LT1019ACN8-5#PBF [Linear]

LT1019 - Precision Reference; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C;
LT1019ACN8-5#PBF
型号: LT1019ACN8-5#PBF
厂家: Linear    Linear
描述:

LT1019 - Precision Reference; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C

光电二极管
文件: 总12页 (文件大小:159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1019  
Precision Reference  
U
FEATURES  
DESCRIPTIO  
Tight Initial Output Voltage: <0.05%  
The LT®1019 is a third generation bandgap voltage refer-  
ence utilizing thin film technology and a greatly improved  
curvature correction technique. Wafer level trimming of  
both reference and output voltage combines to produce  
very low TC and tight initial output voltage tolerance.  
Ultralow Drift: 3ppm/°C Typical  
Series or Shunt Operation  
Curvature Corrected  
Ultrahigh Line Rejection: 0.5ppm/V  
Low Output Impedance: 0.02Ω  
Plug-In Replacement for Present References  
Available at 2.5V, 4.5V, 5V, and 10V  
100% Noise Tested  
Temperature Output  
Industrial Temperature Range in SO-8  
Available in 8-Lead N8 and S8 Packages  
The LT1019 can both sink and source up to 10mA and can  
be used in either the series or shunt mode, allowing the  
reference to operate with positive or negative output  
voltages without external components. Minimum input/  
outputvoltageislessthan1Vintheseriesmode,providing  
improved tolerance of low line conditions and excellent  
line regulation.  
U
APPLICATIO S  
The LT1019 is available in four voltages: 2.5V, 4.5V, 5V  
and 10V. It is a direct replacement for most bandgap  
references presently available including AD580, AD581,  
REF-01, REF-02, MC1400, MC1404 and LM168.  
Negative Shunt References  
A/D and D/A Converters  
Precision Regulators  
Constant Current Sources  
V/F Converters  
Bridge Excitation  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATION  
Output Voltage Drift  
Ultralinear Strain Gauge  
15V  
357*  
0.5W  
5V  
1.003  
R3  
10ppm/°C  
1.002  
1.001  
1.000  
IN  
OUT  
2M  
FULL TEMP RANGE “BOX”  
350Ω  
LT1019-5  
GND  
BRIDGE  
R2  
20k  
LT1019  
CURVE  
+
A1†  
LT1637  
A2  
LT1001  
R4  
20k  
GAIN = 100  
+
0.999  
0.998  
0.997  
5ppm/°C  
0°C TO 70°C “BOX”  
ACTIVE  
ELEMENT  
R5  
UNCOMPENSATED  
“STANDARD” BANDGAP  
DRIFT CURVE  
2M  
R6**  
2M  
50  
TEMPERATURE (˚C)  
100 125  
–50 –25  
0
25  
75  
LT1019 • TA01  
–5V  
357*  
0.5W  
*REDUCES REFERENCE AND AMPLIFIER  
1019 TA02  
LOADING TO 0.  
**IF R6 = R3, BRIDGE IS NOT LOADED BY R2 AND R4.  
–15V  
A1 V AND DRIFT ARE NOT CRITICAL BECAUSE A2  
OS  
ACTS AS A DIFFERENTIAL AMPLIFIER.  
1019fd  
1
LT1019  
ABSOLUTE AXI U RATI GS  
Input Voltage .......................................................... 40V  
Output Voltage (Note 2)  
LT1019-5, LT1019-10 ........................................ 16V  
LT1019-2.5, LT1019-4.5 ...................................... 7V  
Output Short-Circuit Duration (Note 2)  
W W W  
U
(Note 1)  
Specified Temperature Range  
Commercial ............................................. 0°C to 70°C  
