Power MOSFET Drivers; Package: SO; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear