LT1001AM [Linear]

Precision Operational Amplifier; 精密运算放大器器
LT1001AM
型号: LT1001AM
厂家: Linear    Linear
描述:

Precision Operational Amplifier
精密运算放大器器

运算放大器
文件: 总12页 (文件大小:330K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1001  
Precision Operational  
Amplifier  
U
FEATURES  
DESCRIPTION  
The LT®1001 significantly advances the state-of-the-  
art of precision operational amplifiers. In the design,  
processing, and testing of the device, particular atten-  
tion has been paid to the optimization of the entire  
distribution of several key parameters. Consequently,  
the specifications of the lowest cost, commercial tem-  
perature device, the LT1001C, have been dramatically  
improvedwhencomparedtoequivalentgradesofcom-  
peting precision amplifiers.  
Guaranteed Low Offset Voltage  
LT1001AM  
LT1001C  
Guaranteed Low Drift  
LT1001AM  
LT1001C  
Guaranteed Low Bias Current  
LT1001AM  
LT1001C  
Guaranteed CMRR  
LT1001AM  
LT1001C  
Guaranteed PSRR  
LT1001AM  
LT1001C  
Low Power Dissipation  
LT1001AM  
LT1001C  
Low Noise 0.3µVP-P  
15µV max  
60µV max  
0.6µV/°C max  
1.0µV/°C max  
2nA max  
4nA max  
Essentially, the input offset voltage of all units is less  
than 50µV (see distribution plot below). This allows the  
LT1001AM/883 to be specified at 15µV. Input bias and  
offset currents, common-mode and power supply re-  
jection of the LT1001C offer guaranteed performance  
which were previously attainable only with expensive,  
selected grades of other devices. Power dissipation is  
nearly halved compared to the most popular precision  
op amps, without adversely affecting noise or speed  
performance. A beneficial by-product of lower dissipa-  
tion is decreased warm-up drift. Output drive capability  
of the LT1001 is also enhanced with voltage gain  
guaranteed at 10 mA of load current. For similar perfor-  
mance in a dual precision op amp, with guaranteed  
matchingspecifications, seetheLT1002. Shownbelow  
is a platinum resistance thermometer application.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
114dB min  
110dB min  
110dB min  
106dB min  
75mW max  
80mW max  
U
APPLICATIONS  
Thermocouple amplifiers  
Strain gauge amplifiers  
Low level signal processing  
High accuracy data acquisition  
Linearized Platinum Resistance Thermometer  
Typical Distribution  
of Offset Voltage  
with ±0.025°C Accuracy Over 0 to 100°C  
1MEG.**  
+15  
VS = ±15V, TA = 25°C  
R plat.  
20k  
1k= 0°C  
330k*  
GAIN  
TRIM  
954 UNITS  
200  
1.2k**  
FROM THREE RUNS  
10k*  
2
3
1 µf  
150  
+
2
6
LT1001  
6
10k*  
LT1001  
OUTPUT  
100  
3
LINEARITY  
TRIM  
0 TO 10V =  
0 TO 100°C  
+
200Ω  
50  
0
90k*  
20k  
10k*  
LM129  
OFFSET TRIM  
–60 –40  
–20  
0
20  
40  
60  
*
ULTRONIX 105A WIREWOUND  
Trim sequence: trim offset (°0C = 1000.0),  
trim linearity (°3C5= 1138.7), trim gain  
(1°0C0= 1392.6). Repeat until all three  
points are fixed wi±th0.025°C.  
INPUT OFFSET VOLTAGE (MICROVOLTS)  
** 1% FILM  
1001 TA02  
PLATINUM RTD  
118MF (ROSEMOUNT, INC.)  
1001 TA01  
1
LT1001  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
Supply Voltage ...................................................... ±22V  
Differential Input Voltage ...................................... ±30V  
Input Voltage ........................................................ ±22V  
Output Short Circuit Duration ......................... Indefinite  
Operating Temperature Range  
LT1001AM/LT1001M ....................... 55°C to 150°C  
LT1001AC/LT1001C .............................. 0°C to 125°C  
Storage: All Devices.......................... 65°C to 150°C  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
TOP VIEW  
OFFSET ADJUST  
ORDER PART NUMBER  
8
V+  
OUT  
7
5
1
LT1001AMH/883  
LT1001MH  
LT1001ACH  
LT1001CH  
+
–IN  
2
6
3
NC  
4
+IN  
V– (CASE)  
H PACKAGE  
METAL CAN  
LT1001AMJ8/883  
LT1001MJ8  
LT1001ACJ8  
LT1001CJ8  
LT1001ACN8  
LT1001CN8  
LT1001CS8  
TOP VIEW  
V
V
OS  
OS  
TRIM  
–IN  
+IN  
V–  
1
2
3
4
TRIM  
8
+
7
6
5
V+  
OUT  
NC  
J8 PACKAGE  
8 PIN HERMETIC DIP 8 PIN PLASTIC DIP  
N8 PACKAGE  
S8 PACKAGE  
8 PIN PLASTIC SO  
S8 PART MARKING  
1001  
VS = ±15V, TA = 25°C, unless otherwise noted  
ELECTRICAL CHARACTERISTICS  
LT1001AM/883  
LT1001AC  
LT1001M/LT1001C  
SYMBOL PARAMETER  
CONDITIONS  
LT1001AM/883  
LT1001AC  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
7
15  
Note 1  
V
Input Offset Voltage  
18  
60  
µV  
OS  
10  
25  
V  
Time  
Long Term Input Offset Voltage  
Stability  
OS  
Notes 2 and 3  
0.2  
0.3  
1.0  
2.0  
0.3  
0.4  
1.5  
3.8  
µV/month  
I
Input Offset Current  
Input Bias Current  
nA  
nA  
OS  
b
I
±0.5  
0.3  
±2.0  
0.6  
±0.7  
0.3  
±4.0  
0.6  
e
e
Input Noise Voltage  
Input Noise Voltage Density  
0.1Hz to 10Hz (Note 2)  
µV  
p-p  
n
n
f = 10Hz (Note 5)  
10.3  
9.6  
18.0  
11.0  
10.5  
9.8  
18.0  
11.0  
O
nVHz  
f = 1000Hz (Note 2)  
O
A
Large Signal Voltage Gain  
R 2k, V = ±12V  
450  
300  
800  
500  
400  
250  
800  
500  
VOL  
L
O
V/mV  
R 1kV = ±10V  
L
O
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Resistance Differential Mode  
Input Voltage Range  
V
= ±13V  
114  
110  
30  
126  
123  
100  
110  
106  
15  
126  
123  
80  
dB  
dB  
CM  
V = ±3V to ±18V  
S
R
MΩ  
V
in  
±13 ±14  
±13  
±14  
V
S
Maximum Output Voltage Swing  
R 2kΩ  
R 1kΩ  
L
±13 ±14  
±12 ±13.5  
±13  
±12  
±14  
±13.5  
V
V
OUT  
R
L
Slew Rate  
R 2k(Note 4)  
L
0.1 0.25  
0.4 0.8  
0.1  
0.4  
0.25  
0.8  
V/µs  
GBW  
Gain-Bandwidth Product  
Power Dissipation  
(Note 4)  
MHz  
P
No load  
No load, V = ±3V  
46  
4
75  
6
48  
4
80  
8
d
mW  
S
See Notes on page 3.  
2
LT1001  
ELECTRICAL CHARACTERISTICS VS = ±15V, 55°C TA 125°C, unless otherwise noted  
LT1001AM/883  
LT1001M  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
µV  
V
OS  
Input Offset Voltage  
30  
60  
45  
160  
1.0  
V  
Average Offset Voltage Drift  
0.2  
0.6  
0.3  
µV/°C  
OS  
Temp  
I
Input Offset Current  
0.8  
±1.0  
700  
122  
117  
±14  
4.0  
1.2  
7.6  
nA  
nA  
OS  
B
I
Input Bias Current  
±4.0  
±1.5 ±8.0  
A
Large Signal Voltage Gain  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Voltage Range  
R 2k, V = ±10V  
300  
110  
104  
200  
106  
700  
120  
V/mV  
dB  
VOL  
L
O
CMRR  
PSRR  
V
CM  
= ±13V  
V = ±3 to ±18V  
S
100  
117  
dB  
±13  
±13  
±14  
V
V
Output Voltage Swing  
Power Dissipation  
R 2kΩ  
L
±12.5 ±13.5  
±12.0 ±13.5  
V
OUT  
P
No load  
55  
90  
60  
100  
mW  
d
VS = ±15V, 0°C TA 70°C, unless otherwise noted  
LT1001AC  
LT1001C  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
60  
MIN  
MAX  
110  
1.0  
UNITS  
µV  
V
OS  
Input Offset Voltage  
20  
30  
V  
Average Offset Voltage Drift  
0.2  
0.6  
0.3  
µV/°C  
OS  
Temp  
I
Input Offset Current  
0.5  
3.5  
0.6  
±1.0  
750  
123  
120  
±14  
5.3  
nA  
nA  
OS  
B
I
Input Bias Current  
±0.7  
±3.5  
±5.5  
A
Large Signal Voltage Gain  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Voltage Range  
R 2k, V = ±10V  
350 750  
110 124  
106 120  
±13 ±14  
±12.5 ±13.8  
50  
250  
106  
V/mV  
dB  
VOL  
L
O
CMRR  
PSRR  
V
CM  
= ±13V  
V = ±3V to ±18V  
S
103  
dB  
±13  
V
V
Output Voltage Swing  
Power Dissipation  
R 2kΩ  
L
±12.5 ±13.8  
V
OUT  
P
No load  
85  
55  
90  
mW  
d
Note 2: This parameter is tested on a sample basis only.  
Note 3: Long Term Input Offset Voltage Stability refers to the averaged  
The  
denotes the specifications which apply over the full operating  
temperature range.  
trend line of V versus Time over extended periods after the first 30 days  
Note 1: Offset voltage for the LT1001AM/883 and LT1001AC are measured  
after power is applied and the device is fully warmed up. All other grades  
are measured with high speed test equipment, approximately 1 second  
after power is applied. The LT1001AM/883 receives 168 hr. burn-in at  
125°C. or equivalent.  
OS  
of operation. Excluding the initial hour of operation, changes in V during  
OS  
the first 30 days are typically 2.5µV.  
Note 4: Parameter is guaranteed by design.  
Note 5: 10Hz noise voltage density is sample tested on every lot. Devices  
100% tested at 10Hz are available on request.  
3
LT1001  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Typical Distribution of Offset  
Voltage Drift with Temperature  
Offset Voltage Drift withTemperature  
of Representative Units  
Warm-Up Drift  
100  
80  
60  
40  
20  
50  
40  
LT1001  
265 UNITS  
TESTED  
V
S
= ±15V  
V
= ±15V  
= 25°C  
S
A
30  
4
3
2
1
T
20  
LT1001A  
10  
METAL CAN (H) PACKAGE  
0
LT1001A  
–10  
–20  
–30  
–40  
–50  
DUAL-IN-LINE PACKAGE  
PLASTIC (N) OR CERDIP (J)  
LT1001  
–1.0 –0.6 –0.2 0 +0.2 +0.6 +1.0  
–50  
0
25  
50  
75 100 125  
0
1
3
4
5
–25  
2
TEMPERATURE (°C)  
OFFSET VOLTAGE DRIFT (µV/°C)  
TIME AFTER POWER ON (MINUTES)  
1001 G01  
1001 G02  
1001 G03  
Long Term Stability of Four  
Representative Units  
0.1Hz to 10Hz Noise  
Noise Spectrum  
10  
5
100  
10  
T
= 25°C  
= ±3 TO ±18V  
A
S
V
30  
10  
3
1/f CORNER  
4Hz  
VOLTAGE  
0
1.0  
1/f CORNER  
70Hz  
–5  
–10  
3
1
0.3  
0.1  
CURRENT  
0
1
2
3
4
5
0
2
4
6
8
10  
1
10  
100  
1000  
FREQUENCY (Hz)  
TIME (MONTHS)  
TIME (SECONDS)  
1001 G05  
1001 G06  
1001 G04  
Input Bias and Offset Current  
vs Temperature  
Input Bias Current  
Input Bias Current vs  
Over the Common Mode Range  
Differential Input Voltage  
1.5  
1.0  
0.5  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
30  
20  
10  
0
V
= ±15V  
= 25°C  
S
A
T
+
I
b
V
CM  
V
= ±15V  
S
DEVICE WITH POSITIVE INPUT CURRENT  
V
= ±15V  
= 25°C  
S
A
T
BIAS CURRENT  
–.5  
DEVICE WITH NEGATIVE INPUT CURRENT  
–1.0  
COMMON-MODE  
28V  
I
B
1 nA to V  
= 0.7V  
DIFF  
OFFSET CURRENT  
INPUT RESISTANCE =  
= 280GΩ  
0.1nA  
–1.5  
25  
50  
TEMPERATURE (°C)  
75  
100 125  
–15 –10  
–5  
0
5
10  
15  
0.1  
0.3  
1.0  
3.0  
10  
30  
–50 –25  
0
COMMON-MODE INPUT VOLTAGE  
±DIFFERENTIAL INPUT (VOLTS)  
1001 G09  
1001 G08  
1001 G07  
4
LT1001  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Open Loop Voltage Gain  
vs Temperature  
Open Loop Voltage Gain  
Frequency Response  
Gain, Phase Shift vs Frequency  
80  
20  
16  
12  
8
140  
120  
100  
80  
1200k  
1000k  
800k  
600k  
400k  
200k  
0
100  
120  
140  
160  
180  
200  
220  
PHASE 25°C  
T
A
= 25°C  
V
= ±15V, V = ±12V  
O
S
25°C  
PHASE  
MARGIN  
= 60°  
V
= ±15V  
S
60  
V
= ±3V, V = ±1V  
O
S
4
GAIN 125°C  
40  
V
= ±3V  
GAIN 25°C & –55°C  
S
0
20  
V
= ±15V  
S
–4  
–8  
0
PHASE MARGIN –55°C = 63°  
125°C = 57°  
–20  
25  
50  
TEMPERATURE (°C)  
75  
100 125  
0.1  
1
10 100  
1k  
FREQUENCY (Hz)  
10k 100k 1M 10M  
0.1  
0.2  
0.5  
1
2
–50 –25  
0
FREQUENCY (MHz)  
1001 G12  
1001 G10  
1001 G11  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
Common Mode Limit  
vs Temperature  
+
140  
140  
120  
100  
80  
V
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= ±15V ±1V p-p  
= 25°C  
S
A
120  
100  
80  
60  
40  
20  
0
+
T
V
V
= 1.2 to 4V  
+
= 12 to 18V  
NEGATIVE SUPPLY  
POSITIVE SUPPLY  
V
= ±15V  
= 25°C  
S
A
T
V
V
= –12 to –18V  
= –1.2 to –4V  
+1.0  
+0.8  
+0.6  
+0.4  
+0.2  
60  
40  
V
20  
0.1  
10  
100  
1k  
10k 100k  
1
50  
TEMPERATURE °C  
100 125  
1
10  
100  
1k  
10k  
100k 1M  
–50 –25  
0
25  
75  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1001 G15  
1001 G14  
1001 G13  
Output Short-Circuit Current  
vs Time  
Output Swing vs Load Resistance  
NEGATIVE SWING  
Supply Current vs Supply Voltage  
16  
12  
8
50  
40  
–55°C  
2.0  
1.5  
1.0  
0.5  
30  
25°C  
125°C  
25°C  
–55°C  
20  
V
S
= ±15V  
10  
POSITIVE SWING  
125°C  
–10  
–20  
–30  
–40  
–50  
125°C  
25°C  
4
–55°C  
V
= ±15V  
= 25°C  
S
A
T
0
100  
300  
1000  
3k  
10k  
±12  
±3 ±6 ±9  
±15 ±18 ±21  
0
1
3
4
2
LOAD RESISTANCE ()  
SUPPLY VOLTAGE (V)  
TIME FROM OPUTPUT SHORT (MINUTES)  
1001 G17  
1001 G16  
1001 G18  
5
LT1001  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Voltage Follower Overshoot  
Small Signal Transient Response  
Small Signal Transient Response  
vs Capacitive Load  
100  
80  
60  
40  
20  
0
V
= ±15V  
= 25°C  
S
A
T
V
R
= 100mV  
IN  
> 50k  
L
10,000  
CAPACITIVE LOAD (PICOFARADS)  
100,000  
100  
1000  
AV = +1, CL = 1000pF  
AV = +1, CL = 50pF  
1001 G21  
1001 G19  
1001 G20  
Maximum Undistorted  
Output vs. Frequency  
Large Signal Transient Response  
Closed Loop Output Impedance  
28  
24  
20  
16  
12  
8
100  
10  
V
T
= ±15V  
S
A
= 25°C  
A
V
= 1000  
1
A
V
= +1  
0.1  
I
= ±1mA  
= ±15V  
= 25°C  
O
S
A
0.01  
0.001  
V
4
T
0
1
10  
100  
1000  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
1001 G22  
1001 G23  
1001 G24  
U
W U U  
Unless proper care is exercised, thermocouple effects  
caused by temperature gradients across dissimilar metals  
at the contacts to the input terminals, can exceed the  
inherent drift of the amplifier. Air currents over device  
leads should be minimized, package leads should be  
short, and the two input leads should be as close together  
as possible and maintained at the same temperature.  
APPLICATIONS INFORMATION  
Application Notes and Test Circuits  
The LT1001 series units may be inserted directly into  
OP-07, OP-05, 725, 108A or 101A sockets with or without  
removal of external frequency compensation or nulling  
components. The LT1001 can also be used in 741, LF156  
or OP-15 applications provided that the nulling circuitry is  
removed.  
Test Circuit for Offset Voltage and its Drift with Temperature  
*50k  
TheLT1001isspecifiedoverawiderangeofpowersupply  
voltagesfrom±3Vto±18V. Operationwithlowersupplies  
is possible down to ±1.2V (two Ni-Cad batteries). How-  
ever, with ±1.2V supplies, the device is stable only in  
closed loop gains of +2 or higher (or inverting gain of one  
or higher).  
+15V  
2
3
7
LT1001  
4
6
V
100Ω  
*
*
O
+
*
RESISTORS MUST HAVE LOW  
THERMOELECTRIC POTENTIAL.  
50k  
–15V  
** THIS CIRCUIT IS ALSO USED AS THE BURN-IN  
CONFIGURATION FOR THE LT1001, WITH SUPPL  
V
= 1000V  
OS  
O
VOLTAGES INCREASED T±O20V.  
1001 F01  
6
LT1001  
Offset Voltage Adjustment  
TheinputoffsetvoltageoftheLT1001, anditsdriftwithtempera-  
ture, are permanently trimmed at wafer test to a low level.  
However, if further adjustment of Vos is necessary, nulling with  
a 10k or 20k potentiometer will not degrade drift with tempera-  
ture. Trimming to a value other than zero creates a drift of (Vos/  
300)µV/°C, e.g., if Vos is adjusted to 300 µV, the change in drift  
will be 1 µV/°C. The adjustment range with a 10k or 20k pot is  
approximately ±2.5mV. If less adjustment range is needed, the  
sensitivityandresolutionofthenullingcanbeimprovedbyusing  
a smaller pot in conjunction with fixed resistors. The example  
below has an approximate null range of ±100 µV.  
0.1Hz to 10Hz Noise Test Circuit  
0.1µF  
VOLTAGE GAIN = 50,000  
100kΩ  
10Ω  
+
2kΩ  
LT1001  
+
22µF  
4.3k  
LT1001  
SCOPE  
4.7 µF  
× 1  
DEVICE  
UNDER  
TEST  
R
= 1MΩ  
2.2µF  
IN  
100k  
0.1 µF  
110k  
24.3k  
Improved Sensitivity Adjustment  
1001 F03  
7.5k  
(Peak-to-Peak noise measured in 10 sec interval)  
+15V  
1k  
The device under test should be warmed up for three minutes and  
shielded from air currents.  
7.5k  
1
8
2
3
7
6
OUTPUT  
INPUT  
LT1001  
4
+
1001 F02  
–15V  
DC Stabilized  
1000v/µsec Op Amp  
+15V  
2.2µF  
TANTALUM  
+
300  
3.9k  
.1µF  
1N914  
200*  
2N5486  
200pf  
2N5160  
22µF TANTALUM  
+
0.01 µF  
2N3866  
33  
1k  
2N4440  
1.8k  
30k  
30k  
R
IN  
1k  
–15V  
6
10k  
3
INPUT  
+
.001  
µF  
390Ω  
2N3904  
2N3904  
15pF  
LT1001  
2
.5Ω  
.5Ω  
OUTPUT  
470  
22  
2N5160 2N3906  
0.01µF  
2N3866  
2N4440  
22µF TANTALUM  
200pF  
+
1.2k  
3.9k  
200*  
15-60pF  
TUSONIX # 519-3188  
300  
1N914  
0.1µF  
–15V  
1001 F04  
1k  
f
FULL POWER  
BANDWIDTH 8MHz  
*ADJUST FOR  
R
BEST SQUARE WAVE  
AT OUTPUT  
7
LT1001  
U
TYPICAL APPLICATIONS  
Photodiode Amplifier  
Microvolt Comparator with TTL Output  
+5V  
100pF  
39.2 1%  
1.21M  
5k 5%  
OUTPUT  
500k 1%  
1%  
7
NON  
INVERTING  
INPUT  
4.99k 1%  
20k  
+
8
2
2
3
LT1001  
6
OUTPUT  
1V/µA  
5%  
IN914  
INVERTING  
INPUT  
2N3904  
λ
LT1001  
4
3
+
–5V  
500k  
1%  
100pF  
Positive feedback to one of the nulling terminals  
creates 5 µ to 20 µV of hysteresis. Input offset  
voltage is typically changed by less than 5 µV due  
to the feedback.  
1001 TA03  
1001 TA04  
Precision Current Sink  
Precision Current Source  
+
V
= 2 to 35V  
5k  
V
R
IN  
R
C
I
=
5V  
OUT  
–4  
V
3
IN  
7
LT1001  
4
RC 10  
3
+
7
+
+
0 to (V – 1V)  
6
6
2N3685  
LT1001  
4
2N3685  
2
5k  
V
2
IN  
2N2219  
2N2219  
0 to (V + 1V)  
10K  
–5V  
10k  
1000pF  
R
V
= –2 to –35V  
V
R
IN  
I
=
OUT  
1001 TA05  
1001 TA06  
Strain Gauge Signal Conditioner with Bridge Excitation  
+15V  
+15V  
8.2k  
2.0k*  
100Ω  
3
2
+
REFERENCE OUT  
TO MONITORING  
A/D CONVERTER  
2k  
6
2N2219  
LT1001  
LM329  
4.99k*  
IN4148  
350BRIDGE  
3
+
6
0 TO 10V  
OUT  
*
LT1001  
10k  
ZERO  
2
301k  
1µF  
340k*  
2
3
IN4148  
2k  
+
1.1k*  
6
LT1001  
2N2907  
GAIN  
TRIM  
100Ω  
5W  
*RN60C FILM RESISTORS  
1001 TA07  
–15V  
8
LT1001  
Large Signal Voltage Follower  
With 0.001% Worst-Case Accuracy  
rejections. Worst-case summation of guaranteed  
specifications is tabulated below.  
OUTPUT ACCURACY  
+12 to +18V  
LT1001AM  
/883  
LT1001C  
LT1001AM  
/883  
LT1001C  
0 to 70  
7
LT1001  
4
2
3
+
OUTPUT  
25  
°C  
25  
Max.  
°
C
–55 to 125  
Max.  
°C  
°C  
6
R
Error  
Max.  
Max.  
S
–10 to +10V  
INPUT  
–10 to +10V  
Offset Voltage  
Bias Current  
Common-Mode Rejection  
Power Supply Rejection  
Voltage Gain  
15µV  
20µV  
20µV  
18µV  
22µV  
60µV  
40µV  
30µV  
30µV  
25µV  
60µV  
40µV  
30µV  
36µV  
33µV  
110µV  
55µV  
50µV  
42µV  
40µV  
0 to 10kΩ  
–12 to –18V  
1001 TA08  
The voltage follower is an ideal example illustrating  
theoverallexcellenceoftheLT1001.Thecontributing  
error terms are due to offset voltage, input bias cur-  
rent, voltage gain, common-mode and power-supply  
Worst-case Sum  
Percent of Full Scale  
(=20V)  
95µV  
185µV  
199µV  
297µV  
0.0005%  
0.0009%  
0.0010%  
0.0015%  
Thermally Controlled NiCad Charger  
+15V  
7
10V, 1.2 AMP HR  
NICAD STACK  
0.1µF  
+ –  
– +  
IN4001  
2k  
3
2
+
BATTERY  
AMBIENT  
*
6
LT1001  
620k  
–15V  
2N6387  
IN4148  
4
–15V  
43k  
CIRCUIT USES TEMPERATURE DIFFERENCE  
BETWEEN BATTERY PACK MOUNTED  
THERMOCOUPLE AND AMBIENT THERMO-  
COUPLE TO SET BATTERY CHARGE  
CURRENT. PEAK CHARGING  
0.6Ω  
5W  
10Ω  
1µF  
CURRENT IS 1 AMP.  
*
*
SINGLE POINT GROUND  
THERMOCOUPLES ARE  
4µ0V/°C CHROMEL-ALUMEL  
(TYPE K)  
*
1001 TA09  
Precision Absolute Value Circuit  
10k  
10k  
10k  
0.1%  
0.1%  
0.1%  
10k  
IN4148  
INPUT  
2
3
2
–10 to 10V  
0.1%  
OUTPUT  
6
6
LT1001  
LT1001  
0 to 10V  
3
+
+
IN4148  
10k  
1001 TA10  
0.1%  
9
LT1001  
Precision Power Supply with Two Outputs  
(1) 0V to 10V in 100µV STEPS  
(2) 0V to 100V in 1mV STEPS  
22k*  
+15V  
43k*  
(select)  
100Ω  
1005W  
2
3
+
2k  
2N2219  
LT1001  
OUTPUT 1  
0-10V  
25mA  
6
IN  
914  
+15V  
8.2k  
TRIAD TY-90  
VN-46  
DIODES =  
SEMTECH #  
FF-15  
LM399  
KVD  
00000 –  
99999 + 1  
+
OUTPUT  
2
4
KELVIN-VARLEY  
DIVIDER  
ESI#DP311  
0-100V, 25mA  
90k*  
VN-46  
–15V  
0.1  
*JULIE RSCH. LABS  
2.2  
+
10k* (select)  
#R-44  
25k  
TRIM–100V  
100Ω  
680pF  
2
3
+
D
CLK  
Q
Q
6
2N6533  
2
3
LT301A  
+
2k  
6
LT1001  
33k  
+
IN914  
74C74  
22µF  
15Ω  
33k  
33k  
1.8k  
+15  
+15V  
+15V  
2N2907  
5k  
CLAMP SET  
IN914  
1001 TA11  
Dead Zone Generator  
BIPOLAR SYMMETRY IS EXCELLENT BECAUSE ONE DEVICE, Q2, SETS BOTH LIMITS  
INPUT  
Q4  
**  
V
SET  
100k  
10k*  
DEAD ZONE  
CONTROL INPUT  
0 to 5V  
**  
100k  
2
Q2  
Q3  
6
LM301A  
47pF  
10k*  
8
3
4.7k  
+
100k  
2k  
1
2
10k**  
30pF  
2N4393  
Q1  
10k**  
10k  
2
3
6
LT1001  
+
3
6
LT1001  
V
OUT  
+
IN914  
+15V  
100k  
10k  
15pF  
2N4393  
Q6  
4.7k  
15pF  
2
4.7k  
1k  
3.3k  
V
V
OUT  
6
IN914  
SET  
Q5  
LM301A  
3
+
V
IN  
*
1% FILM  
V
SET  
** RATIO MATCH 0.05%  
1001 TA12  
–15V  
Q2, 3, 4, 5 CA 3096 TRANSISTOR ARRAY  
10  
LT1001  
Instrumentation Amplifier with ±300V  
Common Mode Range and CMRR > 150dB  
+15V  
820Ω  
820Ω  
3
+
10k  
6
LT1001  
OUTPUT  
2
+
330k*  
0.1µF  
S1  
S2  
S3  
**  
1µF  
INPUT  
0.2µF  
**  
909*  
200Ω  
GAIN  
TRIM  
S4  
(ACQUIRE)  
01  
(READ)  
02  
OUT  
IN  
OUT  
A
74C906  
IN  
2k*  
74C04  
74C86  
2k*  
1
2
3
C
+
6
4022  
R
LM301A  
CLK  
2
EN  
1k  
5.6k*  
R1  
10k  
0.1µF  
1k  
LM329  
A FLYING CAPACITOR CHARGED BY CLOCKED  
PHOTO DRIVEN FET SWITCHES CONVERTS A  
DIFFERENTIAL SIGNAL AT A HIGH COMMON  
MODE VOLTAGE TO A SINGLE ENDED SIGNAL  
AT THE LT1001 OUTPUT.  
1) ALL DIODES IN4148  
2) S1–S4 OPTO MOS SWITCH OFM-1A, THETA-J CORP.  
3) *FILM RESISTOR  
4) **POLYPROPYLENE CAPACITORS  
5) ADJUST R1 for 93 Hz AT TEST POINT  
1001 TA13  
A
Information furnished by Linear Technology Corporation is believed to be accurate and  
reliable. However, no responsibility is assumed for its use. Linear Technology Corpora-  
tion makes no representation that the interconnection of its circuits as described herein  
will not infringe on existing patent rights.  
11  
LT1001  
W
W
SCHE ATIC DIAGRA  
V+  
7
6k  
6k  
1
Q29  
8
Q27  
Q24  
Q25  
Q28  
40k  
Q5  
40k  
1.5k  
25k  
Q13  
Q14  
Q11  
Q12  
Q6  
Q4  
3k  
Q8  
Q7  
Q31  
Q3  
55pF  
20pF  
Q33  
20Ω  
OUT  
30pF  
Q1A Q1B  
Q2B  
Q2A  
+
3
3k  
500  
500  
Q26  
Q34  
6
Q21  
20Ω  
Q16  
2k  
Q10  
2
Q15  
Q32  
Q22  
T1  
2k  
Q23  
180Ω  
Q20  
Q17  
Q18  
Q30  
8k 120Ω  
Q9  
240Ω  
Q19  
V
1001 SS  
4
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
H Package  
J8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
8-Lead TO-5 Metal Can (0.200 PCD)  
(LTC DWG # 05-08-1320)  
8-Lead CERDIP (Narrow 0.300, Hermetic)  
(LTC DWG # 05-08-1110)  
0.405  
CORNER LEADS OPTION  
0.335 – 0.370  
(8.509 – 9.398)  
DIA  
(10.287)  
MAX  
(10.160)  
MAX  
(4 PLCS)  
0.005  
(0.127)  
MIN  
8
7
6
5
0.305 – 0.335  
(7.747 – 8.509)  
0.040  
8
7
6
5
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.050  
(1.016)  
MAX  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
0.165 – 0.185  
(4.191 – 4.699)  
(1.270)  
MAX  
(5.588 – 7.874)  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
1
2
3
4
0.500 – 0.750  
(12.700 – 19.050)  
0.200  
(5.080)  
MAX  
1
2
3
4
0.300 BSC  
(0.762 BSC)  
0.010 – 0.045*  
(0.254 – 1.143)  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(1.143 – 1.651)  
(3.302 ± 0.127)  
(7.620 – 8.255)  
0.016 – 0.021**  
(0.406 – 0.533)  
0.015 – 0.060  
(0.381 – 1.524)  
0.065  
(1.651)  
TYP  
0.027 – 0.045  
(0.686 – 1.143)  
0.008 – 0.018  
(0.203 – 0.457)  
0.009 – 0.015  
(0.229 – 0.381)  
45°TYP  
0° – 15°  
0.125  
(3.175)  
MIN  
0.027 – 0.034  
(0.686 – 0.864)  
0.005  
(0.127)  
MIN  
0.015  
(0.380)  
MIN  
+0.025  
–0.015  
0.045 – 0.068  
(1.143 – 1.727)  
0.325  
0.385 ± 0.025  
(9.779 ± 0.635)  
0.125  
3.175  
MIN  
0.200  
(5.080)  
TYP  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.014 – 0.026  
(0.360 – 0.660)  
0.100 ± 0.010  
(2.540 ± 0.254)  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
N8 0695  
0.110 – 0.160  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS.  
J8 0694  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
H8(TO-5) 0.200 PCD 0595  
Tjmax  
150°C 100°C/W  
θja  
Tjmax  
150°C 130°C/W  
θja  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND 0.045" BELOW THE REFERENCE PLANE  
0.016 – 0.024  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
(0.406 – 0.610)  
Tjmax  
θja  
θjc  
S8 Package  
150°C 150°C/W 45°C/W  
8-Lead Plastic Small Outline (Narrow 0.150)  
0.189 – 0.197*  
(4.801 – 5.004)  
(LTC DWG # 05-08-1610)  
0.010 – 0.020  
(0.254 – 0.508)  
8
7
6
5
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
0.008 – 0.010  
(0.203 – 0.254)  
(0.101 – 0.254)  
0°– 8° TYP  
Tjmax  
150°C 150°C/W  
θja  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.014 – 0.019  
(0.355 – 0.483)  
0.050  
(1.270)  
BSC  
* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
1
2
3
4
SO8 0695  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
LT/GP 0396 2K REV A • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1983  

相关型号:

LT1001AM/883

Precision Operational Amplifier
Linear

LT1001AMH

Voltage-Feedback Operational Amplifier
ETC

LT1001AMH/883

Precision Operational Amplifier
Linear

LT1001AMH/883A

OP-AMP, 60uV OFFSET-MAX, 0.8MHz BAND WIDTH, MBCY8
Linear

LT1001AMJ8

IC OP-AMP, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LT1001AMJ8/883

Precision Operational Amplifier
Linear

LT1001AMJ8/883C

OP-AMP, 60uV OFFSET-MAX, 0.8MHz BAND WIDTH, CDIP8
Linear

LT1001AMJG

OP-AMP, 60uV OFFSET-MAX, 0.8MHz BAND WIDTH, CDIP8, 0.300 INCH, HERMETIC SEALED, CERAMIC, DIP-8
TI

LT1001AML

OP-AMP, 60uV OFFSET-MAX, 0.8MHz BAND WIDTH, MBCY8, HERMETIC SEALED, METAL CAN-8
TI

LT1001C

Precision Operational Amplifier
Linear

LT1001CD

OP-AMP, 110uV OFFSET-MAX, 0.8MHz BAND WIDTH, PDSO8, SO-8
TI

LT1001CD

OP-AMP, 110uV OFFSET-MAX, 0.8MHz BAND WIDTH, PDSO8, SO-8
ROCHESTER