Industrial ............................................ 40°C to 85°C  
Military ............................................. 55°C to 125°C  
Trim Pin Voltage ................................................... ±30V  
Temp Pin Voltage ..................................................... 5V  
Storage Temperature Range (Note 11) – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
VIN < 20V.................................................... Indefinite  
20V VIN 35V ............................................. 10 sec  
W U  
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
DNC*  
TOP VIEW  
TOP VIEW  
8
DNC*  
INPUT  
TEMP  
GND  
1
2
3
4
DNC*  
8
7
6
5
1
2
3
4
8
7
6
5
DNC*  
INPUT  
TEMP  
GND  
DNC*  
DNC*  
INPUT  
TEMP  
1
3
7
DNC*  
OUTPUT  
TRIM  
DNC*  
DNC*  
6
2
OUTPUT  
TRIM  
OUTPUT  
TRIM  
5
4
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
GND (CASE)  
8-LEAD PLASTIC SO  
H PACKAGE  
8-LEAD TO-5 METAL CAN  
*INTERNALLY CONNECTED. DO NOT  
CONNECT EXTERNALLY  
*INTERNALLY CONNECTED. DO NOT  
CONNECT EXTERNALLY.  
*INTERNALLY CONNECTED. DO NOT  
CONNECT EXTERNALLY.  
TJMAX = 100°C, θJA = 130°C/ W  
TJMAX = 100°C, θJA = 130°C/ W  
TJMAX = 150°C, θJA = 150°C/ W, θJC = 45°C/W  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
S8 PART  
MARKING  
ORDER PART  
NUMBER  
LT1019CH-2.5  
LT1019ACN8-2.5  
LT1019ACS8-2.5  
LT1019ACS8-5  
LT1019AIS8-2.5  
LT1019AIS8-5  
LT1019CS8-2.5  
LT1019CS8-4.5  
LT1019CS8-5  
LT1019CS8-10  
LT1019IS8-2.5  
LT1019IS8-5  
019A25  
1019A5  
19AI25  
019AI5  
1925  
LT1019ACH-2.5  
LT1019CN8-5  
LT1019CN8-10  
LT1019IN8-2.5  
LT1019IN8-4.5  
LT1019IN8-5  
LT1019IN8-10  
LT1019ACH-4.5 LT1019CH-4.5  
LT1019ACN8-4.5  
LT1019ACN8-5  
LT1019ACN8-10  
LT1019CN8-2.5  
LT1019CN8-4.5  
LT1019CH-5  
LT1019ACH-5  
LT1019ACH-10 LT1019CH-10  
LT1019MH-2.5  
LT1019AMH-2.5  
LT1019AMH-4.5 LT1019MH-4.5  
1945  
LT1019MH-5  
1905  
1910  
19I25  
19I05  
LT1019AMH-5  
LT1019AMH-10 LT1019MH-10  
OBSOLETE  
CONSIDER THE N8 OR S8 FOR  
ALTERNATE SOURCES.  
1019fd  
2
LT1019  
U
AVAILABLE OPTIO S  
PACKAGE TYPE  
OUTPUT  
VOLTAGE  
(V)  
TEMPERATURE  
COEFFICIENT  
TEMPERATURE  
C)  
ACCURACY  
(%)  
TO-5  
H8  
SO-8  
S8  
PDIP-8  
N8  
(
°
(ppm/°C)  
2.5  
0 to 70  
40 to 85  
55 to 125  
0 to 70  
0.05  
0.2  
5
20  
LT1019ACH-2.5  
LT1019CH-2.5  
LT1019ACS8-2.5  
LT1019CS8-2.5  
LT1019ACN8-2.5  
LT1019CN8-2.5  
0.05  
0.2  
10  
20  
LT1019AIS8-2.5  
LT1019IS8-2.5  
LT1019IN8-2.5  
0.05  
0.2  
10  
25  
LT1019AMH-2.5  
LT1019MH-2.5  
4.5  
0.05  
0.2  
5
20  
LT1019ACH-4.5  
LT1019CH-4.5  
LT1019ACN8-4.5  
LT1019CN8-4.5  
LT1019CS8-4.5  
40 to 85  
0.2  
20  
LT1019IN8-4.5  
55 to 125  
0.05  
0.2  
10  
25  
LT1019AMH-4.5  
LT1019MH-4.5  
5
0 to 70  
40 to 85  
55 to 125  
0 to 70  
0.05  
0.2  
5
20  
LT1019ACH-5  
LT1019CH-5  
LT1019ACS8-5  
LT1019CS8-5  
LT1019ACN8-5  
LT1019CN8-5  
0.05  
0.2  
10  
20  
LT1019AIS8-5  
LT1019IS8-5  
LT1019IN8-5  
0.05  
0.2  
10  
25  
LT1019AMH-5  
LT1019MH-5  
10  
0.05  
0.2  
5
20  
LT1019ACH-10  
LT1019CH-10  
LT1019ACN8-10  
LT1019CN8-10  
LT1019CS8-10  
40 to 85  
0.2  
20  
LT1019IN8-10  
55 to 125  
0.05  
0.2  
10  
25  
LT1019AMH-10  
LT1019MH-10  
ELECTRICAL CHARACTERISTICS  
VIN = 15V, IOUT = 0 unless otherwise noted.  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
A
LT1019A  
TYP  
LT1019  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Output Voltage Tolerance  
0.02  
0.05  
0.02  
0.2  
%
TC  
Output Voltage  
Temperature Coefficient  
(Note 3)  
LT1019C (0°C to 70°C)  
LT1019I (40°C to 85°C)  
LT1019M (55°C to 125°C)  
3
3
5
5
10  
10  
5
5
8
20  
20  
25  
ppm/°C  
ppm/°C  
ppm/°C  
V  
V  
Line Regulation (Note 4)  
(V  
+ 1.5V) V 40V  
0.5  
1.0  
3
5
0.5  
1.0  
3
5
ppm/V  
ppm/V  
OUT  
OUT  
IN  
IN  
RR  
Ripple Rejection  
50Hz f 400Hz  
90  
84  
110  
90  
84  
110  
dB  
dB  
1019fd  
3
LT1019  
ELECTRICAL CHARACTERISTICS  
VIN = 15V, IOUT = 0 unless otherwise noted.  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
A
LTC1019A  
TYP  
LTC1019  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
0 I 10mA (Note 5)  
MIN  
MAX  
MIN  
MAX  
UNITS  
V  
Load Regulation Series  
Mode (Notes 4, 5)  
0.02  
0.05  
0.08  
0.02  
0.05  
0.08  
mV/mA ()  
mV/mA ()  
OUT  
OUT  
OUT  
I  
Load Regulation,  
Shunt Mode  
1mA I  
10mA (Notes 5, 6)  
SHUNT  
2.5V, 4.5V, 5V  
10V  
0.1  
0.4  
0.8  
0.1  
0.4  
0.8  
mV/mA ()  
mV/mA ()  
Thermal Regulation (Note 7) P = 200mW, t = 50ms  
0.1  
0.5  
0.1  
0.5  
ppm/mW  
I
Quiescent Current  
Series Mode  
0.65  
1.0  
1.3  
0.65  
1.2  
1.5  
mA  
mA  
Q
Minimum Shunt Current  
(Note 8)  
0.5  
0.9  
0.8  
0.5  
0.9  
0.8  
mA  
Minimum Input/Output  
Voltage Differential  
I
I
1mA  
= 10mA  
1.1  
1.3  
1.1  
1.3  
V
V
OUT  
OUT  
Trim Range  
LT1019-2.5  
LT1019-5  
LT1019-10  
±3.5  
±3.5 5, 13  
±3.5 5, 27  
±6  
±3.5  
±3.5 5, 13  
±3.5 5, 27  
±6  
%
%
%
I
Short-Circuit Current  
Output Connected to GND  
2V V 35V  
15  
10  
25  
50  
4
15  
10  
25  
50  
4
mA  
mA  
SC  
IN  
e
Output Voltage Noise  
(Note 10)  
10Hz f 1kHz  
0.1Hz f 10Hz  
2.5  
2.5  
2.5  
2.5  
ppm (RMS)  
ppm (P-P)  
n
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: These are high power conditions and are therefore guaranteed  
only at temperatures equal to or below 70°C. Input is either floating, tied to  
output or held higher than output.  
Note 7: Thermal regulation is caused by die temperature gradients created  
by load current or input voltage changes. This effect must be added to  
normal line or load regulation.  
Note 8: Minimum shunt current is measured with shunt voltage held  
20mV below the value measured at 1mA shunt current.  
Note 3: Output voltage drift is measured using the box method. Output  
Note 9: Minimum input/output voltage is measured by holding input  
voltage 0.5V above the nominal output voltage, while measuring  
voltage is recorded at T , 25°C and T  
. The lowest of these three  
MIN  
MAX  
readings is subtracted from the highest and the resultant difference is  
V
– V  
.
IN  
OUT  
divided by (T – T ).  
MAX  
MIN  
Note 10: RMS noise is measured with a single pole highpass filter at 10Hz  
and a 2-pole lowpass filter at 1kHz. The resulting output is full-wave  
rectified and then integrated for a fixed period, making the final reading an  
average as opposed to RMS. A correction factor of 1.1 is used to convert  
from average to RMS, and a second correction of 0.88 is used to correct  
the nonideal bandpass of the filters.  
Note 4: Line regulation and load regulation are measured on a pulse basis  
with low duty cycle. Effects due to die heating must be taken into account  
separately. See thermal regulation and application section.  
Note 5: Load regulation is measured at a point 1/8" below the base of the  
package with Kelvin contacts.  
Note 11: If the part is stored outside of the specified temperature range,  
the output may shift due to hysteresis.  
Note 6: Shunt regulation is measured with the input floating. This  
parameter is also guaranteed with the input connected (V – V ) > 1V,  
IN  
OUT  
0mA I  
10mA. Shunt and sink current flow into the output.  
SINK  
1019fd  
4
LT1019  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Quiescent Current  
(LT1019-4.5/LT1019-5)  
Quiescent Current (LT1019-2.5)  
Quiescent Current (LT1019-10)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
125°C  
25°C  
125°C  
25°C  
125°C  
25°C  
–55°C  
–55°C  
–55°C  
15 20  
15 20  
0
5
10  
25 30 35 40 45  
INPUT VOLTAGE (V)  
0
5
10  
25 30 35 40 45  
15 20  
INPUT VOLTAGE (V)  
0
5
10  
25 30 35 40 45  
INPUT VOLTAGE (V)  
LT1019 • TPC02  
LT1019 • TPC03  
LT1019 • TPC01  
Minimum Input/Output Voltage  
Differential  
Load Regulation  
Ripple Rejection  
120  
110  
100  
90  
10  
7.5  
5.0  
2.5  
0
2.0  
1.5  
T
= 25°C  
T
= 25°C  
J
J
LT1019-10  
LT1019-10  
LT1019-4.5/LT1019-5  
1.0  
LT1019-4.5  
LT1019-5  
LT1019-2.5  
0.5  
LT1019-2.5  
0
80  
T
= 125°C  
T = –55°C  
J
J
–0.5  
–1.0  
–1.5  
–2.0  
70  
T
= 25°C  
J
60  
50  
40  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
INPUT/OUTPUT VOLTAGE (V)  
–10 –8 –6 –4 –2  
SINKING  
0
2
4
6
8
10  
10  
100  
1k  
10k  
100k  
1M  
SOURCING  
FREQUENCY (Hz)  
OUTPUT CURENT (mA)  
LT1019 • TPC04  
LT1019 • TPC06  
LT1019 • TPC05  
Shunt Mode Characteristics  
(LT1019-2.5)  
Shunt Mode Characteristics  
(LT1019-5)  
Shunt Mode Characteristics  
(LT1019-10)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
INPUT OPEN  
INPUT OPEN  
INPUT OPEN  
T
= 125°C  
J
T
= 125°C  
J
T
= 125°C  
J
T
= 25°C  
J
T
J
= 25°C  
T
= 25°C  
J
T
= –55°C  
J
T
J
= –55°C  
T
2
= –55°C  
J
0
2.0  
3.0 3.5  
0
7
0
14  
0.5 1.0 1.5  
2.5  
4.0  
1
2
3
4
5
6
8
4
6
8
10 12  
16  
OUTPUT-TO-GROUND VOLTAGE (V)  
OUTPUT-TO-GROUND VOLTAGE (V)  
OUTPUT-TO-GROUND VOLTAGE (V)  
LT1019 • TPC07  
LT1019 • TPC08  
LT1019 • TPC09  
1019fd  
5
LT1019  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
LT1019-2.5* Stability with  
Output Capacitance  
Temp Pin Voltage  
Line Regulation  
140  
120  
100  
80  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
10  
1
I
OUT  
J
T
= 25°C  
REGION OF POSSIBLE  
INSTABILITY  
60  
0.1  
LT1019-10  
LT1019-5  
40  
20  
0.01  
0.001  
0.0001  
LT1019-2.5  
0
–10  
–20  
–30  
0
20  
30 35  
5
10 15  
25  
40  
–50  
0
25  
50  
75 100 125  
–25  
20 15 10  
5
0
5
10 15 20  
INPUT VOLTAGE (V)  
SINK CURRENT  
SOURCE CURRENT  
JUNCTION TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
LT1019 • TPC11  
LT1019 • TPC10  
1019 G12  
*LT1019-4.5/LT1019-5/LT1019-10 ARE STABLE  
WITH ALL LOAD CAPACITANCE.  
W
BLOCK DIAGRA  
R1  
LT1019-2.5 = 11k  
LT1019-4.5 = 13.9k  
LT1019-5 = 16k  
LT1019-10 = 37.1k  
V
IN  
R3  
80k  
+
TRIM  
R2  
V
OUT  
1.188V  
LT1019-4.5, LT1019-5,  
LT1019-10 = 5k  
LT1019-2.5 = 10k  
GND  
LT1019 • BD  
U U  
W
U
APPLICATIO S I FOR ATIO  
Line and Load Regulation  
Two separate thermal effects are evident in monolithic  
circuits. One is a gradient effect, where power dissipation  
on the die creates temperature gradients. These gradients  
cancauseoutputvoltageshiftseveniftheoveralltempera-  
turecoefficientofthereferenceiszero.TheLT1019,unlike  
previous references, specifies thermal regulation caused  
by die temperature gradients.The specification is  
0.5ppm/mW. To calculate the effect on output voltage,  
simply multiply the change in device power dissipation by  
1019fd  
Line regulation on the LT1019 is nearly perfect. A 10V  
changeininputvoltagecausesatypicaloutputshiftofless  
than5ppm.Loadregulation(sourcingcurrent)isnearlyas  
good. A 5mA change in load current shifts output voltage  
byonly100µV. Theseareelectrical effects, measuredwith  
low duty cycle pulses to eliminate heating effects. In real  
world applications, the thermal effects of load and line  
changes must be considered.  
6
LT1019  
U U  
W
U
APPLICATIO S I FOR ATIO  
the thermal regulation specification. Example: a 10V  
device with a nominal input voltage of 15V and load  
current of 5mA. Find the effect of an input voltage change  
of 1V and a load current change of 2mA.  
Warm-up drift = [(VIN)(IQ) + (VIN – VOUT)(ILOAD)]  
[(θJA)(TC)]  
with IQ (quiescent current) = 0.6mA,  
Warm-up drift = [(15V)(0.6mA) + (5V)(5mA)]  
[(150°C/W)(25ppm/°C)]  
P (line change) = (VIN)(ILOAD) = (1V)(5mA) = 5mW  
VOUT = (0.5ppm/mW)(5mW) = 2.5ppm  
= 127.5ppm  
P (load change) = (ILOAD)(VIN – VOUT  
)
Note that 74% of the warm-up drift is due to load current  
times input/output differential. This emphasizes the  
importance of keeping both these numbers low in critical  
applications.  
= (2mA)(5V) = 10mW  
VOUT = (0.5ppm/mW)(10mW) = 5ppm  
Even though these effects are small, they should be taken  
intoaccountincriticalapplications, especiallywhereinput  
voltage or load current is high.  
Note that line regulation is now affected by reference  
output impedance. R1 should have a wattage rating high  
enough to withstand full input voltage if output shorts  
must be tolerated. Even with load currents below 10mA,  
R1 can be used to reduce power dissipation in the LT1019  
for lower warm-up drift, etc.  
The second thermal effect is overall die temperature  
change. The magnitude of this change is the product of  
change in power dissipation times the thermal resistance  
