C4532X5R0J107MZ [Linear]

10A High Effi ciency DC/DC μModule; 10A高艾菲效率DC / DC微型模块
C4532X5R0J107MZ
型号: C4532X5R0J107MZ
厂家: Linear    Linear
描述:

10A High Effi ciency DC/DC μModule
10A高艾菲效率DC / DC微型模块

文件: 总24页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4600  
10A High Efficiency  
DC/DC µModule  
FEATURES  
n
DESCRIPTION  
TheLTM®4600isacomplete10A,DC/DCstepdownpower  
supply. Included in the package are the switching control-  
ler, power FETs, inductor, and all support components.  
Operating over an input voltage range of 4.5V to 20V, the  
LTM4600 supports an output voltage range of 0.6V to 5V,  
setbyasingleresistor. Thishighefficiency design delivers  
10Acontinuouscurrent(14Apeak), needingnoheatsinks  
or airflow to meet power specifications. Only bulk input  
and output capacitors are needed to finish the design.  
n
Complete Switch Mode Power Supply  
Wide Input Voltage Range: 4.5V to 20V  
n
10A DC, 14A Peak Output Current  
n
Parallel Two μModule™ DC/DC Converters for 20A  
Output Current  
0.6V to 5V Output Voltage  
n
n
1.5% Output Voltage Regulation  
n
Ultrafast Transient Response  
n
Current Mode Control  
n
Pb-Free (e4) RoHS Compliant Package with Gold-  
The low profile package (2.8mm) enables utilization of  
unused space on the bottom of PC boards for high density  
point of load regulation. High switching frequency and an  
adaptiveon-timecurrentmodearchitectureenablesavery  
fast transient response to line and load changes without  
sacrificing stability. Fault protection features include  
integrated overvoltage and short circuit protection with  
a defeatable shutdown timer. A built-in soft-start timer is  
adjustable with a small capacitor.  
Pad Finish  
Up to 92% Efficiency  
Programmable Soft-Start  
Output Overvoltage Protection  
n
n
n
n
Optional Short-Circuit Shutdown Timer  
n
Small Footprint, Low Profile (15mm × 15mm ×  
2.8mm) Surface Mount LGA Package  
APPLICATIONS  
TheLTM4600ispackagedinathermallyenhanced,compact  
(15mm × 15mm) and low profile (2.8mm) over-molded  
Land Grid Array (LGA) package suitable for automated  
assembly by standard surface mount equipment. The  
LTM4600 is Pb-free and RoHS compliant.  
n
Telecom and Networking Equipment  
n
Servers  
n
Industrial Equipment  
Point of Load Regulation  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
μModule is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners. Protected by U.S. Patents including 5481178, 6100678, 6580258,  
5847554, 6304066.  
Efficiency vs Load Current  
TYPICAL APPLICATION  
with 12VIN (FCB = 0)  
100  
10A μModule Power Supply with 4.5V to 20V Input  
90  
80  
70  
V
1.5V  
10A  
OUT  
V
IN  
4.5V TO 20V  
V
IN  
V
OUT  
C
IN  
C
OUT  
LTM4600  
60  
50  
V
OSET  
PGND SGND  
66.5k  
40  
30  
20  
1.2V  
1.5V  
2.5V  
3.3V  
OUT  
OUT  
OUT  
OUT  
4600 TA01a  
2
4
8
0
10  
6
LOAD CURRENT (A)  
4600 TA01b  
4600fc  
1
LTM4600  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
FCB, EXTV , PGOOD, RUN/SS, V .......... –0.3V to 6V  
CC  
OUT  
V , SV , f ............................................ –0.3V to 20V  
IN  
V
IN ADJ  
COMP  
SGND  
RUN/SS  
FCB  
, COMP............................................. –0.3V to 2.7V  
OSET  
V
IN  
Operating Temperature Range (Note 2).... –40°C to 85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range................... –55°C to 125°C  
PGOOD  
PGND  
V
OUT  
LGA PACKAGE  
104-LEAD (15mm × 15mm × 2.8mm)  
T
= 125°C, θ = 15°C/W, θ = 6°C/W,  
JA JC  
JMAX  
θ
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS  
JA  
WEIGHT = 1.7g  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4600EV#PBF  
LTM4600IV#PBF  
PART MARKING  
LTM4600EV  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
104-Lead (15mm × 15mm × 2.8mm) LGA  
104-Lead (15mm × 15mm × 2.8mm) LGA  
–40°C to 85°C  
–40°C to 85°C  
LTM4600IV  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. External CIN = 120μF, COUT = 200μF/Ceramic per typical  
application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
V
Input DC Voltage  
Output Voltage  
4.5  
20  
V
IN(DC)  
FCB = 0V  
OUT(DC)  
V
= 5V or 12V, V  
= 1.5V, I = 0A  
OUT  
1.478  
1.470  
1.50  
1.50  
1.522  
1.530  
V
V
IN  
OUT  
Input Specifications  
V
Under Voltage Lockout Threshold  
Input Inrush Current at Startup  
I
I
= 0A  
3.4  
4
V
IN(UVLO)  
OUT  
I
= 0A. V  
= 1.5V, FCB = 0  
OUT  
INRUSH(VIN)  
OUT  
V
= 5V  
= 12V  
0.6  
0.7  
A
A
IN  
IN  
V
I
Input Supply Bias Current  
I
= 0A, EXTV Open  
Q(VIN)  
OUT CC  
V
= 12V, V  
= 12V, V  
= 1.5V, FCB = 5V  
1.2  
42  
mA  
mA  
mA  
mA  
μA  
IN  
IN  
IN  
IN  
OUT  
OUT  
V
V
V
= 1.5V, FCB = 0V  
= 5V, V  
= 5V, V  
= 1.5V, FCB = 5V  
= 1.5V, FCB = 0V  
1.0  
52  
OUT  
OUT  
Shutdown, RUN = 0.8V, V = 12V  
35  
75  
IN  
4600fc  
2
LTM4600  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Supply Current  
V
IN  
V
IN  
V
IN  
= 12V, V  
= 12V, V  
= 1.5V, I  
= 3.3V, I  
= 10A  
= 10A  
1.52  
3.13  
3.64  
A
A
A
S(VIN)  
OUT  
OUT  
OUT  
OUT  
= 5V, V  
= 1.5V, I  
= 10A  
OUT  
OUT  
Output Specifications  
I
Output Continuous Current Range  
V
= 12V, V = 1.5V  
OUT  
0
10  
A
OUTDC  
IN  
(See Output Current Derating Curves for  
Different V , V  
and T )  
A
IN OUT  
l
l
ΔV  
ΔV  
Line Regulation Accuracy  
V
V
= 1.5V, I = 0A, FCB = 0V,  
OUT  
0.15  
0.3  
%
OUT(LINE)  
OUT  
IN  
= 4.5V to 20V  
V
OUT  
OUT(LOAD)  
Load Regulation Accuracy  
V
OUT  
= 1.5V, I  
= 5V  
= 0A to 10A, FCB = 0V  
OUT  
V
V
1
1.5  
%
%
IN  
IN  
V
OUT  
= 12V (Notes 3, 4)  
V
Output Ripple Voltage  
Output Ripple Voltage Frequency  
Turn-On Time  
V
V
V
= 12V, V  
= 1.5V, I  
= 0A, FCB = 0V  
10  
15  
mV  
P-P  
OUT(AC)  
IN  
OUT  
OUT  
fs  
= 1.5V, I  
= 5A, FCB = 0V  
= 1A  
850  
kHz  
OUT  
OUT  
OUT  
t
= 1.5V, I  
IN  
IN  
START  
OUT  
V
= 12V  
= 5V  
0.5  
0.7  
ms  
ms  
V
ΔV  
Voltage Drop for Dynamic Load Step  
V
C
= 1.5V, Load Step: 0A/μs to 5A/μs  
= 3 • 22μF 6.3V, 470μF 4V POSCAP,  
36  
mV  
OUTLS  
OUT  
OUT  
See Table 2  
t
I
Settling Time for Dynamic Load Step  
Output Current Limit  
Load: 10% to 90% to 10% of Full Load  
25  
μs  
SETTLE  
Output Voltage in Foldback  
OUTPK  
V
IN  
V
IN  
= 12V, V  
= 1.5V  
OUT  
14  
14  
A
A
= 5V, V  
= 1.5V  
OUT  
Control Stage  
l
V
Voltage at V  
Pin  
I
= 0A, V = 1.5V  
OUT  
0.591  
0.594  
0.6  
0.6  
0.609  
0.606  
V
V
OSET  
OSET  
OUT  
V
RUN ON/OFF Threshold  
0.8  
–0.5  
0.8  
1.5  
–1.2  
1.8  
2
–3  
3
V
μA  
RUN/SS  
I
I
Soft-Start Charging Current  
Soft-Start Discharging Current  
V
V
= 0V  
= 4V  
RUN(C)/SS  
RUN(D)/SS  
RUN/SS  
μA  
RUN/SS  
V
– SV  
EXTV = 0V, FCB = 0V  
100  
16  
mV  
mA  
IN  
IN  
CC  
I
Current into EXTV Pin  
EXTV = 5V, FCB = 0V, V  
= 1.5V,  
EXTVCC  
CC  
CC  
= 0A  
OUT  
I
OUT  
R
Resistor Between V  
and V Pins  
OSET  
100  
0.6  
–1  
kΩ  
V
FBHI  
OUT  
V
FCB  
Forced Continuous Threshold  
0.57  
0.63  
–2  
I
Forced Continuous Pin Current  
V
= 0.6V  
μA  
FCB  
FCB  
PGOOD Output  
ΔV  
ΔV  
ΔV  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
7.5  
10  
–10  
2
12.5  
%
%
%
V
OSETH  
OSET  
Falling  
–7.5  
–12.5  
OSETL  
OSET  
Returning  
OSET(HYS)  
OSET  
V
PGL  
PGOOD Low Voltage  
I
= 5mA  
0.15  
0.4  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
temperature range are assured by design, characterization and correlation  
with statistical process controls. The LTM4600I is guaranteed over the  
–40°C to 85°C temperature range.  
Note 3: Test assumes current derating versus temperature.  
Note 4: Guaranteed by correlation.  
Note 2: The LTM4600E is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
4600fc  
3
LTM4600  
TYPICAL PERFORMANCE CHARACTERISTICS  
(See Figure 18 for all curves)  
Efficiency vs Load Current  
with 18VIN (FCB = 0)  
Efficiency vs Load Current  
with 5VIN (FCB = 0)  
Efficiency vs Load Current  
with 12V
IN
(FCB = 0)  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
0.6V  
1.2V  
1.5V  
2.5V  
3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
1.5V  
1.8V  
2.5V  
3.3V  
0.6V  
1.2V  
1.5V  
2.5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
8
10  
2
4
8
0
2
4
6
0
10  
6
2
4
8
0
10  
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4600 G01  
4600 G02  
4600 G03  
Efficiency vs Load Current  
with Different FCB Settings  
1.2V Transient Response  
1.5V Transient Response  
90  
80  
70  
60  
50  
40  
30  
20  
FCB > 0.7V  
V
OUT  
= 50mV/DIV  
FCB = GND  
I
= 5A/DIV  
OUT  
4600 G05  
4600 G06  
25μs/DIV  
1.2V AT 5A/μs LOAD STEP  
= 3 • 22μF 6.3V CERAMICS  
25μs/DIV  
V
V
= 12V  
IN  
OUT  
1.5V AT 5A/μs LOAD STEP  
= 1.5V  
C
OUT  
C
OUT  
= 3 • 22μF 6.3V CERAMICS  
470μF 4V SANYO POSCAP  
C3 = 100pF  
470μF 4V SANYO POSCAP  
C3 = 100pF  
0.1  
10  
1
LOAD CURRENT (A)  
4600 G04  
1.8V Transient Response  
2.5V Transient Response  
3.3V Transient Response  
4600 G07  
4600 G08  
4600 G09  
25μs/DIV  
25μs/DIV  
25μs/DIV  
1.8V AT 5A/μs LOAD STEP  
OUT  
2.5V AT 5A/μs LOAD STEP  
OUT  
3.3V AT 5A/μs LOAD STEP  
OUT  
C
= 3 • 22μF 6.3V CERAMICS  
470μF 4V SANYO POSCAP  
C3 = 100pF  
C
= 3 • 22μF 6.3V CERAMICS  
470μF 4V SANYO POSCAP  
C3 = 100pF  
C
= 3 • 22μF 6.3V CERAMICS  
470μF 4V SANYO POSCAP  
C3 = 100pF  
4600fc  
4
LTM4600  
TYPICAL PERFORMANCE CHARACTERISTICS (See Figure 18 for all curves)  
Short-Circuit Protection,  
IOUT = 0A  
Start-Up, IOUT = 10A  
(Resistive Load)  
Start-Up, IOUT = 0A  
V
V
OUT  
(0.5V/DIV)  
OUT  
(0.5V/DIV)  
V
OUT  
(0.5V/DIV)  
I
I
IN  
IN  
I
IN  
(0.5A/DIV)  
(0.5A/DIV)  
(0.2A/DIV)  
4600 G11  
4600 G12  
4600 G10  
200μs/DIV  
20μs/DIV  
200μs/DIV  
V
V
C
= 12V  
V
V
C
= 12V  
OUT  
OUT  
V
V
C
= 12V  
IN  
IN  
IN  
= 1.5V  
= 1.5V  
= 1.5V  
OUT  
OUT  
= 200μF  
= 2× 200μF/X5R  
NO EXTERNAL SOFT-START CAPACITOR  
= 200μF  
OUT  
OUT  
NO EXTERNAL SOFT-START CAPACITOR  
NO EXTERNAL SOFT-START CAPACITOR  
12V Input Load Regulation vs  
Temperature  
Short-Circuit Protection,  
I
OUT
= 10A  
VIN to VOUT Step-Down Ratio  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.00  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.35  
–0.40  
–0.45  
f
= OPEN  
5V  
ADJ  
V
OUT  
(0.5V/DIV)  
3.3V  
I
IN  
(0.5A/DIV)  
2.5V  
1.8V  
25°C  
100°C  
4600 G13  
20μs/DIV  
1.5V  
V
V
C
= 12V  
OUT  
OUT  
IN  
= 1.5V  
1.2V  
= 2× 200μF/X5R  
NO EXTERNAL SOFT-START CAPACITOR  
–45°C  
0.6V  
10  
(V)  
20  
0
5
15  
0
5
10  
LOAD CURRENT  
V
IN  
4600 G15  
SEE FREQUENCY ADJUSTMENT DISCUSSION  
FOR 12V TO 5V  
AND 5V TO 3.3V  
IN  
OUT  
IN OUT  
CONVERSION  
4600 G14  
4600fc  
5
LTM4600  
PIN FUNCTIONS  
(See Package Description for Pin Assignment)  
V (Bank 1): Power Input Pins. Apply input voltage be-  
SGND (Pin D23): Signal Ground Pin. All small-signal  
components should connect to this ground, which in turn  
connects to PGND at one point.  
IN  
tween these pins and PGND pins. Recommend placing  
input decoupling capacitance directly between V pins  
IN  
and PGND pins.  
RUN/SS (Pin F23): Run and Soft-Start Control. Forcing  
this pin below 0.8V will shut down the power supply.  
Inside the power module, there is a 1000pF capacitor  
which provides approximately 0.7ms soft-start time with  
200μF output capacitance. Additional soft-start time can  
be achieved by adding additional capacitance between the  
RUN/SSandSGNDpins. Theinternalshort-circuitlatchoff  
can be disabled by adding a resistor between this pin and  
f
(Pin A15): A 110k resistor from V to this pin sets  
IN  
ADJ  
the one-shot timer current, thereby setting the switching  
frequency. The LTM4600 switching frequency is typically  
850kHz. An external resistor to ground can be selected to  
reducetheone-shottimercurrent,thuslowertheswitching  
frequency to accommodate a higher duty cycle step down  
requirement. See the applications section.  
the V pin. This pullup resistor must supply a minimum  
IN  
SV (PinA17):SupplyPinforInternalPWMController.Leave  
IN  
5μA pull up current.  
this pin open or add additional decoupling capacitance.  
FCB (Pin G23): Forced Continuous Input. Grounding this  
pin enables forced continuous mode operation regardless  
of load conditions. Tying this pin above 0.63V enables  
discontinuousconductionmodetoachievehighefficiency  
operation at light loads. There is an internal 4.75K resistor  
between the FCB and SGND pins.  
EXTV (Pin A19): External 5V supply pin for controller. If  
CC  
left open or grounded, the internal 5V linear regulator will  
power the controller and MOSFET drivers. For high input  
voltage applications, connecting this pin to an external  
5V will reduce the power loss in the power module. The  
EXTV voltage should never be higher than V .  
CC  
IN  
PGOOD (Pin J23): Output Voltage Power Good Indicator.  
When the output voltage is within 10% of the nominal  
voltage, the PGOOD is open drain output. Otherwise, this  
pin is pulled to ground.  
V
(Pin A21): The Negative Input of The Error Amplifier.  
OSET  
Internally,thispinisconnectedtoV witha100kprecision  
OUT  
resistor.Differentoutputvoltagescanbeprogrammedwith  
additional resistors between the V  
and SGND pins.  
OSET  
PGND (Bank 2): Power ground pins for both input and  
output returns.  
COMP (Pin B23): Current Control Threshold and Error  
Amplifier Compensation Point. The current comparator  
threshold increases with this control voltage. The voltage  
ranges from 0V to 2.4V with 0.8V corresponding to zero  
sense voltage (zero current).  
V
OUT  
(Bank 3): Power Output Pins. Apply output load  
between these pins and PGND pins. Recommend placing  
High Frequency output decoupling capacitance directly  
between these pins and PGND pins.  
TOP VIEW  
2
3
4
5
6
7
16  
17  
18  
19  
A
C
E
1
20  
21  
22  
23  
24  
B
D
F
COMP  
SGND  
RUN/SS  
FCB  
9
10  
14  
11  
15  
V
IN  
8
BANK 1  
13  
12  
25  
32  
G
J
26  
33  
27  
34  
28  
35  
29  
36  
30  
37  
31  
38  
H
K
PGOOD  
48  
59  
39  
50  
61  
40  
51  
62  
41  
52  
63  
42  
53  
64  
43  
54  
65  
44  
55  
66  
45  
56  
67  
46  
57  
68  
47  
58  
69  
49  
60  
71  
PGND  
BANK 2  
L
M
N
70  
73  
84  
95  
74  
85  
96  
75  
86  
97  
76  
87  
98  
77  
88  
99  
78  
89  
79  
90  
80  
91  
81  
92  
72  
83  
94  
82  
93  
P
R
T
V
OUT  
BANK 3  
100  
101  
102  
103  
104  
1
3
5
7
9
11  
13  
15  
17  
19  
21  
23  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
4600 PN01  
4600fc  
6
LTM4600  
SIMPLIFIED BLOCK DIAGRAM  
SV  
IN  
RUN/SS  
LTM4600  
V
V
4.5V TO 20V  
IN  
1000pF  
C
1.5μF  
IN  
PGOOD  
Q1  
COMP  
FCB  
INT  
COMP  
1.5V/10A MAX  
OUT  
C
OUT  
4.75k  
15μF  
6.3V  
CONTROLLER  
f
ADJ  
PGND  
Q2  
10Ω  
SGND  
EXTV  
CC  
100k  
0.5%  
V
OSET  
R6  
66.5k  
4600 F01  
Figure 1. Simplified LTM4600 Block Diagram  
DECOUPLING REQUIREMENTS TA = 25°C, VIN = 12V. Use Figure 1 configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
I
= 10A  
20  
μF  
IN  
OUT  
(V = 4.5V to 20V, V  
= 1.5V)  
IN  
OUT  
C
OUT  
External Output Capacitor Requirement  
(V = 4.5V to 20V, V = 1.5V)  
I
= 10A, Refer to Table 2 in the  
100  
200  
μF  
OUT  
Applications Information Section  
IN  
OUT  
4600fc  
7
LTM4600  
OPERATION  
μModule Description  
a 10%windowaroundtheregulationpoint.Furthermore,  
in an overvoltage condition, internal top FET Q1 is turned  
off and bottom FET Q2 is turned on and held on until the  
overvoltage condition clears.  
The LTM4600 is a standalone non-isolated synchronous  
switching DC/DC power supply. It can deliver up to 10A of  
DC output current with only bulk external input and output  
capacitors. This module provides a precisely regulated  
outputvoltageprogrammableviaoneexternalresistorfrom  
Pulling the RUN/SS pin low forces the controller into its  
shutdown state, turning off both Q1 and Q2. Releasing  
the pin allows an internal 1.2μA current source to charge  
up the softstart capacitor. When this voltage reaches 1.5V,  
the controller turns on and begins switching.  
0.6V to 5.0V , not to exceed 80% of the input voltage.  
DC  
DC  
The input voltage range is 4.5V to 20V. A simplified block  
diagram is shown in Figure 1 and the typical application  
schematic is shown in Figure 18.  
At low load current the module works in continuous cur-  
rent mode by default to achieve minimum output voltage  
ripple. It can be programmed to operate in discontinuous  
current mode for improved light load efficiency when the  
FCB pin is pulled up above 0.8V and no higher than 6V.  
The FCB pin has a 4.75k resistor to ground, so a resistor  
TheLTM4600containsanintegratedLTCconstanton-time  
current-mode regulator, ultra-low R  
FETs with fast  
DS(ON)  
switchingspeedandintegratedSchottkydiode.Thetypical  
switching frequency is 850kHz at full load. With current  
mode control and internal feedback loop compensation,  
the LTM4600 module has sufficient stability margins and  
good transient performance under a wide range of operat-  
ing conditions and with a wide range of output capacitors,  
even all ceramic output capacitors (X5R or X7R).  
to V can set the voltage on the FCB pin.  
IN  
When EXTV pin is grounded or open, an integrated 5V  
CC  
linear regulator powers the controller and MOSFET gate  
drivers. If a minimum 4.7V external bias supply is ap-  
Current mode control provides cycle-by-cycle fast current  
limit. In addition, foldback current limiting is provided in  
an over-current condition while V  
LTM4600 has defeatable short circuit latch off. Internal  
overvoltage and undervoltage comparators pull the open-  
drainPGOODoutputlowiftheoutputfeedbackvoltageexits  
plied on the EXTV pin, the internal regulator is turned  
CC  
off, and an internal switch connects EXTV to the gate  
CC  
drops. Also, the  
driver voltage. This eliminates the linear regulator power  
OSET  
loss with high input voltage, reducing the thermal stress  
on the controller. The maximum voltage on EXTV pin is  
CC  
6V. The EXTV voltage should never be higher than the  
CC  
V voltage. Also EXTV must be sequenced after V .  
IN  
CC  
IN  
4600fc  
8
LTM4600  
APPLICATIONS INFORMATION  
The typical LTM4600 application circuit is shown in Figure  
18. External component selection is primarily determined  
by the maximum load current and output voltage.  
down when Q  
is on and Q is off. If the output  
UP  
DOWN  
voltage V needs to be margined up/down by M%, the  
O
resistor values of R and R  
the following equations:  
can be calculated from  
UP  
DOWN  
Output Voltage Programming and Margining  
(RSET RUP)VO (1+M%)  
(RSET RUP)+100k  
The PWM controller of the LTM4600 has an internal  
0.6V 1% reference voltage. As shown in the block dia-  
gram, a 100k/0.5% internal feedback resistor connects  
= 0.6V  
RSET • VO (1M%)  
V
and V  
pins. Adding a resistor R from V  
OUT  
OSET SET OSET  
= 0.6V  
pin to SGND pin programs the output voltage:  
R
SET +(100kRDOWN  
)
100k +RSET  
VO = 0.6V •  
Input Capacitors  
RSET  
The LTM4600 μModule should be connected to a low  
ac-impedance DC source. High frequency, low ESR input  
capacitors are required to be placed adjacent to the mod-  
Table 1 shows the standard values of 1% R  
resistor  
SET  
for typical output voltages:  
ule. In Figure 18, the bulk input capacitor C is selected  
Table 1.  
IN  
for its ability to handle the large RMS current into the  
converter. For a buck converter, the switching duty-cycle  
can be estimated as:  
R
SET  
Open 100  
0.6 1.2  
66.5  
1.5  
49.9  
1.8  
43.2  
2
31.6  
2.5  
22.1  
3.3  
13.7  
5
(kΩ)  
V
(V)  
O
VO  
Voltagemarginingisthedynamicadjustmentoftheoutput  
voltage to its worst case operating range in production  
testing to stress the load circuitry, verify control/protec-  
tion functionality of the board and improve the system  
reliability. Figure 2 shows how to implement margining  
function with the LTM4600. In addition to the feedback  
D=  
V
IN  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
IO(MAX)  
ICIN(RMS)  
=
D(1D)  
resistor R , several external components are added.  
SET  
%  
Turn off both transistor Q and Q  
margining. When Q is on and Q  
voltage is margined up. The output voltage is margined  
to disable the  
UP  
DOWN  
In the above equation, η% is the estimated efficiency of  
the power module. C1 can be a switcher-rated electrolytic  
aluminum capacitor, OS-CON capacitor or high volume  
ceramic capacitors. Note the capacitor ripple current  
ratings are often based on only 2000 hours of life. This  
makes it advisable to properly derate the input capacitor,  
or choose a capacitor rated at a higher temperature than  
required. Always contact the capacitor manufacturer for  
derating requirements.  
is off, the output  
UP  
DOWN  
V
OUT  
LTM4600  
R
DOWN  
Q
100k  
DOWN  
2N7002  
V
OSET  
PGND  
SGND  
R
R
UP  
SET  
In Figure 18, the input capacitors are used as high fre-  
quency input decoupling capacitors. In a typical 10A  
output application, 1-2 pieces of very low ESR X5R or  
X7R, 10μF ceramic capacitors are recommended. This  
decoupling capacitor should be placed directly adjacent  
Q
UP  
2N7002  
4600 F02  
Figure 2. LTM4600 Margining Implementation  
4600fc  
9
LTM4600  
APPLICATIONS INFORMATION  
the module input pins in the PCB layout to minimize the  
trace inductance and high frequency AC noise.  
Soft-Start and Latchoff with the RUN/SS pin  
The RUN/SS pin provides a means to shut down the  
LTM4600 as well as a timer for soft-start and over-cur-  
rent latchoff. Pulling the RUN/SS pin below 0.8V puts  
Output Capacitors  
TheLTM4600isdesignedforlowoutputvoltageripple.The  
the LTM4600 into a low quiescent current shutdown (I  
Q
bulk output capacitors C  
is chosen with low enough  
≤ 75μA). Releasing the pin allows an internal 1.2μA cur-  
OUT  
effectiveseriesresistance(ESR)tomeettheoutputvoltage  
ripple and transient requirements. C can be low ESR  
rent source to charge up the timing capacitor C . Inside  
SS  
LTM4600, thereisaninternal1000pFcapacitorfromRUN/  
OUT  
tantalum capacitor, low ESR polymer capacitor or ceramic  
capacitor (X5R or X7R). The typical capacitance is 200μF  
if all ceramic output capacitors are used. The internally  
optimized loop compensation provides sufficient stability  
margin for all ceramic capacitors applications. Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spike is required. Refer to Table 2 for an output capaci-  
tance matrix for each output voltage Droop, peak to peak  
deviation and recovery time during a 5A/μs transient with  
a specific output capacitance.  
SS pin to ground. If RUN/SS pin has an external capacitor  
C
to ground, the delay before starting is about:  
SS_EXT  
1.5V  
1.2μA  
tDELAY  
=
(CSS_EXT +1000pF)  
WhenthevoltageonRUN/SSpinreaches1.5V,theLTM4600  
internal switches are operating with a clamping of the  
maximum output inductor current limited by the RUN/SS  
pintotalsoft-startcapacitance. AstheRUN/SSpinvoltage  
rises to 3V, the soft-start clamping of the inductor current  
is released.  
Fault Conditions: Current Limit and Over current  
Foldback  
V to V  
Step-Down Ratios  
IN  
OUT  
There are restrictions in the maximum V to V  
step  
IN  
OUT  
The LTM4600 has a current mode controller, which inher-  
ently limits the cycle-by-cycle inductor current not only in  
steady state operation, but also in transient.  
down ratio that can be achieved for a given input voltage.  
These contraints are shown in the Typical Performance  
Characteristics curves labeled “V to V  
Step-Down  
IN  
OUT  
To further limit current in the event of an over load condi-  
tion,theLTM4600providesfoldbackcurrentlimiting.Ifthe  
output voltage falls by more than 50%, then the maximum  
output current is progressively lowered to about one sixth  
of its full current limit value.  
Ratio”.Notethatadditionalthermalderatingmayapply.See  
the Thermal Considerations and Output Current Derating  
sections of this data sheet.  
After the controller has been started and given adequate  
4600fc  
10  
LTM4600  
APPLICATIONS INFORMATION  
Table 2. Output Voltage Response Versus Component Matrix (Refer to Figure 18)  
TYPICAL MEASURED VALUES  
C
OUT1  
VENDORS  
PART NUMBER  
C
OUT2  
VENDORS  
PART NUMBER  
TDK  
C4532X5R0J107MZ (100μF,6.3V)  
JMK432BJ107MU-T ( 100μF, 6.3V)  
JMK316BJ226ML-T501 ( 22μF, 6.3V)  
SANYO POSCAP  
SANYO POSCAP  
SANYO POSCAP  
6TPE330MIL (330μF, 6.3V)  
2R5TPE470M9 (470μF, 2.5V)  
4TPE470MCL (470μF, 4V)  
TAIYO YUDEN  
TAIYO YUDEN  
V
C
C
C
C
C
C3  
V
IN  
(V)  
DROOP  
(mV)  
PEAK TO PEAK  
RECOVERY TIME  
(μs)  
LOAD STEP  
(A/μs)  
OUT  
IN  
IN  
OUT1  
OUT2  
COMP  
(V)  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
(CERAMIC)  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
(BULK)  
(CERAMIC)  
(BULK)  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
(mV)  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
3 × 22μF 6.3V  
4 × 100μF 6.3V  
1 × 100μF 6.3V  
3 × 22μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
2 × 100μF 6.3V  
1 × 100μF 6.3V  
3 × 22μF 6.3V  
4 × 100μF 6.3V  
1 × 100μF 6.3V  
3 × 22μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
4 × 100μF 6.3V  
4 × 100μF 6.3V  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
5
35  
35  
40  
49  
35  
35  
40  
49  
36  
37  
44  
61  
36  
37  
44  
54  
40  
44  
46  
62  
40  
44  
44  
62  
48  
56  
57  
60  
48  
51  
56  
70  
64  
66  
82  
100  
52  
64  
64  
76  
188  
159  
68  
25  
20  
20  
20  
25  
20  
20  
20  
25  
20  
20  
20  
25  
20  
20  
20  
30  
20  
20  
20  
30  
20  
20  
20  
30  
30  
30  
25  
30  
30  
30  
25  
30  
30  
35  
25  
30  
35  
30  
25  
25  
25  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
70  
5
80  
5
98  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
5
68  
70  
80  
98  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
75  
5
79  
5
84  
5
118  
75  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
5
79  
89  
108  
81  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
5
88  
5
91  
5
128  
81  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
5
85  
91  
125  
103  
113  
116  
115  
103  
102  
113  
159  
126  
132  
166  
200  
106  
129  
126  
144  
375  
320  
470μF 4V  
330μF 6.3V  
470μF 4V  
NONE  
5
5
5
470μF 4V  
470μF 4V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
7
330μF 6.3V  
470μF 4V  
470μF 4V  
NONE  
7
7
7
470μF 4V  
470μF 4V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
15  
20  
NONE  
5
NONE  
4600fc  
11  
LTM4600  
APPLICATIONS INFORMATION  
time to charge up the output capacitor, C is used as a  
SS  
V
RUN/SS  
short-circuittimer.AftertheRUN/SSpinchargesabove4V,  
if the output voltage falls below 75% of its regulated value,  
then a short-circuit fault is assumed. A 1.8μA current then  
4V  
3.5V  
3V  
beginsdischargingC . Ifthefaultconditionpersistsuntil  
SS  
1.5V  
SHORT-CIRCUIT  
LATCH ARMED  
the RUN/SS pin drops to 3.5V, then the controller turns  
off both power MOSFETs, shutting down the converter  
permanently. The RUN/SS pin must be actively pulled  
down to ground in order to restart operation.  
t
SOFT-START  
CLAMPING  
OF I RELEASED  
SHORT-CIRCUIT  
LATCHOFF  
OUTPUT  
OVERLOAD  
HAPPENS  
L
The over-current protection timer requires the soft-start  
V
O
timing capacitor C be made large enough to guarantee  
SS  
75%V  
O
that the output is in regulation by the time C has reached  
SS  
the 4V threshold. In general, this will depend upon the size  
of the output capacitance, output voltage and load current  
characteristic. A minimum external soft-start capacitor  
can be estimated from:  
t
SWITCHING  
STARTS  
4600 F03  
Figure 3. RUN/SS Pin Voltage During Startup and  
Short-Circuit Protection  
C
SS EXT +1000pF >COUT • VOUT(10–3[F / VS])  
V
V
IN  
IN  
Generally 0.1μF is more than sufficient.  
R
LTM4600  
RUN/SS  
RUN/SS  
Since the load current is already limited by the current  
mode control and current foldback circuitry during a  
shortcircuit, over-currentlatchoffoperationisNOTalways  
needed or desired, especially if the output has a large  
amount of capacitance or the load draws huge currents  
during start up. The latchoff feature can be overridden  
by a pull-up current greater than 5μA but less than 80μA  
to the RUN/SS pin. The additional currents prevents the  
PGND SGND  
4600 F04  
RECOMMENDED VALUES FOR R  
RUN/SS  
V
R
RUN/SS  
IN  
4.5V TO 5.5V  
10.8V TO 13.8V  
16V TO 20V  
50k  
150k  
330k  
Figure 4. Defeat Short-Circuit Latchoff with a Pull-Up  
Resistor to VIN  
discharge of C during a fault and also shortens the soft-  
SS  
start period. Using a resistor from RUN/SS pin to V is  
IN  
a simple solution to defeat latchoff. Any pull-up network  
must be able to maintain RUN/SS above 4V maximum  
latchoff threshold and overcome the 4μA maximum dis-  
charge current. Figure 3 shows a conceptual drawing of  
Enable  
The RUN/SS pin can be driven from logic as shown in  
Figure 5. This function allows the LTM4600 to be turned  
on or off remotely. The ON signal can also control the  
sequence of the output voltage.  
V
during startup and short circuit.  
RUN  
RUN/SS  
LTM4600  
ON  
PGND SGND  
2N7002  
4600 F05  
Figure 5. Enable Circuit with External Logic  
4600fc  
12  
LTM4600  
APPLICATIONS INFORMATION  
Output Voltage Tracking  
1. EXTV grounded. Internal 5V LDO is always powered  
CC  
from the internal 5V regulator.  
For the applications that require output voltage tracking,  
several LTM4600 modules can be programmed by the  
power supply tracking controller such as the LTC2923.  
Figure 6 shows a typical schematic with LTC2923. Coin-  
2. EXTV connected to an external supply. Internal LDO  
CC  
is shut off. A high efficiency supply compatible with the  
MOSFET gate drive requirements (typically 5V) can im-  
prove overall efficiency. With this connection, it is always  
cident, ratiometric and offset tracking for V rising and  
O
falling can be implemented with different sets of resistor  
required that the EXTV voltage can not be higher than  
CC  
values. See the LTC2923 data sheet for more details.  
V pin voltage.  
IN  
Discontinuous Operation and FCB Pin  
Q1  
V
IN  
5V  
DC/DC  
3.3V  
The FCB pin determines whether the internal bottom  
MOSFET remains on when the inductor current reverses.  
There is an internal 4.75k pull-down resistor connecting  
this pin to ground. The default light load operation mode  
is forced continuous (PWM) current mode. This mode  
provides minimum output voltage ripple.  
V
V
IN  
IN  
R
V
GATE  
RAMP  
FB1  
ONB  
CC  
LTM4600  
V
V
1.8V  
ON  
OSET  
OUT  
R
ONA  
49.9k  
LTC2923  
STATUS  
SDO  
RAMPBUF  
TRACK1  
TRACK2  
V
V
In the application where the light load efficiency is im-  
portant, tying the FCB pin above 0.6V threshold enables  
discontinuous operation where the bottom MOSFET turns  
offwheninductorcurrentreverses.Therefore,theconduc-  
tionlossisminimizedandlightloadefficiencyisimproved.  
The penalty is that the controller may skip cycle and the  
output voltage ripple increases at light load.  
IN  
R
TB1  
IN  
R
TB2  
R
LTM4600  
V
TA1  
V
FB2  
1.5V  
OSET  
OUT  
GND  
R
66.5k  
TA2  
4600 F06  
Figure 6. Output Voltage Tracking with the LTC2923 Controller  
Paralleling Operation with Load Sharing  
EXTV Connection  
CC  
TwoormoreLTM4600modulescanbeparalleledtoprovide  
higher than 10A output current. Figure 7 shows the neces-  
saryinterconnectionbetweentwoparalleledmodules.The  
OPTI-LOOP® current mode control ensures good current  
sharing among modules to balance the thermal stress.  
The new feedback equation for two or more LTM4600s  
in parallel is:  
An internal low dropout regulator produces an internal 5V  
supply that powers the control circuitry and FET drivers.  
Therefore, if the system does not have a 5V power rail,  
the LTM4600 can be directly powered by V . The gate  
IN  
driver current through LDO is about 18mA. The internal  
LDO power dissipation can be calculated as:  
P
= 18mA • (V – 5V)  
IN  
LDO_LOSS  
100k  
+RSET  
N
The LTM4600 also provides an external gate driver volt-  
age pin EXTV . If there is a 5V rail in the system, it is  
CC  
VOUT = 0.6V •  
RSET  
recommended to connect EXTV pin to the external 5V  
CC  
rail. Whenever the EXTV pin is above 4.7V, the internal  
CC  
where N is the number of LTM4600s in parallel.  
5V LDO is shut off and an internal 50mA P-channel switch  
connects the EXTV to internal 5V. Internal 5V is supplied  
CC  
OPTI-LOOP is a registered trademark of Linear Technology Corporation.  
from EXTV until this pin drops below 4.5V. Do not apply  
CC  
more than 6V to the EXTV pin and ensure that EXTV  
CC  
CC  
< V . The following list summaries the possible connec-  
IN  
tions for EXTV :  
CC  
4600fc  
13  
LTM4600  
APPLICATIONS INFORMATION  
temperature measurements at the bench, and thermal  
modelinganalysis.ApplicationNote103providesadetailed  
explanationoftheanalysisforthethermalmodels, andthe  
derating curves. Tables 3 and 4 provide a summary of the  
V
IN  
V
V
V
IN  
OUT  
OUT  
(20A  
)
MAX  
LTM4600  
PGND COMP  
V
SGND  
OSET  
R
SET  
equivalent θ for the noted conditions. These equivalent  
JA  
θ parametersarecorrelatedtothemeasuredvalues, and  
JA  
COMP  
V
SGND  
OSET  
improve with air-flow. The case temperature is maintained  
at 100°C or below for the derating curves. This allows for  
4W maximum power dissipation in the total module with  
top and bottom heatsinking, and 2W power dissipation  
V
LTM4600  
V
OUT  
IN  
PGND  
4600 F07  
through the top of the module with an approximate θ  
JC  
Figure 7. Parallel Two μModules with Load Sharing  
between 6°C/W to 9°C/W. This equates to a total of 124°C  
at the junction of the device.  
Thermal Considerations and Output Current Derating  
Safety Considerations  
The power loss curves in Figures 8 and 13 can be used  
in coordination with the load current derating curves in  
Figures 9 to 12, and Figures 14 to 15 for calculating an  
TheLTM4600modulesdonotprovideisolationfromV to  
IN  
V
.Thereisnointernalfuse.Ifrequired,aslowblowfuse  
OUT  
approximate θ for the module with various heatsink-  
JA  
with a rating twice the maximum input current should be  
ing methods. Thermal models are derived from several  
provided to protect each unit from catastrophic failure.  
Table 3. 1.5V Output  
DERATING CURVE  
Figures 9, 11  
Figures 9, 11  
Figures 9, 11  
Figures 10, 12  
Figures 10, 12  
Figures 10, 12  
V
(V)  
POWER LOSS CURVE  
Figure 8  
AIR FLOW (LFM)  
HEATSINK  
None  
θ
JA  
(°C/W)  
IN  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
0
15.2  
14  
Figure 8  
200  
400  
0
None  
Figure 8  
None  
12  
Figure 8  
BGA Heatsink  
BGA Heatsink  
BGA Heatsink  
13.9  
11.3  
10.25  
Figure 8  
200  
400  
Figure 8  
Table 4. 3.3V Output  
DERATING CURVE  
Figure 14  
V
IN  
(V)  
POWER LOSS CURVE  
Figure 13  
AIR FLOW (LFM)  
HEATSINK  
None  
θ
JA  
(°C/W)  
12  
0
15.2  
14.6  
13.4  
13.9  
11.1  
10.5  
Figure 14  
12  
12  
12  
12  
12  
Figure 13  
200  
400  
0
None  
Figure 14  
Figure 13  
None  
Figure 15  
Figure 13  
BGA Heatsink  
BGA Heatsink  
BGA Heatsink  
Figure 15  
Figure 13  
200  
400  
Figure 15  
Figure 13  
4600fc  
14  
LTM4600  
APPLICATIONS INFORMATION  
10  
10  
9
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 1.5V  
V
V
= 5V  
OUT  
IN  
O
V
V
= 5V  
IN  
O
= 1.5V  
= 1.5V  
9
8
8
7
7
12V LOSS  
6
5V LOSS  
6
0LFM  
200LFM  
400LFM  
5
0 LFM  
200 LFM  
400 LFM  
5
4
0
2
4
6
8
10  
50  
60  
70  
80  
90  
50  
60  
70  
80  
90  
100  
OUTPUT CURRENT (A)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4600 F08  
4600 F09  
4600 G10  
Figure 8. Power Loss vs Load Current  
Figure 9. No Heatsink  
Figure 10. BGA Heatsink  
10  
9
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= 12V  
IN  
V
V
= 12V  
V
= 12V  
IN  
O
IN  
O
= 3.3V  
OUT  
= 1.5V  
V
= 1.5V  
9
8
7
6
5
4
8
7
6
0LFM  
200LFM  
400LFM  
0 LFM  
200 LFM  
400 LFM  
5
50  
60  
70  
80  
90  
100  
50 55 60 65 70 75 80 85 90  
AMBIENT TEMPERATURE (°C)  
4600 F11  
0
2
4
6
8
10  
AMBIENT TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
4600 G12  
4600 F13  
Figure 11. No Heatsink  
Figure 12. BGA Heatsink  
Figure 13. Power Loss vs Load Current  
10  
9
10  
9
V
V
= 12V  
= 3.3V  
IN  
O
V
V
= 12V  
= 3.3V  
IN  
O
8
7
8
6
5
7
4
3
6
0LFM  
200LFM  
400LFM  
2
0 LFM  
200 LFM  
400 LFM  
1
0
5
40  
60  
80  
100  
40  
50  
60  
70  
80  
90  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4600 G15  
4600 F14  
Figure 14. No Heatsink  
Figure 15. BGA Heatsink  
4600fc  
15  
LTM4600  
APPLICATIONS INFORMATION  
Layout Checklist/Example  
LTM4600 Frequency Adjustment  
The high integration of the LTM4600 makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
The LTM4600 is designed to typically operate at 850kHz  
across most input and output conditions. The control ar-  
chitectureisconstantontimevalleymodecurrentcontrol.  
The f  
pin is typically left open or decoupled with an  
ADJ  
optional 1000pF capacitor. The switching frequency has  
beenoptimizedtomaintainconstantoutputrippleoverthe  
operatingconditions.Theequationsforsettingtheoperat-  
ing frequency are set around a programmable constant on  
time.Thisontimeisdevelopedbyaprogrammablecurrent  
into an on board 10pF capacitor that establishes a ramp  
that is compared to a voltage threshold equal to the output  
• Use large PCB copper areas for high current path, in-  
cluding V , PGND and V . It helps to minimize the  
IN  
OUT  
PCB conduction loss and thermal stress  
• Place high frequency ceramic input and output capaci-  
tors next to the V , PGND and V  
pins to minimize  
IN  
OUT  
high frequency noise  
voltage up to a 2.4V clamp. This I current is equal to:  
ON  
• Place a dedicated power ground layer underneath  
the unit  
I
= (V – 0.7V)/110k, with the 110k onboard resistor  
ON  
IN  
IN  
from V to f . The on time is equal to t = (V /I )  
ADJ  
OFF  
ON  
OUT ON  
• To minimize the via conduction loss and reduce module  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers  
• 10pF and t = t – t . The frequency is equal to: Freq.  
s
ON  
= DC/t . The I current is proportional to V , and the  
ON  
ON  
IN  
regulator duty cycle is inversely proportional to V , there-  
IN  
forethestep-downregulatorwillremainrelativelyconstant  
• Do not put a via directly on pad unless it is capped  
frequency as the duty cycle adjustment takes place with  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit  
lowering V . The on time is proportional to V  
up to a  
IN  
OUT  
2.4V clamp. This will hold frequency relatively constant  
with different output voltages up to 2.4V. The regulator  
switching period is comprised of the on time and off time  
as depicted in Figure 17.  
Figure 16 gives a good example of the recommended  
layout.  
V
IN  
C
IN  
PGND  
V
OUT  
4600 F16  
LOAD  
TOP LAYER  
Figure 16. Recommended PCB Layout  
4600fc  
16  
LTM4600  
APPLICATIONS INFORMATION  
t
ON  
(DC) DUTY CYCLE =  
t
t
= 0.41 • 1μs 410ns  
ON  
t
s
t
V
OUT  
ON  
DC =  
=
t
s
V
IN  
= 1μs – 410ns 590ns  
OFF  
DC  
FREQ =  
t
ON  
t
t
ON  
OFF  
t
and t are above the minimums with adequate guard  
OFF  
ON  
band.  
4600 F21  
PERIOD t  
s
Using the frequency = (I /[2.4V • 10pF]) • DC, solve for  
ON  
I
= (1MHz • 2.4V • 10pF) • (1/0.41) 58μA. I current  
ON  
ON  
Figure 17. LTM4600 Switching Period  
calculated from 12V input was 103μA, so a resistor from  
f
to ground = (0.7V/15k) = 46μA. 103μA – 46μA =  
TheLTM4600hasaminimum(t )ontimeof100nanosec-  
ADJ  
ON  
57μA, sets the adequate I current for proper frequency  
onds and a minimum (t ) off time of 400 nanoseconds.  
ON  
OFF  
range for the higher duty cycle conversion of 12V to  
The 2.4V clamp on the ramp threshold as a function of  
5V. Input voltage range is limited to 9V to 16V. Higher  
V
will cause the switching frequency to increase by the  
OUT  
input voltages can be used without the 15k on f . The  
ratio of V /2.4V for 3.3V and 5V outputs. This is due to  
ADJ  
OUT  
inductor ripple current gets too high above 16V, and the  
the fact the on time will not increase as V  
increases  
OUT  
400ns minimum off-time is limited below 9V.  
past 2.4V. Therefore, if the nominal switching frequency  
is 850kHz, then the switching frequency will increase  
to ~1.2MHz for 3.3V, and ~1.7MHz for 5V outputs due  
Equations for setting frequency for 5V to 3.3V:  
I
ON  
= (V – 0.7V)/110k; I = 39μA  
IN ON  
to Frequency = (DC/t ) When the switching frequency  
ON  
increases to 1.2MHz, then the time period t is reduced  
S
frequency = (I /[2.4V • 10pF]) • DC = 1.07MHz;  
ON  
to ~833 nanoseconds and at 1.7MHz the switching period  
reduces to ~588 nanoseconds. When higher duty cycle  
conversions like 5V to 3.3V and 12V to 5V need to be  
accommodated, then the switching frequency can be  
lowered to alleviate the violation of the 400ns minimum  
DC = duty cycle, duty cycle is (V /V )  
OUT IN  
t = t + t , t = DC • t , t = off-time of the  
OFF  
S
ON  
OFF ON  
S
switching period; t = 1/frequency  
S
t
must be greater than 400ns, or t – t > 400ns.  
S ON  
OFF  
off time. Since the total switching period is t = t + t  
,
S
ON OFF  
The ~450kHz frequency or 2.22μs period is chosen for  
5V to 3.3V. Frequency range is about 450kHz to 650kHz  
from 4.5V to 7V input.  
t
will be below the 400ns minimum off time. A resistor  
OFF  
from the f  
pin to ground can shunt current away from  
ADJ  
the on time generator, thus allowing for a longer on time  
and a lower switching frequency. 12V to 5V and 5V to  
3.3V derivations are explained in the data sheet to lower  
switching frequency and accommodate these step-down  
conversions.  
t
t
= 0.66 • 2.22μs 1.46μs  
= 2.22μs – 1.46μs 760ns  
ON  
OFF  
t
and t are above the minimums with adequate guard  
OFF  
ON  
band.  
Equations for setting frequency for 12V to 5V:  
Using the frequency = (I /[2.4V • 10pF]) • DC, solve for  
ON  
I
ON  
= (V – 0.7V)/110k; I = 103μA  
IN ON  
I
ON  
= (450kHz • 2.4V • 10pF) • (1/0.66) 16μA. I current  
ON  
calculated from 5V input was 39μA, so a resistor from f  
frequency = (I /[2.4V • 10pF]) • DC = 1.79MHz;  
ADJ  
ON  
to ground = (0.7V/30.1k) = 23μA. 39μA – 23μA = 16μA,  
DC = duty cycle, duty cycle is (V /V )  
OUT IN  
sets the adequate I current for proper frequency range  
ON  
t = t + t , t = on-time, t = off-time of the  
OFF  
S
ON  
OFF ON  
for the higher duty cycle conversion of 5V to 3.3V. Input  
switching period; t = 1/frequency  
S
voltagerangeislimitedto4.5Vto7V.Higherinputvoltages  
t
must be greater than 400ns, or t – t > 400ns.  
S ON  
can be used without the 30.1k on f . The inductor ripple  
OFF  
ADJ  
current gets too high above 7V, and the 400ns minimum  
t
= DC • t  
S
ON  
off-time is limited below 4.5V.  
1MHz frequency or 1μs period is chosen for 12V to 5V.  
4600fc  
17  
LTM4600  
APPLICATIONS INFORMATION  
5V to 3.3V at 8A  
R1  
30.1k  
4.5V TO 7V  
C5  
100pF  
C3  
10μF  
25V  
C1  
10μF  
25V  
V
f
ADJ  
IN  
3.3V AT 8A EFFICIENCY = 93%  
EXTV  
FCB  
V
CC  
OUT  
+
C2  
22μF  
C4  
330μF  
6.3V  
V
OSET  
R2  
22.1k  
1%  
LTM4600  
RUN/SOFT-START  
RUN/SS  
COMP  
SV  
IN  
PGOOD  
PGND  
OPEN DRAIN  
SGND  
4600 F18  
5V TO 3.3V AT 8A WITH f  
= 30.1k  
C1, C3: TDK C3216X5R1E106MT  
C2: TAIYO YUDEN, JMK316BJ226ML  
C4: SANYO POS CAP, 6TPE330MIL  
ADJ  
12V to 5V at 8A  
R1  
15k  
9V TO 16V  
C5  
100pF  
C3  
10μF  
25V  
C1  
10μF  
25V  
V
IN  
f
ADJ  
5V AT 8A  
EFFICIENCY = 94%  
EXTV  
V
CC  
OUT  
C4  
+
C2  
22μF  
330μF  
FCB  
V
OSET  
6.3V  
R2  
13.7k  
1%  
LTM4600  
RUN/SOFT-START  
RUN/SS  
COMP  
SV  
IN  
PGOOD  
PGND  
OPEN DRAIN  
SGND  
4600 F19  
12V TO 5V AT 8A WITH f  
= 15k  
C1, C3: TDK C3216X5R1E106MT  
C2: TAIYO YUDEN, JMK316BJ226ML  
C4: SANYO POSCAP, 6TPE330MIL  
ADJ  
VIN to VOUT Step-Down Ratio for  
12VIN to 5VOUT and 5VIN to 3.3VOUT  
5.0  
3.3V: f  
= 30.1k  
ADJ  
4.5 5V: f  
= 15k  
ADJ  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.3V AT 8A  
5V AT 8A  
0.5  
0
1
3
5
7
9
11 13 15 17  
V
(V)  
IN  
4600 F20  
4600fc  
18  
LTM4600  
TYPICAL APPLICATION  
V
IN  
+
C
(BULK)  
C
(CER)  
IN  
IN  
5V TO 20V  
GND  
150μF  
10μF  
V
IN  
2x  
(MULTIPLE PINS)  
EXTV  
V
V
OUT  
CC  
OUT  
(MULTIPLE PINS)  
C3  
100pF  
SV  
IN  
C
+
OUT1  
C
OUT2  
22μF  
6.3V  
×3  
f
ADJ  
470μF  
V
REFER TO  
TABLE 2  
V
OSET  
OUT  
LTM4600  
COMP  
FCB  
REFER TO  
TABLE 2  
RUN/SS  
PGOOD  
0.6V TO 5V  
SGND  
REFER TO STEP-DOWN  
RATIO GRAPH  
PGND  
(MULTIPLE PINS)  
C4  
OPT  
R1  
66.5k  
REFER TO  
TABLE 1  
GND  
4600 F17  
Figure 18. Typical Application, 5V to 20V Input, 0.6V to 5V Output, 10A Max  
4600fc  
19  
LTM4600  
TYPICAL APPLICATION  
Parallel Operation and Load Sharing  
4.5V TO 20V  
V
= 0.6V • ([100k/N] + R )/R  
SET SET  
OUT  
WHERE N = 2  
C8  
10μF  
25V  
C7  
10μF  
25V  
V
f
ADJ  
IN  
2.5V  
EXTV  
FCB  
V
CC  
OUT  
+
C9  
C10  
470μF  
4V  
V
OSET  
22μF  
x3  
LTM4600  
R4  
15.8k  
1%  
RUN  
SV  
IN  
COMP  
PGOOD  
PGND  
SGND  
2.5V AT 20A  
RUN/SOFT-START  
C4  
220pF  
C3  
10μF  
25V  
C1  
10μF  
V
f
ADJ  
IN  
25V  
2.5V  
R1  
EXTV  
V
CC  
OUT  
+
C2  
22μF  
x3  
C5  
470μF  
4V  
FCB  
V
OSET  
LTM4600  
RUN  
SV  
IN  
100k  
COMP  
PGOOD  
PGND  
SGND  
C1, C3, C7, C8: TDK C3216X5R1E106MT  
C2, C9: TAIYO YUDEN, JMK316BJ226ML-T501  
C5, C10: SANYO POSCAP, 4TPE470MCL  
4600 TA02  
Current Sharing Between Two  
LTM4600 Modules  
12  
10  
8
12V  
IN  
2.5V  
OUT  
MAX  
20A  
6
I
OUT2  
I
OUT1  
4
2
0
0
10  
TOTAL LOAD  
15  
20  
5
4600 TA03  
4600fc  
20  
LTM4600  
PACKAGE DESCRIPTION  
Z
b b b  
Z
6 . 9 8 6 5  
5 . 7 1 4 2  
6 . 3 5 0 0  
3 . 8 1 0 0  
1 . 2 7 0 0  
5 . 0 8 0 0  
4 . 4 4 4 2  
3 . 1 7 4 2  
1 . 9 0 4 2  
2 . 5 4 0 0  
0 . 0 0 0 0  
0 . 6 3 4 2  
0 . 0 0 0 0  
0 . 3 1 7 5  
0 . 3 1 7 5  
0 . 6 3 5 8  
1 . 2 7 0 0  
3 . 8 1 0 0  
6 . 3 5 0 0  
1 . 9 0 5 8  
3 . 1 7 5 8  
2 . 5 4 0 0  
5 . 0 8 0 0  
4 . 4 4 5 8  
5 . 7 1 5 8  
6 . 9 4 2 1  
4600fc  
21  
LTM4600  
PACKAGE DESCRIPTION  
Pin Assignment Tables  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
C1  
PIN NAME  
PIN NAME  
E1  
PIN NAME  
PIN NAME  
PIN NAME  
A1  
-
B1  
V
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V
-
V
-
V
-
-
-
-
-
-
-
-
-
D1  
V
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V
-
V
-
V
-
-
-
-
-
-
-
-
-
F1  
V
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G1 PGND  
H1  
-
-
-
-
-
-
IN  
IN  
IN  
A2  
-
B2  
C2  
D2  
E2  
F2  
G2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H2  
H3  
H4  
H5  
H6  
A3  
V
-
B3  
C3  
D3  
E3  
F3  
G3  
IN  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
A5  
V
-
B5  
C5  
D5  
E5  
F5  
G5  
IN  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
A7  
V
-
B7  
C7  
D7  
E7  
F7  
G7  
H7 PGND  
H8  
H9 PGND  
H10  
H11 PGND  
H12  
H13 PGND  
H14  
H15 PGND  
H16  
H17 PGND  
IN  
A8  
B8  
C8  
D8  
E8  
F8  
G8  
-
A9  
V
-
B9  
C9  
D9  
E9  
F9  
G9  
IN  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
-
IN  
IN  
IN  
IN  
IN  
IN  
V
-
IN  
-
V
-
IN  
-
f
ADJ  
-
-
A17 SV  
IN  
A18  
-
H18  
H19  
H20  
H21  
H22  
H23  
-
-
-
-
-
-
A19 EXTV  
CC  
A20  
A21  
A22  
A23  
-
V
-
OSET  
-
B23 COMP  
D23 SGND  
F23 RUN/SS G23 FCB  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME PIN NAME  
PIN NAME  
J1 PGND  
K1  
K2  
K3  
K4  
K5  
K6  
-
-
-
-
-
-
L1  
-
M1  
M2 PGND  
M3  
M4 PGND  
M5  
M6 PGND  
M7  
M8 PGND  
M9  
-
N1  
-
P1  
-
R1  
-
T1  
-
J2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L2 PGND  
N2 PGND  
P2  
V
-
R2  
V
-
T2  
V
-
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
J3  
L3  
L4 PGND  
L5  
L6 PGND  
L7  
L8 PGND  
L9  
L10 PGND  
L11  
L12 PGND  
L13  
L14 PGND  
L15  
L16 PGND  
L17  
L18 PGND  
L19  
L20 PGND  
L21  
L22 PGND  
L23  
-
-
N3  
N4 PGND  
N5  
N6 PGND  
N7  
N8 PGND  
N9  
N10 PGND  
N11  
N12 PGND  
N13  
N14 PGND  
N15  
N16 PGND  
N17  
N18 PGND  
N19  
N20 PGND  
N21  
N22 PGND  
N23  
-
P3  
R3  
T3  
J4  
P4  
V
-
R4  
V
-
T4  
V
-
J5  
-
-
-
P5  
R5  
T5  
J6  
P6  
V
-
R6  
V
-
T6  
V
-
J7  
K7 PGND  
K8  
-
-
-
P7  
R7  
T7  
J8  
P8  
V
-
R8  
V
-
T8  
V
-
J9  
K9 PGND  
K10  
-
-
-
P9  
R9  
T9  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
M10 PGND  
M11 -  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
V
-
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
V
-
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
V
-
K11 PGND  
-
-
K12  
K13 PGND  
K14  
K15 PGND  
K16  
K17 PGND  
-
M12 PGND  
M13 -  
V
-
V
-
V
-
-
-
-
M14 PGND  
M15 -  
V
-
V
-
V
-
-
-
-
M16 PGND  
M17 -  
V
-
V
-
V
-
-
-
K18  
K19  
K20  
K21  
K22  
-
-
-
-
-
-
M18 PGND  
M19 -  
V
-
V
-
V
-
-
-
M20 PGND  
M21 -  
V
-
V
-
V
-
-
-
M22 PGND  
M23 -  
V
-
V
-
V
-
J23 PGOOD K23  
-
-
4600fc  
22  
LTM4600  
PACKAGE DESCRIPTION  
Pin Assignment Tables  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
G1  
PGND  
P2  
V
A3  
V
V
V
V
V
V
A15  
A17  
A19  
A21  
B23  
D23  
F23  
G23  
J23  
f
ADJ  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
IN  
IN  
IN  
IN  
P4  
V
V
V
V
V
V
V
V
V
V
A5  
H7  
H9  
H11  
H13  
H15  
H17  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
SV  
IN  
P6  
P8  
A7  
A9  
A11  
A13  
EXTV  
V
CC  
P10  
P12  
P14  
P16  
P18  
P20  
P22  
OSET  
COMP  
B1  
V
IN  
SGND  
RUN/SS  
FCB  
J1  
PGND  
C10  
C12  
C14  
V
IN  
V
IN  
V
IN  
K7  
K9  
K11  
K13  
K15  
K17  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
D1  
V
R2  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
IN  
PGOOD  
R4  
E10  
E12  
E14  
V
IN  
V
IN  
V
IN  
R6  
R8  
R10  
R12  
R14  
R16  
R18  
R20  
R22  
L2  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
F1  
V
IN  
L4  
L6  
L8  
L10  
L12  
L14  
L16  
L18  
L20  
L22  
T2  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
T4  
T6  
T8  
T10  
T12  
T14  
T16  
T18  
T20  
T22  
M2  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
M4  
M6  
M8  
M10  
M12  
M14  
M16  
M18  
M20  
M22  
N2  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
N4  
N6  
N8  
N10  
N12  
N14  
N16  
N18  
N20  
N22  
4600fc  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTM4600  
TYPICAL APPLICATION  
1.8V, 10A Regulator  
4.5V AT 20V  
C5  
100pF  
C2  
10μF  
25V  
C1  
10μF  
V
f
ADJ  
IN  
25V  
1.8V AT 10A  
EXTV  
FCB  
V
CC  
OUT  
+
C3  
22μF  
x3  
C4  
470μF  
4V  
V
OSET  
R1  
100k  
LTM4600  
RUN  
SV  
IN  
COMP  
PGOOD  
PGND  
PGOOD  
R2  
49.9k  
1%  
SGND  
C1, C2: TDK C3216X5R1E106MT  
C3: TAIYO YUDEN, JMK316BJ226ML-T501  
C4: SANYO POSCAP, 4TPE470MCL  
4600 TA04  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC2900  
Quad Supply Monitor with Adjustable Reset Timer  
Power Supply Tracking Controller  
Monitors Four Supplies; Adjustable Reset Timer  
LTC2923  
Tracks Both Up and Down; Power Supply Sequencing  
No Optocoupler Required; 3.3V, 12A Output; Simple Design  
LT3825/LT3837  
LTM4601  
Synchronous Isolated Flyback Controllers  
12A DC/DC μModule with PLL, Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4601-1 Version has no Remote  
Sensing  
LTM4602  
LTM4603  
6A DC/DC μModule  
Pin Compatible with the LTM4600  
6A DC/DC μModule with PLL and Outpupt Tracking/ Synchronizable, PolyPhase Operation, LTM4603-1 Version has no Remote  
Margining and Remote Sensing  
Sensing, Pin Compatible with the LTM4601  
®
This product contains technology licensed from Silicon Semiconductor Corporation.  
4600fc  
LT 0807 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY