LT1073CS8-5#TR [Linear]

LT1073 - Micropower DC-DC Converter Adjustable and Fixed 5V, 12V; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1073CS8-5#TR
型号: LT1073CS8-5#TR
厂家: Linear    Linear
描述:

LT1073 - Micropower DC-DC Converter Adjustable and Fixed 5V, 12V; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

开关 光电二极管
文件: 总16页 (文件大小:250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1073  
Micropower  
DC/DC Converter  
Adjustable and Fixed 5V, 12V  
U
FEATURES  
DESCRIPTIO  
The LT®1073 is a versatile micropower DC/DC converter.  
The device requires only three external components to  
deliver a fixed output of 5V or 12V. The very low minimum  
supply voltage of 1V allows the use of the LT1073 in  
applications where the primary power source is a single  
cell. An on-chip auxiliary gain block can function as a low-  
battery detector or linear post-regulator.  
No Design Required  
Operates at Supply Voltages from 1V to 30V  
Consumes Only 95µA Supply Current  
Works in Step-Up or Step-Down Mode  
Only Three External Off-the-Shelf Components  
Required  
Low-Battery Detector Comparator On-Chip  
User-Adjustable Current Limit  
Internal 1A Power Switch  
Average current drain of the LT1073-5 used as shown in  
the Typical Application circuit below is just 135µA un-  
loaded, making it ideal for applications where long battery  
life is important. The circuit shown can deliver 5V at 40mA  
from an input as low as 1.25V and 5V at 10mA from a 1V  
input.  
Fixed or Adjustable Output Voltage Versions  
Space-Saving 8-Pin PDIP or SO-8 Package  
U
APPLICATIO S  
Pagers  
Cameras  
Single-Cell to 5V Converters  
Battery Backup Supplies  
Laptop and Palmtop Computers  
Cellular Telephones  
Portable Instruments  
The device can easily be configured as a step-up or step-  
down converter, although for most step-down applica-  
tions or input sources greater than 3V, the LT1173 is  
recommended. Switch current limiting is user-adjustable  
by adding a single external resistor. Unique reverse-  
battery protection circuitry limits reverse current to safe,  
nondestructive levels at reverse supply voltages up to  
1.6V.  
4mA to 20mA Loop Powered Instruments  
Hand-Held Inventory Computers  
Battery-Powered α, β, and γ Particle Detectors  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Single Alkaline “AA” Cell Operating  
Hours vs DC Load Current  
1000  
Single-Cell to 5V Converter  
CADDELL-BURNS  
7300-12  
1N5818  
82µH  
5V  
40mA  
100  
2
1
I
V
LIM  
IN  
3
8
SW1  
LT1073-5  
L = 180µH  
1.5V  
AA CELL*  
10  
SENSE  
+
100µF  
SANYO  
0S-CON  
GND  
5
SW2  
4
L = 82µH  
1
1
10  
100  
OPERATES WITH CELL VOLTAGE 1V  
ADD 10µF DECOUPLING CAPACITOR IF  
LOAD CURRENT (mA)  
*
LT1073 TA02  
BATTERY IS MORE THAN 2" AWAY FROM LT1073  
1073 TA01  
1
LT1073  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
Supply Voltage, Step-Up Mode................................ 15V  
Supply Voltage, Step-Down Mode ........................... 36V  
SW1 Pin Voltage...................................................... 50V  
SW2 Pin Voltage........................................... –0.4 to VIN  
Feedback Pin Voltage (LT1073) ................................. 5V  
Switch Current........................................................ 1.5A  
Maximum Power Dissipation ............................. 500mW  
Operating Temperature Range ..................... 0°C to 70°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
NUMBER  
I
1
2
3
4
FB (SENSE)*  
8
7
6
5
LIM  
LT1073CN8  
LT1073CN8-5  
LT1073CN8-12  
LT1073CS8  
LT1073CS8-5  
V
SET  
A0  
IN  
SW1  
SW2  
GND  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
LT1073CS8-12  
S8 PART MARKING  
*FIXED VERSIONS  
TJMAX = 125°C, θJA = 100°C/W (N8)  
JMAX = 125°C, θJA = 120°C/W (S8)  
T
1073  
10735  
107312  
Consult factory for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 1.5V unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
Switch Off  
No Load  
MIN  
TYP  
MAX  
UNITS  
I
I
Quiescent Current  
95  
130  
µA  
Q
Q
Quiescent Current, Step-Up  
Mode Configuration  
LT1073-5  
LT1073-12  
135  
250  
µA  
µA  
V
V
Input Voltage  
Step-Up Mode  
1.15  
1.0  
12.6  
12.6  
V
V
IN  
Step-Down Mode  
LT1073 (Note 2)  
30  
V
Comparator Trip Point Voltage  
Output Sense Voltage  
202  
212  
222  
mV  
LT1073-5 (Note 3)  
LT1073-12 (Note 3)  
4.75  
11.4  
5
12  
5.25  
12.6  
V
V
OUT  
Comparator Hysteresis  
Output Hysteresis  
LT1073  
5
10  
mV  
LT1073-5  
LT1073-12  
125  
300  
250  
600  
mV  
mV  
f
Oscillator Frequency  
Duty Cycle  
15  
65  
30  
19  
72  
23  
80  
kHz  
%
OSC  
DC  
Full Load (V = V  
)
REF  
FB  
t
I
I
Switch ON Time  
38  
50  
µs  
nA  
nA  
V
ON  
FB  
Feedback Pin Bias Current  
Set Pin Bias Current  
AO Output Low  
LT1073, V = 0V  
10  
50  
FB  
V
= V  
REF  
60  
120  
0.4  
SET  
SET  
V
I
= –100µA  
AO  
0.15  
AO  
Reference Line Regulation  
1V V 1.5V  
0.35  
0.05  
1.0  
0.1  
%V  
%V  
IN  
1.5V V 12V  
IN  
V
Switch Saturation Voltage  
Set-Up Mode  
V
V
V
= 1.5V, I = 400mA  
300  
400  
600  
mV  
mV  
CESAT  
IN  
IN  
IN  
SW  
= 1.5V, I = 500mA  
400  
550  
750  
mV  
mV  
SW  
= 5V, I = 1A  
700  
1000  
1500  
mV  
mV  
SW  
A
A2 Error Amp Gain  
R = 100k(Note 4)  
400  
1000  
V/V  
V
L
2
LT1073  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 1.5V unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
750  
400  
–0.3  
1
MAX  
UNITS  
mA  
I
I
Reverse Battery Current  
Current Limit  
(Note 5)  
REV  
LIM  
220Between I and V  
mA  
LIM  
IN  
Current Limit Temperature Coefficient  
Switch OFF Leakage Current  
Maximum Excursion Below GND  
%/°C  
µA  
I
Measured at SW1 Pin  
10  
LEAK  
V
I
10µA, Switch Off  
SW1  
–400  
–350  
mV  
SW2  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: 100k resistor connected between a 5V source and the AO pin.  
Note 5: The LT1073 is guaranteed to withstand continuous application of  
Note 2: This specification guarantees that both the high and low trip point  
of the comparator fall within the 202mV to 222mV range.  
1.6V applied to the GND and SW2 pins while V , I and SW1 pins are  
grounded.  
IN LIM  
Note 3: This specification guarantees that the output voltage of the fixed  
versions will always fall within the specified range. The waveform at the  
SENSE pin will exhibit a sawtooth shape due to the comparator hysteresis.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switch ON Voltage Step-Down Mode  
(SW1 Pin Connected to VIN)  
Saturation Voltage Step-Up Mode  
(SW2 Pin Grounded)  
Maximum Switch Current vs RLIM  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
V
= 1.5V  
L = 82µH  
IN  
V
= 3V  
IN  
V
= 1.25V  
IN  
V
= 1V  
IN  
V
= 5V  
IN  
V
= 1.5V  
V
= 3V  
IN  
IN  
V
= 2V  
IN  
0.1 0.2 0.3 0.4 0.5  
(A)  
0.7 0.8  
0
0.6  
0
0.4  
0.6  
0.8  
1.0  
1.2  
0.2  
10  
100  
()  
1000  
I
(A)  
R
I
SWITCH  
LIM  
SWITCH  
1073 G03  
1073 G02  
1073 G01  
SET Pin Bias Current vs  
Temperature  
FB Pin Bias Current vs  
Temperature  
“Gain Block” Gain  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
20  
18  
16  
14  
12  
10  
8
200  
175  
150  
125  
100  
75  
V
= 1.5V  
= 100k  
IN  
L
R
50  
6
25  
4
0
–25  
0
25  
50  
75  
125  
–50  
100  
–25  
0
25  
50  
75  
125  
–50  
100  
–25  
0
25  
50  
75  
125  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1073 G06  
1073 G04  
1073 G05  
3
LT1073  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Recommended Minimum  
Inductance Value  
Guaranteed Minimum Output  
Current at 5V vs VIN  
Supply Current vs Temperature  
1000  
100  
10  
300  
250  
200  
150  
100  
50  
150  
140  
130  
120  
110  
100  
90  
V
= 1.5V  
R
= 0V  
IN  
LIM  
80  
FOR V > 1.6V A  
IN  
70  
68RESISTOR  
MUST BE CONNECTED  
60  
BETWEEN I  
AND V  
LIM  
IN  
0
50  
1.0  
3.0  
4.0 4.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
1.5 2.0 2.5  
3.5  
5.0  
–25  
0
25  
50  
75  
125  
–50  
100  
INPUT VOLTAGE (V)  
V
(V)  
IN  
TEMPERATURE (°C)  
1073 G09  
1073 G08  
1073 G07  
U
U
U
PI FU CTIO S  
ILIM (Pin 1): Connect this pin to VIN for normal use. Where  
lower current limit is desired, connect a resistor between  
ILIM and VIN. A 220resistor will limit the switch current  
to approximately 400mA.  
GND (Pin 5): Ground.  
AO (Pin 6): Auxiliary Gain Block (GB) Output. Open collec-  
tor, can sink 100µA.  
SET (Pin 7): GB Input. GB is an op amp with positive input  
connected to SET pin and negative input connected to  
212mV reference.  
VIN (Pin 2): Input Supply Voltage  
SW1 (Pin 3): Collector of Power Transistor. For step-up  
mode connect to inductor/diode. For step-down mode  
connect to VIN.  
FB/SENSE (Pin 8): On the LT1073 (adjustable) this pin  
goes to the comparator input. On the LT1073-5 and  
LT1073-12, this pin goes to the internal application resis-  
tor that sets output voltage.  
SW2 (Pin 4): Emitter of Power Transistor. For step-up  
mode connect to ground. For step-down mode connect to  
inductor/diode. Thispinmustneverbeallowedtogomore  
than a Schottky diode drop below ground.  
W
LT1073-5 and LT1073-12  
BLOCK DIAGRA S  
SET  
+
A2  
A0  
LT1073  
SET  
+
GAIN BLOCK/ERROR AMP  
V
IN  
A2  
A0  
I
SW1  
LIM  
212mV  
REFERENCE  
GAIN BLOCK/ERROR AMP  
V
IN  
A1  
OSCILLATOR  
Q1  
I
SW1  
Q1  
LIM  
212mV  
DRIVER  
SW2  
REFERENCE  
COMPARATOR  
A1  
OSCILLATOR  
R2  
940k  
R1  
GND  
DRIVER  
LT1073-5: R1 = 40k  
LT1073-12: R2 = 16.3k  
SENSE  
SW2  
COMPARATOR  
1073 BD02  
FB  
1073 BD01  
GND  
4
LT1073  
U
OPERATIO  
LT1073  
The LT1073 is gated oscillator switcher. This type archi-  
tecture has very low supply current because the switch is  
cycledonlywhenthefeedbackpinvoltagedropsbelowthe  
reference voltage. Circuit operation can best be under-  
stood by referring to the LT1073 Block Diagram. Com-  
parator A1 compares the FB pin voltage with the 212mV  
referencesignal.WhenFBdropsbelow212mV,A1switches  
on the 19kHz oscillator. The driver amplifier boosts the  
signal level to drive the output NPN power switch Q1. An  
adaptive base drive circuit senses switch current and  
provides just enough base drive to ensure switch satura-  
tion without overdriving the switch, resulting in higher  
efficiency. The switch cycling action raises the output  
voltage and FB pin voltage. When the FB voltage is suffi-  
cient to trip A1, the oscillator is gated off. A small amount  
of hysteresis built into A1 ensures loop stability without  
external frequency compensation. When the comparator  
is low the oscillator and all high current circuitry is turned  
off, lowering device quiescent current to just 95µA for the  
reference, A1 and A2.  
A resistor connected between the ILIM pin and VIN adjusts  
maximum switch current. When the switch current ex-  
ceeds the set value, the switch is turned off. This feature  
isespeciallyusefulwhensmallinductancevaluesareused  
withhighinputvoltages.Iftheinternalcurrentlimitof1.5A  
is desired, ILIM should be tied directly to VIN. Propagation  
delay through the current-limit circuitry is about 2µs.  
In step-up mode, SW2 is connected to ground and SW1  
drives the inductor. In step-down mode, SW1 is con-  
nected to VIN and SW2 drives the inductor. Output voltage  
is set by the following equation in either step-up or step-  
down modes where R1 is connected from FB to GND and  
R2 is connected from VOUT to FB.  
R2  
R1  
VOUT = 212mV  
+ 1  
(
)
LT1073-5 and LT1073-12  
The LT1073-5 and LT1073-12 fixed output voltage ver-  
sions have the gain-setting resistor on-chip. Only three  
external components are required to construct a fixed-  
output converter. 5µA flows through R1 and R2 in the  
LT1073-5, and 12.3µA flows in the LT1073-12. This  
current represents a load and the converter must cycle  
from time to time to maintain the proper output voltage.  
Output ripple, inherently present in gated-oscillator de-  
signs, will typically run around 150mV for the LT1073-5  
and 350mV for the LT1073-12 with the proper inductor/  
capacitor selection. This output ripple can be reduced  
considerablybyusingthegainblockampasapreamplifier  
in front of the FB pin. See the Applications Information  
section for details.  
The oscillator is set internally for 38µs ON time and 15µs  
OFF time, optimizing the device for step-up circuits where  
V
OUT 3VIN, e.g., 1.5V to 5V. Other step-up ratios as well  
as step-down (buck) converters are possible at slight  
losses in maximum achievable power output.  
A2 is a versatile gain block that can serve as a low-battery  
detector, a linear post-regulator, or drive an undervoltage  
lockout circuit. The negative input of A2 is internally  
connected to the 212mV reference. An external resistor  
divider from VIN to GND provides the trip point for A2. The  
AO output can sink 100µA (use a 56k resistor pull-up to  
5V). This line can signal a microcontroller that the battery  
voltage has dropped below the preset level.  
5
LT1073  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 1. Component Selection for Step-Up Converters  
INPUT  
VOLTAGE (V)  
BATTERY  
TYPE  
OUTPUT  
VOLTAGE (V) CURRENT (MIN)  
OUTPUT  
INDUCTOR  
VALUE (µH)  
INDUCTOR  
PART NUMBER  
CAPACITOR  
VALUE (µF)  
NOTES  
1.55-1.25  
1.30-1.05  
1.55-1.25  
1.30-1.05  
3.1-2.1  
Single Alkaline  
Single Ni-Cad  
Single Alkaline  
Single Ni-Cad  
Two Alkaline  
Two Alkaline  
Lithium  
3
3
60mA  
20mA  
30mA  
10mA  
80mA  
25mA  
100mA  
25mA  
5mA  
82  
G GA10-822K, CB 7300-12  
G GA10-183K, CB 7300-16  
G GA10-822K, CB 7300-12  
G GA10-183K, CB 7300-16  
G GA10-123K, CB 7300-14  
G GA10-473K, CB 7300-21  
G GA40-153K, CB 6860-15  
G GA10-123K, CB 7300-14  
G GA10-473K, CB 7300-21  
G GA10-153K, CB 7300-15  
G GA40-223K, CB 6860-17  
G GA10-104K, CB 7300-25  
G GA40-223K, CB 6860-17  
150  
47  
180  
5
82  
100  
22  
5
180  
5
120  
470  
150  
470  
220  
100  
220  
470  
100  
150  
*
*
*
3.1-2.1  
5
470  
3.3-2.5  
5
150  
3.1-2.1  
Two Alkaline  
Two Alkaline  
Lithium  
12  
12  
12  
12  
12  
24  
120  
3.1-2.1  
470  
3.3-2.5  
30mA  
90mA  
22mA  
35mA  
150  
4.5-5.5  
TTL Supply  
TTL Supply  
TTL Supply  
220  
*
*
*
4.5-5.5  
1000  
220  
4.5-5.5  
G = GOWANDA  
CB = CADDELL-BURNS  
*Add 68from I to V  
LIM IN  
Measuring Input Current at Zero or Light Load  
LT1073. The circuit must be “booted” by shorting V2 to  
VSET. After the LT1073 output voltage has settled, discon-  
nect the short. Input voltage is V2 and average input  
current can be calculated by this formula:  
Obtaining meaningful numbers for quiescent current and  
efficiency at low output current involves understanding  
howtheLT1073operates. Atveryloworzeroloadcurrent,  
the device is idling for seconds at a time. When the output  
voltage falls enough to trip the comparator, the power  
switch comes on for a few cycles until the output voltage  
rises sufficiently to overcome the comparator hysteresis.  
When the power switch is on, inductor current builds up  
to hundreds of milliamperes. Ordinary digital multimeters  
are not capable of measuring average current because of  
bandwidth and dynamic range limitations. A different  
approach is required to measure the 100µA off-state and  
500mA on-state currents of the circuit.  
V2 – V1  
100Ω  
I =  
IN  
Inductor Selection  
A DC/DC converter operates by storing energy as mag-  
netic flux, in an inductor core and then switching this  
energy into the load. Since it is flux, not charge, that is  
stored, the output voltage can be higher, lower, or oppo-  
site in polarity to the input voltage by choosing an appro-  
priateswitchingtopology.Tooperateasanefficientenergy  
transfer element, the inductor must fulfill three require-  
ments. First, the inductance must be low enough for the  
inductor to store adequate energy under the worst-case  
condition of minimum input voltage and switch ON time.  
The inductance must also be high enough so that maxi-  
mum current ratings of the LT1073 and inductor are not  
exceeded at the other worst-case condition of maximum  
input voltage and ON time. Additionally, the inductor core  
must be able to store the required flux, i.e., it must not  
saturate. At power levels generally encountered with  
LT1073-based designs, small axial-lead units with  
1M  
12V  
1µF*  
100Ω  
LT1073  
LTC1050  
CIRCUIT  
V1  
V2  
+
+
1000µF  
*NONPOLARIZED  
V
SET  
1073 F01  
Figure 1. Test Circuit Measures No-Load  
Quiescent Current of LT1073 Converter  
Quiescent current can be accurately measured using the  
circuit in Figure 1. VSET is set to the input voltage of the  
6
LT1073  
W U U  
APPLICATIO S I FOR ATIO  
U
1200  
saturation current ratings in the 300mA to 1A range  
(depending on application) are adequate. Lastly, the in-  
ductor must have sufficiently low DC resistance so that  
excessive power is not lost as heat in the windings. An  
additional consideration is electro-magnetic interference  
(EMI). Toroid and pot core type inductors are recom-  
mended in applications where EMI must be kept to a  
minimum; for example, where there are sensitive analog  
circuitry or transducers nearby. Rod core types are a less  
expensive choice where EMI is not a problem.  
1000  
800  
600  
400  
200  
0
0
1
2
3
4
5
V
(V)  
IN  
Specifying a proper inductor for an application requires  
first establishing minimum and maximum input voltage,  
output voltage and output current. In a step-up converter,  
theinductiveeventsaddtotheinputvoltagetoproducethe  
output voltage. Power required from the inductor is deter-  
mined by:  
1073 F02  
Figure 2. Maximum Switch Current vs Input Voltage  
Capacitor Selection  
Selecting the right output capacitor is almost as important  
as selecting the right inductor. A poor choice for a filter  
capacitor can result in poor efficiency and/or high output  
ripple.Ordinaryaluminumelectrolytics,whileinexpensive  
andreadilyavailable, mayhaveunacceptablypoorequiva-  
lent series resistance (ESR) and ESL (inductance). There  
are low-ESR aluminum capacitors on the market specifi-  
cally designed for switch-mode DC/DC converters which  
work much better than general purpose units. Tantalum  
capacitors provide still better performance at more ex-  
pense. We recommend OS-CON capacitors from Sanyo  
Corporation (San Diego, CA). These units are physically  
quite small and have extremely low ESR. To illustrate,  
Figures 3, 4, and 5 show the output voltage of an LT1073  
based converter with three 100µF capacitors. The peak  
switch current is 500mA in all cases. Figure 3 shows a  
Sprague 501D aluminum capacitor. VOUT jumps by over  
150mV when the switch turns off, followed by a drop in  
voltage as the inductor dumps into the capacitor. This  
worksouttobeanESRofover300m.Figure4showsthe  
same circuit, but with a Sprague 150D tantalum capacitor  
replacing the aluminum unit. Output jump is now about  
30mV, correspondingtoanESRof60m. Figure5shows  
the circuit with an OS-CON unit. ESR is now only 30m.  
PL = (VOUT + VD – VIN)(IOUT  
)
where VD is the diode drop (0.5V for a 1N5818 Schottky).  
Maximum power in the inductor is  
PL= EL• fOSC  
= L iPEAK2 • fOSC  
1
2
where  
VIN  
R
–RtON  
L
iPEAK  
=
1– e  
R = Switch equivalent resistance (1maximum)  
added to the DC resistance of the inductor and tON = ON  
time of the switch.  
AtmaximumVIN andONtime, iPEAK shouldnotbeallowed  
to exceed the maximum switch current shown in Figure 2.  
Some input/output voltage combinations will cause con-  
tinuous1 mode operation. In these cases a resistor is  
neededbetweenILIM (Pin1)andVIN (Pin 2)tokeepswitch  
current under control. See the “Using the ILIM Pin” section  
for details.  
In very low power applications where every microampere  
is important, leakage current of the capacitor must be  
considered. The OS-CON units do have leakage current in  
the 5µA to 10µA range. If the load is also in the  
NOTE 1: i.e., inductor current does not go to zero when the switch is off.  
7
LT1073  
W U U  
U
APPLICATIO S I FOR ATIO  
50mV/DIV  
50mV/DIV  
50mV/DIV  
20µs/DIV  
20µs/DIV  
20µs/DIV  
Figure 3. Aluminum  
Figure 4. Tantalum  
Figure 5. OS-CON  
microampere range, a leaky capacitor will noticeably de-  
crease efficiency. In this type application tantalum capaci-  
torsarethebestchoice,withtypicalleakagecurrentsinthe  
1µA to 5µA range.  
short-circuit protected since there is a DC path from input  
to output.  
The usual step-up configuration for the LT1073 is shown  
in Figure 6. The LT1073 first pulls SW1 low causing VIN-  
VCESAT toappearacrossL1. AcurrentthenbuildsupinL1.  
At the end of the switch ON time the current in L1 is2:  
Diode Selection  
Speed, forward drop and leakage current are the three  
main considerations in selecting a catch diode for LT1073  
converters. “General-purpose” rectifiers such as the  
1N4001 are unsuitable for use in any switching regulator  
application. Although they are rated at 1A, the switching  
time of a 1N4001 is in the 10µs to 50µs range. At best,  
efficiency will be severely compromised when these  
diodes are used and at worst, the circuit may not work at  
all. Most LT1073 circuits will be well served by a 1N5818  
Schottky diode. The combination of 500mV forward drop  
at 1A current, fast turn-on and turn-off time and 4µA to  
10µA leakage current fit nicely with LT1073 requirements.  
Atpeakswitchcurrentsof100mAorless, a1N4148signal  
diode may be used. This diode has leakage current in the  
1nA to 5nA range at 25°C and lower cost than a 1N5818.  
(You can also use them to get your circuit up and running,  
but beware of destroying the diode at 1A switch currents.)  
InsituationswheretheloadisintermittentandtheLT1073  
is idling most of the time, battery life can sometimes be  
extended by using a silicon diode such as the 1N4933,  
which can handle 1A but has leakage current of less than  
1µA. Efficiency will decrease somewhat compared to a  
1N5818 while delivering power, but the lower idle current  
may be more important.  
VIN  
iPEAK  
=
tON  
L
NOTE 2: This simple expression neglects the effect of switch and coil resistance. These are taken  
into account in the “Inductor Selection” section.  
D1  
L1  
V
V
IN  
OUT  
R3*  
I
V
IN  
LIM  
R2  
R1  
SW1  
LT1073  
+
C1  
FB  
GND  
SW2  
1073 F06  
*= OPTIONAL  
Figure 6. Step-Up Mode Hookup.  
(Refer to Table 1 for Component Values)  
Immediately after switch turn-off, the SW1 voltage pin  
starts to rise because current cannot instantaneously stop  
flowing in L1. When the voltage reaches VOUT + VD, the  
inductor current flows through D1 into C1, increasing  
VOUT. This action is repeated as needed by the LT1073 to  
keep VFB at the internal reference voltage of 212mV. R1  
and R2 set the output voltage according to the formula:  
Step-Up (Boost Mode) Operation  
A step-up DC/DC converter delivers an output voltage  
higher than the input voltage. Step-up converters are not  
8
LT1073  
W U U  
APPLICATIO S I FOR ATIO  
U
R3 programs switch current limit. This is especially im-  
portant in applications where the input varies over a wide  
range. Without R3, the switch stays on for a fixed time  
each cycle. Under certain conditions the current in L1 can  
build up to excessive levels, exceeding the switch rating  
and/or saturating the inductor. The 220resistor pro-  
grams the switch to turn off when the current reaches  
approximately 400mA. When using the LT1073 in step-  
down mode, output voltage should be limited to 6.2V or  
less.  
R2  
R1  
VOUT = 1+  
212mV  
(
)
Step-Down (Buck Mode) Operation  
Astep-downDC/DCconverterconvertsahighervoltageto  
a lower voltage. It is short-circuit protected because the  
V
IN  
R3  
220Ω  
I
V
SW1  
FB  
LIM IN  
Inverting Configurations  
LT1073  
SW2  
L1  
+
The LT1073 can be configured as a positive-to-negative  
converter (Figure 8), or a negative-to-positive converter  
(Figure 9). In Figure 8, the arrangement is very similar to  
a step-down, except that the high side of the feedback is  
referredtoground.Thislevelshiftstheoutputnegative.As  
in the step-down mode, D1 must be a Schottky diode, and  
VOUT should be less than 6.2V.  
V
C2  
OUT  
R2  
GND  
+
D1  
1N5818  
C1  
R1  
1073 FO7  
Figure 7. Step-Down Mode Hookup  
switch is in series with the output. Step-down converters  
are characterized by low output voltage ripple but high  
input current ripple. The usual hookup for an LT1073-  
based step-down converter is shown in Figure 7.  
+V  
IN  
+
C2 R3  
I
V
SW1  
FB  
LIM IN  
When the switch turns on, SW2 pulls up to VIN – VSW. This  
LT1073  
SW2  
L1  
puts a voltage across L1 equal to VIN – VSW – VOUT  
,
causingacurrentto buildupinL1. Attheendoftheswitch  
ON time, the current in L1 is equal to  
GND  
R1  
R2  
+
D1  
C1  
1N5818  
V – VSW VOUT  
IN  
iPEAK  
=
tON  
–V  
OUT  
L
1073 FO8  
Figure 8. Positive-to-Negative Converter  
When the switch turns off the SW2 pin falls rapidly and  
actually goes below ground. D1 turns on when SW2  
reaches 0.4V below ground. D1 MUST BE A SCHOTTKY  
DIODE. The voltage at SW2 must never be allowed to go  
below0.5V.Asilicondiodesuchasthe1N4933willallow  
SW2togoto0.8V, causingpotentiallydestructivepower  
dissipation inside the LT1073. Output voltage is deter-  
mined by  
D1  
L1  
+V  
OUT  
+
C1  
R1  
I
V
IN  
LIM  
SW1  
LT1073  
2N3906  
+
C2  
AO  
FB  
GND  
SW2  
R2  
R2  
R1  
–V  
IN  
R1  
VOUT = 1+  
212mV  
(
)
V
=
(R2)212mV + 0.6V  
OUT  
1073 F09  
Figure 9. Negative-to-Positive Converter  
9
LT1073  
W U U  
U
APPLICATIO S I FOR ATIO  
In Figure 9, the input is negative while the output is  
positive. In this configuration, the magnitude of the input  
voltage can be higher or lower than the output voltage. A  
levelshift, providedbythePNPtransistor, suppliesproper  
polarity feedback information to the regulator.  
VOUT + VDIODE  
1
<
V – VSW  
IN  
1– DC  
When the input and output voltages satisfy this relation-  
ship, inductor current does not go to zero during the  
switch OFF time. When the switch turns on again, the  
current ramp starts from the nonzero current level in the  
inductor just prior to switch turn-on. As shown in  
Figure 10, the inductor current increases to a high level  
before the comparator turns off the oscillator. This high  
current can cause excessive output ripple and requires  
oversizingtheoutputcapacitorandinductor. WiththeILIM  
feature, however, the switch current turns off at a pro-  
grammed level as shown in Figure 11, keeping output  
ripple to a minimum.  
Using the ILIM Pin  
The LT1073 switch can be programmed to turn off at a set  
switch current, a feature not found on competing devices.  
This enables the input to vary over a wide range without  
exceeding the maximum switch rating or saturating the  
inductor. Consider the case where analysis shows the  
LT1073 must operate at an 800mA peak switch current  
with a 2V input. If VIN rises to 4V, the peak switch current  
will rise to 1.6A, exceeding the maximum switch current  
rating.Withtheproperresistor(seetheMaximumSwitch  
Current vs RLIM” characteristic) selected, the switch cur-  
rent will be limited to 800mA, even if the input voltage  
increases. The LT1073 does this by sampling a small  
fraction of the switch current and passing this current  
throughtheexternalresistor. WhenthevoltageontheILIM  
pin drops a VBE below VIN, the oscillator terminates the  
cycle. Propagation delay through this loop is about 2µs.  
Using the Gain Block  
The gain block (GB) on the LT1073 can be used as an error  
amplifier, low-battery detector or linear post-regulator.  
ThegainblockitselfisaverysimplePNPinputopampwith  
an open-collector NPN output. The (–) input of the gain  
block is tied internally to the 212mV reference. The (+)  
input comes out on the SET pin.  
Another situation where the ILIM feature is useful is when  
the device goes into continuous mode operation. This  
occurs in step-up mode when  
Arrangement of the gain block as a low battery detector is  
straightforward.Figure12showshookup.R1andR2need  
only be low enough in value so that the bias current of the  
SET input does not cause large errors. 100kfor R2 is  
adequate.  
Output ripple of the LT1073, normally 150mV at 5VOUT  
,
PROGRAMMED CURRENT LIMIT  
can be reduced significantly by placing the gain block in  
front of the FB input as shown in Figure 13. This effectively  
I
L
I
L
reduces the comparator hysteresis by the gain of the gain  
ON  
ON  
block. Output ripple can be reduced to just a few millivolts  
SWITCH  
OFF  
SWITCH  
OFF  
using this technique. Ripple reduction wo  
1
r
07  
ks with step-  
3 F1  
1
1073 F10  
down or inverting modes as well.  
Figure 11. Current Limit Keeps Inductor Current Under Control  
Figure 10. No Current Limit Causes  
Large Inductor Current Build-Up  
10  
LT1073  
W U U  
U
APPLICATIO S I FOR ATIO  
D1  
L1  
V
OUT  
5V  
R3  
V
IN  
LT1073  
680k  
I
V
LIM  
IN  
SW1  
LT1073  
R2  
100k  
212mV  
REF  
+
AO  
R1  
R2  
+
V
A0  
BAT  
TO  
C1  
PROCESSOR  
SET  
FB  
SET  
V
=
BAT  
GND  
SW2  
R1  
GND  
V
LB  
)
212mV  
R1 = R2  
(
–1  
1073 F13  
R2  
V
= BATTERY TRIP POINT  
V
OUT  
+ 1 212mV  
LB  
(
)
R1  
)
(
1073 F12  
Figure 12. Settling Low Battery Detector Trip Point  
Table 2. Inductor Manufacturers  
Figure 13. Output Ripple Reduction Using Gain Block  
Table 3. Capacitor Manufacturers  
MANUFACTURER  
PART NUMBERS  
MANUFACTURER  
PART NUMBERS  
Gowanda Electronics Corporation  
1 Industrial Place  
Gowanda, NY 14070  
GA10 Series  
GA40 Series  
Sanyo Video Components  
1201 Sanyo Avenue  
San Diego, CA 92073  
619-661-6322  
OS-CON Series  
716-532-2234  
Caddell-Burns  
7300 Series  
6860 Series  
Nichicon America Corporation  
927 East State Parkway  
Schaumberg, IL 60173  
708-843-7500  
PL Series  
258 East Second Street  
Mineola, NY 11501  
516-746-2310  
Coiltronics International  
984 S.W. 13th Court  
Pompano Beach, FL 33069  
305-781-8900  
Custom Toroids  
Surface Mount  
Sprague Electric Company  
Lower Main Street  
Stanford, ME 04073  
207-324-4140  
150D Solid Tantalums  
550D Tantalex  
Toko America Incorporated  
1250 Feehanville Drive  
Mount Prospect, IL 60056  
312-297-0070  
Type 8RBS  
Renco Electronics Incorporated  
60 Jefryn Boulevard, East  
Deer Park, NY 11729  
800-645-5828  
RL1283  
RL1284  
U
TYPICAL APPLICATIO S  
1.5V to 3V Step-Up Converter  
1.5V to 9V Step-Up Converter  
L1†  
L1†  
1N5818  
1N5818  
120µH  
9V OUTPUT  
7mA AT V  
120µH  
3V OUTPUT  
20mA AT  
BATTERY  
= 1V  
BATTERY  
BATTERY  
16mA AT V  
= 1.5V  
V
= 1V  
220Ω  
I
V
LIM  
IN  
SW1  
LT1073  
I
V
IN  
LIM  
1M*  
536k*  
+
SW1  
LT1073  
+
1.5V  
CELL  
1.5V  
CELL  
47µF  
100µF  
FB  
FB  
GND  
SW2  
GND  
SW2  
24.3k*  
40.2k*  
* 1% METAL FILM  
L1 = GOWANDA GA10-123k  
OR CADDELL-BURNS 7300-14  
* 1% METAL FILM  
L1 = GOWANDA GA10-123k  
OR CADDELL-BURNS 7300-14  
1073 TA04  
1073 TA03  
11  
LT1073  
U
TYPICAL APPLICATIO S  
1.5V to 12V Step-Up Converter  
3V to 5V Step-Up Converter  
L1†  
68µH  
L1†  
120µH  
1N5818  
1N5818  
5V OUTPUT  
100mA AT  
12V OUTPUT  
5mA AT V  
= 1V  
= 1.5V  
BATTERY  
V
= 2V  
BATTERY  
16mA AT V  
BATTERY  
100Ω  
I
V
IN  
LIM  
I
V
LIM  
IN  
SW1  
LT1073-12  
SW1  
LT1073-5  
+
+
TWO  
1.5V  
CELLS  
1.5V  
CELL  
100µF  
47µF  
SENSE  
SW2  
SENSE  
SW2  
GND  
GND  
L1 = GOWANDA GA10-682k  
OR CADDELL-BURNS 7300-11  
L1 = GOWANDA GA10-123k  
OR CADDELL-BURNS 7300-14  
1073 TA06  
1073 TA05  
3V to 12V Step-Up Converter  
3V to 15V Step-Up Converter  
L1†  
68µH  
L1†  
68µH  
1N5818  
1N5818  
12V OUTPUT  
35mA AT  
BATTERY  
15V OUTPUT  
27mA AT  
V
= 2V  
V
= 2V  
BATTERY  
100Ω  
100Ω  
1M*  
I
V
IN  
I
V
IN  
LIM  
LIM  
SW1  
SW1  
+
+
TWO  
1.5V  
CELLS  
TWO  
1.5V  
CELLS  
47µF  
47µF  
LT1073-12  
LT1073  
SENSE  
SW2  
FB  
GND  
GND  
SW2  
14.3k*  
L1 = GOWANDA GA10-682k  
OR CADDELL-BURNS 7300-11  
* 1% METAL FILM  
L1 = GOWANDA GA10-682k  
OR CADDELL-BURNS 7300-11  
1073 TA07  
1073 TA08  
5V to 12V Step-Up Converter  
5V to 15V Step-Up Converter  
L1†  
150µH  
L1†  
150µH  
1N5818  
1N5818  
12V OUTPUT  
130mA AT 4.5V  
15V OUTPUT  
100mA AT 4.5V  
5V  
IN  
5V  
IN  
IN  
IN  
50Ω  
50Ω  
I
V
1M*  
LIM  
IN  
SW1  
LT1073-12  
I
V
IN  
LIM  
+
+
100µF  
100µF  
SW1  
LT1073  
+
+
100µF  
100µF  
SENSE  
SW2  
GND  
FB  
GND  
SW2  
14.3k*  
L1 = GOWANDA GA20-153k  
OR CADDELL-BURNS 7200-15  
1073 TA09  
* 1% METAL FILM  
1073 TA10  
† L1 = GOWANDA GA20-153k  
OR CADDELL-BURNS 7200-15  
12  
LT1073  
U
TYPICAL APPLICATIO S  
1.5V to 5V Step-Up Converter with Low-Battery Detector  
1.5V to 5V Step-Up Converter with Logic Shutdown  
L1†  
82µH  
L1†  
82µH  
1N5818  
1N5818  
5V OUTPUT  
5V OUTPUT  
100k  
909k*  
442k*  
100k*  
I
V
IN  
I
V
IN  
LIM  
LIM  
1.5V  
CELL  
SW1  
LT1073  
SET  
SW1  
+
+
1.5V  
CELL  
100µF  
100µF  
LT1073-5  
FB  
AO  
SENSE  
SW2  
GND  
SW2  
GND  
LO BAT  
1N4148  
74C04  
40.2k*  
GOES LOW  
AT V  
BATTERY  
= 1.15V  
* 1% METAL FILM  
L1 = GOWANDA GA10-822k  
OR CADDELL-BURNS 7300-12  
1073 TA11  
1073 TA12  
SHUTDOWN  
* 1% METAL FILM  
L1 = GOWANDA GA10-822k  
OR CADDELL-BURNS 7300-12  
OPERATE  
9V to 5V Step-Down Converter  
9V to 3V Step-Down Converter  
3V OUTPUT  
536k*  
220Ω  
220  
I
V
I
V
LIM  
IN  
SW1  
LT1073-5  
LIM  
IN  
SW1  
LT1073  
9V  
BATTERY  
9V  
BATTERY  
5V OUTPUT  
SENSE  
SW2  
FB  
L1†  
100µH  
L1†  
100µH  
GND  
GND  
SW2  
40.2k*  
+
+
1N5818  
100µF  
1N5818  
100µF  
L1 = GOWANDA GA10-103k  
OR CADDELL-BURNS 7300-13  
* 1% METAL FILM  
L1 = GOWANDA GA10-103k  
OR CADDELL-BURNS 7300-13  
1073 TA14  
1073 TA13  
Memory Backup Supply  
1.5V to 5V Bootstrapped Step-Up Converter  
5V TO MEMORY,  
4.5V WHEN MAIN  
SUPPLY OPEN  
L1†  
47µH  
5V MAIN  
SUPPLY  
1N5818  
5V OUTPUT  
50mA  
L1†  
82µH  
1N5818  
2N3906  
56Ω  
2.2k  
I
V
IN  
LIM  
+
806k*  
I
V
IN  
1.5V  
CELL  
LIM  
100µF  
SW1  
LT1073  
+
SW1  
LT1073-5  
1.5V  
CELL  
100µF**  
FB  
SENSE  
SW2  
GND  
SW2  
GND  
40.2k*  
* 1% METAL FILM  
1073 TA16  
L1 = GOWANDA GA10-123k  
OR CADDELL-BURNS 7300-14  
**OPTIONAL  
1073 TA15  
L1 = GOWANDA GA10-822k  
OR CADDELL-BURNS 7300-12  
MINIMUM START-UP VOLTAGE = 1.1V  
13  
LT1073  
U
TYPICAL APPLICATIO S  
1.5V to 5V Low Noise Step-Up Converter  
3V to 5V Step-Up Converter with Undervoltage Lockout  
L1†  
68µH  
L1†  
5V OUTPUT  
100mA  
1N5818  
82µH  
1N5818  
5V OUTPUT  
LOCKOUT  
AT 1.8V  
20mV RIPPLE  
P-P  
100k  
100Ω  
680k  
1.5V  
909k*  
I
V
I
V
IN  
LIM  
IN  
LIM  
909k*  
1M*  
100k  
2.2M  
AO  
SW1  
LT1073  
SW1  
LT1073  
FB  
2N3906  
+
+
100µF  
OS-CON  
100µF  
3V  
SET  
FB  
AO  
SET  
GND  
SW2  
GND  
SW2  
100k*  
40.3k*  
40.2k*  
* 1% METAL FILM  
L1 = GOWANDA GA10-682k  
OR CADDELL-BURNS 7300-11  
* 1% METAL FILM  
L1 = GOWANDA GA10-822k  
OR CADDELL-BURNS 7300-12  
1073 TA17  
1073 TA18  
1.5V to 5V Very Low Noise Step-Up Converter  
9V to 5V Reduced Noise Step-Down Converter  
L1†  
L1†  
1N5818  
470µH  
47µH  
+V  
5V  
OUT  
IN  
6.5V TO 12V  
5V OUTPUT  
BATTERY  
10mV RIPPLE  
P-P  
90mA AT 6.5V  
IN  
5mA AT V  
= 1V  
680k  
220Ω  
680k  
1.5V  
909k*  
1N5818  
I
V
SW1  
LIM IN  
I
V
IN  
LIM  
+
909k*  
100µF  
OS-CON  
FB  
SW1  
LT1073  
FB  
+
100µF  
OS-CON  
LT1073  
AO  
GND  
SET  
AO  
SET  
SW2  
GND  
SW2  
40.2k*  
40.2k*  
1073 TA20  
* 1% METAL FILM  
* 1% METAL FILM  
L1 = GOWANDA GA10-472k  
OR CADDELL-BURNS 7300-09  
EFFICIENCY 80%  
I 130µA  
Q
OUTPUT NOISE 100mV  
P-P  
L1 = GOWANDA GA10-473k  
OR CADDELL-BURNS 7300-21  
EFFICIENCY = 83% AT 5mA LOAD  
1073 TA19  
3V to 6V at 1A Step-Up Converter  
1.5V Powered 350ps Risetime Pulse Generator  
INPUT  
3V TO 6V  
(2 LITHIUM CELLS)  
6V OUTPUT  
1A AT  
IN  
L1†  
25µH  
MUR120  
90V BIAS  
V
= 3V  
L1†  
150µH  
0.1µF  
0.1µF  
1.5V  
MUR120  
1M  
I
V
IN  
560k  
549k*  
LIM  
1N5820  
C1  
SW1  
LT1073  
FB  
2pF TO 4pF  
220Ω  
10M  
+
+
2200µF  
1000µF  
I
V
IN  
LIM  
MUR120  
0.1µF  
AO  
SET  
Q1  
SW1  
LT1073  
2N2369  
GND  
SW2  
OUTPUT  
5V INTO  
50PULSE  
WIDTH 1ns  
1N5818  
FB  
51Ω  
20k*  
MTP3055EL  
GND  
SW2  
24k 10k  
50Ω  
2N3906  
L1 = TOKO 262LYF-0095K  
SELECT Q1 AND C1 FOR OPTIMUM RISE AND FALL  
1073 TA22  
5.1k  
* 1% METAL FILM  
L1 = COILTRONICS CTX25-5-52  
1073 TA21  
LOW I (<250µA)  
Q
14  
LT1073  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
2
4
3
0.325  
0.018 ± 0.003  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(0.457 ± 0.076)  
(
)
N8 1098  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 1298  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
3
4
2
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1073  
U
TYPICAL APPLICATIO S  
1.5V Powered Temperature Compensated Crystal Oscillator  
L1†  
820µH  
1.5V  
30.1k* 27.4k*  
150k*  
+
I
V
LIM  
IN  
SW1  
LT1073  
SET  
FB  
LT1017  
150k  
1.5V  
2N3906  
1k  
6.81K*  
LM134-3  
1.5V  
2N3906  
100k  
A0  
SW2  
1N4148  
1.5V  
150k*  
73.2k*  
+
+
39.2k*  
47µF  
47µF  
100Ω  
100k  
10M*  
2N3904  
OUTPUT  
1MHz  
0.05ppm/°C  
100k  
1MHz  
560k  
510pF  
510pF  
0.02µF  
MV209  
* 1% METAL FILM  
2k  
L1 = J.W. MILLER #100267  
= AT CUT –35° 20' ANGLE  
1073 TA23  
1.5V Powered α, β, γParticle Detector  
0.01µF  
T1  
3
10  
1N976  
D1  
D2  
D3  
1M  
3M  
330Ω  
4
1N4148  
NC  
I
V
2N3906  
LIM  
IN  
SW1  
LT1073  
X1  
0.01µF  
5
7
FB  
2N3904  
NC  
NC  
1
2
0.01µF  
1M  
1.5V  
10k  
AO  
SET  
500V  
REGULATED  
GND  
SW2  
10M  
68pF  
600V  
1N5818  
T1 = COILTRONICS CTX10052-1  
X1 = PROJECTS UNLIMITED AT-  
11k OR 8SPEAKER  
1073 TA24  
R1  
500M  
210k  
0.01µF  
U1  
D1, D2, D3 = MUR1100  
R1 = VICTOREEN MOX-300  
U1 = LND-712 CORP., OCEANSIDE, NY  
RELATED PARTS  
PART NUMBER  
LT1307  
DESCRIPTION  
COMMENTS  
Single Cell Micropower 600kHz PWM DC/DC Converter  
3.3V at 75mA from One Cell, MSOP Package  
LT1316  
Burst ModeTM Operation DC/DC with Programmable Current Limit  
2-Cell Micropower DC/DC with Low-Battery Detector  
Single Cell Micropower DC/DC Converter  
1.5V Minimum, Precise Control of Peak Current Limit  
3.3V at 200mA from Two Cells, 600kHz Fixed Frequency  
3V at 30mA from 1V, 1.7MHz Fixed Frequency  
–5V at 150mA from 5V Input, Tiny SOT-23 Package  
5V at 200mA from 3.3V Input, Tiny SOT-23 Package  
20V at 12mA from 2.5V, Tiny SOT-23 Package  
–15V at 12mA from 2.5V, Tiny SOT-23 Package  
5V at 450mA from 3.3V Input, Tiny SOT-23 Package  
LT1317  
LT1610  
LT1611  
Inverting 1.4MHz Switching Regulator in 5-Lead SOT-23  
1.4MHz Switching Regulator in 5-Lead SOT-23  
LT1613  
LT1615  
Micropower Constant Off-Time DC/DC Converter in 5-Lead SOT-23  
Micropower Inverting DC/DC Converter in 5-Lead SOT-23  
LT1617  
LT1930/LT1930A 1.2MHz/2.2MHz, 1A Switching Regulator in 5-Lead SOT-23  
LT1931/LT1931A 1.2MHz/2.2MHz, 1A Inverting Switching Regulator in 5-Lead SOT-23 –5V at 350mA from 5V Input, Tiny SOT-23 Package  
Burst Mode operation is a trademark of Linear Technology Corporation.  
1073fa LT/TP 0301 2K REV A • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2000  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1073CS8-5#TRPBF

暂无描述
Linear

LT1073_1

Micropower DC/DC Converter Adjustable and Fixed 5V, 12V
Linear

LT1074

Step-Down Switching Regulator
Linear

LT1074C/D

Current-Mode SMPS Controller
ETC

LT1074CK

Step-Down Switching Regulator
Linear

LT1074CT

Step-Down Switching Regulator
Linear

LT1074CT#PBF

LT1074 - Step-Down Switching Regulator; Package: TO-220; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1074CT7

Step-Down Switching Regulator
Linear

LT1074CT7#PBF

LT1074 - Step-Down Switching Regulator; Package: TO-220; Pins: 7; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1074CV

Current-Mode SMPS Controller
ETC

LT1074CY

Current-Mode SMPS Controller
ETC

LT1074EK

Current-Mode SMPS Controller
ETC