(θJA) of the IC package (100°C/W to 150°C/W). The  
effect on the reference output is calculated by multiplying  
dietemperaturechangebythetemperaturedriftspecifica-  
tion of the reference. Example: same conditions as above  
with θJA = 150°C/W and an LT1019 with 20ppm/°C drift  
specification.  
Output Trimming  
Output voltage trimming on the LT1019 is nominally  
accomplished with a potentiometer connected from out-  
put to ground with the wiper tied to the trim pin. The  
LT1019wasmadecompatiblewithexistingreferences, so  
the trim range is large: +6%, 6% for the LT1019-2.5,  
+5%, 13% for the LT1019-5, and +5%, 27% for the  
LT1019-10. This large trim range makes precision trim-  
ming rather difficult. One solution is to insert resistors in  
series with both ends of the potentiometer. This has the  
disadvantage of potentially poor tracking between the  
fixedresistorsandthepotentiometer. Asecondmethodof  
reducing trim range is to insert a resistor in series with the  
wiper of the potentiometer. This works well only for very  
small trim range because of the mismatch in TCs between  
the series resistor and the internal thin film resistors.  
These film resistors can have a TC as high as 500ppm/°C.  
That same TC is then transferred to the change in output  
voltage: a 1% shift in output voltage causes a  
(500ppm)(1%) = 5ppm/°C change in output voltage drift.  
P (line change) = 5mW  
VOUT = (5mW)(150°C/W)(20ppm/°C)  
= 15ppm  
P (load change) = 10mW  
VOUT = (10mW)(150°C/W)(20ppm/°C)  
= 30ppm  
These calculations show that thermally induced output  
voltage variations can easily exceed the electrical effects.  
In critical applications where shifts in power dissipation  
are expected, a small clip-on heat sink can significantly  
improve these effects by reducing overall die temperature  
change. Alternately, an LT1019A can be used with four  
times lower TC. If warm-up drift is of concern, these  
measures will also help. With warm-up drift, total device  
power dissipation must be considered. In the example  
given, warm-up drift (worst case) is equal to:  
1019fd  
7
LT1019  
APPLICATIO S I FOR ATIO  
U U  
W
U
The worst-case error in initial output voltage for the  
LT1019 is 0.2%, so a series resistor is satisfactory if the  
output is simply trimmed to nominal value. The maximum  
TC shift expected would be 1ppm/°C.  
capacitance and load. The 2.5V device can oscillate when  
sinking currents between 1mA and 6mA for load capaci-  
tance between 400pF and 2µF (see Figure 1).  
If output bypassing is desired to reduce high frequency  
output impedance, keep in mind that loop phase margin is  
significantlyreducedforoutputcapacitorsbetween500pF  
and 1µF if the capacitor has low ESR (Effective Series  
Resistance). This can make the output “ring” with tran-  
Using the Temp Pin  
The LT1019 has a TEMP pin like several other bandgap  
references. The voltage on this pin is directly propor-  
tional to absolute temperature (PTAT) with a slope of  
approximately2.1mV/°C.Roomtemperaturevoltageis  
therefore approximately (295°K)(2.1mV/°C) = 620mV.  
Thisvoltagevarieswithprocessparametersandshould  
not be used to measure absolute temperature, but  
ratherrelativetemperaturechanges.Previousbandgap  
references have been very sensitive to any loading on  
the TEMP pin because it is an integral part of the  
reference “core” itself. The LT1019 “taps” the core at a  
special point which has much less effect on the refer-  
ence. The relationship between TEMP pin loading and  
a change in reference output voltage is less than  
0.05%/µA,abouttentimesimprovementoverprevious  
references.  
V
V
IN  
IN  
2TO 5Ω  
LT1019  
LT1019  
2TO 5Ω  
+
2µF TO 10µF  
TANTALUM  
+
2µF  
TANTALUM  
1019 F01  
(a)  
(b)  
Figure 1. Output Bypassing  
sient loads. The best transient load response is obtained  
bydeliberatelyaddingaresistortoincreaseESRasshown  
in Figure 1.  
Use configuration (a) if DC voltage error cannot be com-  
promised as load current changes. Use (b) if absolute  
minimum peak perturbation at the load is needed. For best  
transient response, the output can be loaded with 1mA  
DC current.  
Output Bypassing  
The LT1019 is designed to be stable with a wide range of  
load currents and output capacitors. The 4.5V, 5V, and  
10V devices do not oscillate under any combination of  
U
TYPICAL APPLICATIO S  
Wide Range Trim ±5%  
Narrow Trim Range (±0.2%)  
V
OUT  
OUT  
V
OUT  
OUT  
V
IN  
IN  
V
IN  
IN  
R2*  
1.5M  
LT1019  
TRIM  
GND  
LT1019  
TRIM  
GND  
R1  
25k  
R1  
100k  
1019 TA03  
*INCREASE TO 4.7M FOR LT1019A (±0.05%)  
1019 TA05  
1019fd  
8
LT1019  
U
TYPICAL APPLICATIO S  
Trimming LT1019-5 Output to 5.120V  
Trimming LT1019-10 Output to 10.240V  
V
V
OUT  
OUT  
OUT  
OUT  
90.9k  
1%  
41.2k  
V
IN  
V
IN  
LT1019-5  
TRIM  
1%  
IN  
IN  
LT1019-10  
TRIM  
GND  
5k*  
±1% TRIM  
5k*  
±1% TRIM  
GND  
4.02k  
1%  
4.02k  
1%  
*LOW TC CERMET  
1019 TA06  
*LOW TC CERMET  
1019 TA04  
Negative Series Reference  
Precision 1µA Current Source  
15V  
+
V
11.5k  
1%  
OUT IN  
LT1019  
OUT  
GND  
R1*  
LT1019-2.5  
TRIM  
IN  
5k*  
D1*  
8.25k  
1%  
GND  
R2*  
–V  
–V  
AT 50mA  
IN  
REF  
Q1  
2.49M  
1%  
2N2905  
V
OUT  
LT1012  
+
±11V COMPLIANCE  
V
– V  
REF  
V
– 5V  
+
*R1 =  
, R2 =  
, D1 = V  
+ 5V  
1019 TA10  
REF  
1mA  
2mA  
I
= 1µA  
OUT  
Z
1011Ω  
*LOW TC CERMET, TRIM RANGE = ±1.5%  
1019 TA07  
OUT  
Output Current Boost with Current Limit  
+
V
(V  
+ 2.8V)  
OUT  
GLOWS IN  
CURRENT LIMIT  
(DO NOT OMIT)  
R1  
220Ω  
LED  
8.2Ω  
2N2905  
IN  
LT1019  
OUT  
GND  
I
100mA  
LOAD  
2µF SOLID TANTALUM  
1019 TA08  
1019fd  
9
LT1019  
W
W
SCHE ATIC DIAGRA  
1019fd  
10  
LT1019  
U
PACKAGE DESCRIPTIO  
H Package  
8-Lead TO-5 Metal Can (0.200 PCD)  
(LTC DWG # 05-08-1320)  
0.335 – 0.370  
(8.509 – 9.398)  
DIA  
0.027 – 0.045  
(0.686 – 1.143)  
45°TYP  
PIN 1  
0.305 – 0.335  
(7.747 – 8.509)  
0.040  
0.028 – 0.034  
(0.711 – 0.864)  
0.050  
(1.016)  
MAX  
0.200  
(5.080)  
0.165 – 0.185  
(1.270)  
MAX  
(4.191 – 4.699)  
TYP  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
0.500 – 0.750  
(12.700 – 19.050)  
0.110 – 0.160  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
0.010 – 0.045*  
(0.254 – 1.143)  
0.016 – 0.021**  
(0.406 – 0.533)  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND 0.045" BELOW THE REFERENCE PLANE  
0.016 – 0.024  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
(0.406 – 0.610)  
H8(TO-5) 0.200 PCD 1197  
OBSOLETE  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
8
1
7
6
5
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
2
4
3
0.325  
0.018 ± 0.003  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(0.457 ± 0.076)  
(
)
N8 1098  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 ±.005  
.160 ±.005  
.050 BSC  
.010 – .020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
0°– 8° TYP  
(0.203 – 0.254)  
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
(MILLIMETERS)  
1. DIMENSIONS IN  
.030 ±.005  
TYP  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
1
2
3
4
RECOMMENDED SOLDER PAD LAYOUT  
SO8 0303  
1019fd  
I
nformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1019  
U
TYPICAL APPLICATION  
Negative 10V Reference for CMOS DAC  
OUT  
59k  
1%  
LT1019-10  
TRIM  
GND  
5k*  
FB  
I
30pF  
5.76k  
1%  
+
LTC1595  
OUT  
REF  
V
OUT  
LT1007  
1.2k  
*LOW TC CERMET, TRIM RANGE = ±1.5%  
–15V  
1019 TA09  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1027  
Precision 5V Reference  
Lowest TC, High Accuracy, Low Noise, Zener Based  
5V and 10V Zener Based, 5ppm/°C, SO-8 Package  
Bandgap, 130µA Supply Current, 10ppm/°C, Available in SOT-23 Package  
Bandgap 0.05%, 10ppm/°C, 10µA Supply Current  
0.15% Max, 6.5µA Supply Current  
LT1236  
Precision Reference  
LT1460  
Micropower Precision Series Reference  
Micropower Precision Shunt Reference  
Micropower Low Dropout Reference  
Micropower Low Dropout Reference  
LT1634  
LTC1798  
LT1461  
3ppm/°C, 0.04%, 50µA Supply Current  
1019fd  
LT/TP 0205 1K REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 1993  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1019ACS8-2.5

Precision Reference
Linear

LT1019ACS8-2.5#TR

LT1019 - Precision Reference; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1019ACS8-2.5#TRPBF

LT1019 - Precision Reference; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1019ACS8-5

Precision Reference
Linear

LT1019ACS8-5#TR

LT1019 - Precision Reference; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1019ACS8-5#TRPBF

LT1019 - Precision Reference; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1019AIS8-2.5

Precision Reference
Linear

LT1019AIS8-2.5#PBF

LT1019 - Precision Reference; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1019AIS8-2.5#TR

LT1019 - Precision Reference; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1019AIS8-2.5#TRPBF

LT1019 - Precision Reference; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1019AIS8-5

Precision Reference
Linear

LT1019AIS8-5#PBF

LT1019 - Precision Reference; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear