3573 [Linear]

Isolated Flyback Converter Without an Opto-Coupler; 隔离型反激式转换器无需光耦合器
3573
型号: 3573
厂家: Linear    Linear
描述:

Isolated Flyback Converter Without an Opto-Coupler
隔离型反激式转换器无需光耦合器

转换器 光电
文件: 总24页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3573  
Isolated Flyback Converter  
Without an Opto-Coupler  
FEATURES  
DESCRIPTION  
The LT®3573 is a monolithic switching regulator specifi-  
cally designed for the isolated flyback topology. No third  
winding or optoisolator is required for regulation. The  
part senses the isolated output voltage directly from the  
primary side flyback waveform. A 1.25A, 60V NPN power  
switch is integrated along with all control logic into a 16-  
lead MSOP package.  
n
3V to 40V Input Voltage Range  
n
1.25A, 60V Integrated NPN Power Switch  
n
Boundary Mode Operation  
n
No Transformer Third Winding or  
Optoisolator Required for Regulation  
n
Improved Primary-Side Winding Feedback  
Load Regulation  
n
V
Set with Two External Resistors  
OUT  
The LT3573 operates with input supply voltages from  
3V to 40V, and can deliver output power up to 7W with  
no external power devices.The LT3573 utilizes boundary  
mode operation to provide a small magnetic solution with  
improved load regulation.  
n
BIAS Pin for Internal Bias Supply and Power  
NPN Driver  
Programmable Soft-Start  
n
n
n
Programmable Power Switch Current Limit  
Thermally Enhanced 16-Lead MSOP  
LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Patents pending.  
APPLICATIONS  
n
Industrial, Automotive, Medical  
Low Power PoE  
n
TYPICAL APPLICATION  
5V Isolated Flyback Converter  
Load Regulation  
V
IN  
12V TO 24V  
3
B340A  
+
3:1  
10μF  
V
OUT  
357k  
2
1
0.22μF  
2k  
24μH  
5V, 0.7A  
V
IN  
2.6μH  
SHDN/UVLO  
47μF  
51.1k  
1N4148  
80.6k  
V
OUT  
0
V
IN  
= 24V  
R
FB  
LT3573  
V
IN  
= 12V  
R
REF  
–1  
–2  
–3  
TC  
R
6.04k  
ILIM  
SS  
SW  
VC  
GND TEST BIAS  
400 600 800 1000 1200 1400  
(mA)  
0
200  
I
10k  
20k  
1nF  
28.7k  
OUT  
3573 TA01b  
4.7μF  
10nF  
3573 TA01  
3573f  
1
LT3573  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
SW............................................................................60V  
TOP VIEW  
V , SHDN/UVLO, R , BIAS .....................................40V  
IN  
FB  
1
16  
GND  
GND  
SS, V , T , R , R  
...............................................5V  
2
C
C
REF ILIM  
TEST  
15 TC  
3
14  
13  
12  
11  
10  
9
GND  
R
R
REF  
FB  
C
Maximum Junction Temperature........................... 125°C  
Operating Junction Temperature Range (Note 2)  
LT3573E.............................................–40°C to 125°C  
Storage Temperature Range...................–65°C to 150°C  
4
SW  
17  
5
V
IN  
V
6
7
8
BIAS  
SHDN/UVLO  
GND  
R
ILIM  
SS  
GND  
MSE PACKAGE  
16-LEAD PLASTIC MSOP  
T
= 125°C, θ = 50°C/W, θ = 10°C/W  
JA JC  
JMAX  
EXPOSED PAD (PIN 17) IS GND, MUST BE CONNECTED TO GND  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3573EMSE#PBF  
LT3573IMSE#PBF  
TAPE AND REEL  
PART MARKING*  
3573  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3573EMSE#TRPBF  
LT3573IMSE#TRPBF  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
40°C to 125°C  
40°C to 125°C  
3573  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
Input Voltage Range  
Quiescent Current  
3
40  
V
SS = 0V  
SHDN/UVLO  
3.5  
0
mA  
μA  
V
= 0V  
1
Soft-Start Current  
SS = 0.4V  
UVLO Pin Voltage Rising  
7
μA  
V
l
SHDN/UVLO Pin Threshold  
SHDN/UVLO Pin Hysteresis Current  
Soft-Start Threshold  
1.15  
2
1.22  
2.5  
1.29  
3
V
UVLO  
= 1V  
μA  
V
0.7  
Maximum Switching Frequency  
Switch Current Limit  
1000  
1.55  
200  
150  
1.23  
kHz  
A
R
= 10k  
1.25  
140  
1.85  
260  
250  
ILIM  
Minimum Current Limit  
V = 0V  
C
mA  
mV  
V
Switch V  
I
= 0.5A  
= 3V  
CESAT  
SW  
R
REF  
Voltage  
V
1.21  
1.20  
1.25  
1.25  
IN  
l
l
R
R
Voltage Line Regulation  
Pin Bias Current  
3V < V < 40V  
0.01  
100  
190  
0.03  
600  
%/ V  
nA  
REF  
IN  
(Note 3)  
REF  
I
Reference Current  
Measured at R Pin with R = 6.49k  
μA  
REF  
FB  
REF  
3573f  
2
LT3573  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
= 3V  
MIN  
TYP  
150  
150  
40  
MAX  
UNITS  
V/V  
Error Amplifier Voltage Gain  
Error Amplifier Transconductance  
Minimum Switching Frequency  
V
IN  
μmhos  
kHz  
ΔI = 10μA, V = 3V  
IN  
V = 0.35V  
C
TC Current into R  
BIAS Pin Voltage  
R
= 20.1k  
27.5  
3
μA  
REF  
TC  
I
= 30mA  
2.9  
3.1  
V
BIAS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
to 125°C operating junction temperature range are assured by design  
characterization and correlation with statistical process controls. The  
LT3573I is guaranteed over the full –40°C to 125°C operating junction  
temperature range.  
Note 2: The LT3573E is guaranteed to meet performance specifications  
Note 3: Current flows out of the R pin.  
REF  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
Bias Pin Voltage  
Output Voltage  
Quiescent Current  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
7
6
5
4
3
2
1
0
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
V
IN  
= 40V  
V
= 40V  
= 5V  
IN  
V
IN  
= 12V  
V
IN  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3573 G01  
3573 G02  
3573 G03  
3573f  
3
LT3573  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
Switch VCESAT  
Switch Current Limit  
Switch Current Limit vs RILIM  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
400  
350  
300  
250  
200  
150  
100  
50  
MAXIMUM CURRENT LIMIT  
25°C  
125°C  
–50°C  
RILIM = 10k  
MINIMUM CURRENT LIMIT  
0
–25  
0
25  
50  
75 100 125  
10  
20  
30  
40  
50  
–50  
0
0
0.25 0.50 0.75 1.00 1.25 1.50  
SWITCH CURRENT (A)  
TEMPERATURE (°C)  
R
RESISTANCE (k)  
ILIM  
3573 G05  
3573 G06  
3573 G04  
SS Pin Current  
SHDN/UVLO Falling Threshold  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
12  
10  
8
6
4
2
0
–20  
0
20 40 60  
140  
–20  
0
20 40 60  
140  
–60 –40  
80 100 120  
–60 –40  
80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3573 G07  
3573 G08  
3573f  
4
LT3573  
PIN FUNCTIONS  
GND: Ground.  
SS: Soft-Start Pin. Place a soft-start capacitor here to  
limit start-up inrush current and output voltage ramp  
rate. Switching starts when the voltage at this pin reaches  
~0.7V.  
TEST: This pin is used for testing purposes only and must  
be connected to ground for the part to operate properly.  
SW: Collector Node of the Output Switch. This pin has  
large currents flowing through it. Keep the traces to the  
switching components as short as possible to minimize  
electromagnetic radiation and voltage spikes.  
V :CompensationPinforInternalErrorAmplifier.Connect  
C
a series RC from this pin to ground to compensate the  
switching regulator. A 100pF capacitor in parallel helps  
eliminate noise.  
V : Input Voltage. This pin supplies current to the internal  
IN  
R : Input Pin for External Feedback Resistor. This pin is  
FB  
start-up circuitry and as a reference voltage for the DCM  
comparatorandfeedbackcircuitry.Thispinmustbelocally  
bypassed with a capacitor.  
connected to the transformer primary (V ). The ratio  
SW  
of this resistor to the R  
resistor, times the internal  
REF  
bandgap reference, determines the output voltage (plus  
the effect of any non-unity transformer turns ratio). The  
average current through this resistor during the flyback  
period should be approximately 200μA. For nonisolated  
BIAS: Bias Voltage. This pin supplies current to the switch  
driver and internal circuitry of the LT3573. This pin must  
be locally bypassed with a capacitor. This pin may also be  
connected to V if a third winding is not used and if V  
applications, this pin should be connected to V .  
IN  
IN  
IN  
≤ 15V. If a third winding is used, the BIAS voltage should  
be lower than the input voltage for proper operation.  
R
: Input Pin for External Ground-Referred Reference  
REF  
Resistor. This resistor should be in the range of 6k, but  
for convenience, need not be precisely this value. For  
nonisolated applications, a traditional resistor voltage  
divider may be connected to this pin.  
SHDN/UVLO:Shutdown/UndervoltageLockout.Aresistor  
divider connected to V is tied to this pin to program the  
IN  
minimum input voltage at which the LT3573 will operate.  
At a voltage below ~0.7V, the part draws no quiescent  
current. When below 1.25V and above ~0.7V, the part will  
draw 10μA of current, but internal circuitry will remain off.  
Above 1.25V, the internal circuitry will start and a 10μA  
current will be fed into the SS pin. When this pin falls  
below 1.25V, 2.5μA will be pulled from the pin to provide  
programmable hysteresis for UVLO.  
T : Output Voltage Temperature Compensation. Connect  
C
a resistor to ground to produce a current proportional to  
absolute temperature to be sourced into the R  
node.  
REF  
I
= 0.55V/R .  
TC  
TC  
Exposed Pad: Ground. The Exposed Pad of the package  
providesbothelectricalcontacttogroundandgoodthermal  
contacttotheprintedcircuitboard.TheExposedPadmust  
be soldered to the circuit board for proper operation and  
should be well connected with many vias to an internal  
ground plane.  
R
ILIM  
: Maximum Current Limit Adjust Pin. A resistor  
should be tied to this pin to ground to set the current  
limit. Use a 10k resistor for the full current capabilities  
of the switch.  
3573f  
5
LT3573  
BLOCK DIAGRAM  
D1  
T1  
+
V
IN  
V
V
OUT  
OUT  
C1  
L1A  
L1B  
C2  
R3  
N:1  
R
V
SW  
FB  
IN  
TC  
CURRENT  
TC  
FLYBACK  
ERROR  
AMP  
+
ONE  
SHOT  
Q3  
Q2  
A2  
V1  
CURRENT  
COMPARATOR  
+
g
m
R6  
R4  
I2  
20μA  
+
1.22V  
A1  
+
120mV  
V
IN  
R
REF  
DRIVER  
BIAS  
S
S
R
Q1  
Q
BIAS  
MASTER  
LATCH  
+
A4  
R
SENSE  
C5  
0.02Ω  
GND  
1.22V  
R1  
R2  
+
SHDN/UVLO  
INTERNAL  
REFERENCE  
AND  
A5  
OSCILLATOR  
I1  
7μA  
REGULATORS  
2.5μA  
V
C
Q4  
R7  
C4  
SS  
R
ILIM  
C3  
3573 BD  
R5  
3573f  
6
LT3573  
OPERATION  
The LT3573 is a current mode switching regulator IC  
designed specifically for the isolated flyback topology.  
The special problem normally encountered in such cir-  
cuits is that information relating to the output voltage on  
the isolated secondary side of the transformer must be  
communicated to the primary side in order to maintain  
regulation. Historically, this has been done with optoisola-  
tors or extra transformer windings. Optoisolator circuits  
waste output power and the extra components increase  
the cost and physical size of the power supply. Optoiso-  
lators can also exhibit trouble due to limited dynamic  
response, nonlinearity, unit-to-unit variation and aging  
over life. Circuits employing extra transformer windings  
also exhibit deficiencies. Using an extra winding adds to  
the transformer’s physical size and cost, and dynamic  
response is often mediocre.  
The LT3573 features a boundary mode control method,  
where the part operates at the boundary between continu-  
ousconductionmodeanddiscontinuousconductionmode.  
TheV pincontrolsthecurrentleveljustasitdoesinnormal  
C
current mode operation, but instead of turning the switch  
on at the start of the oscillator period, the part detects  
when the secondary side winding current is zero.  
Boundary Mode Operation  
Boundary mode is a variable frequency, current-mode  
switching scheme. The switch turns on and the inductor  
currentincreasesuntilaV pincontrolledcurrentlimit.The  
C
voltage on the SW pin rises to the output voltage divided  
by the secondary-to-primary transformer turns ratio plus  
the input voltage. When the secondary current through  
the diode falls to zero, the SW pin voltage falls below V .  
IN  
A discontinuous conduction mode (DCM) comparator  
detects this event and turns the switch back on.  
The LT3573 derives its information about the isolated  
output voltage by examining the primary side flyback  
pulse waveform. In this manner, no optoisolator nor extra  
transformer winding is required for regulation. The output  
voltageiseasilyprogrammedwithtworesistors.Sincethis  
IC operates in boundary control mode, the output voltage  
is calculated from the switch pin when the secondary cur-  
rent is almost zero. This method improves load regulation  
without external resistors and capacitors.  
Boundary mode returns the secondary current to zero  
every cycle, so the parasitic resistive voltage drops do not  
cause load regulation errors. Boundary mode also allows  
the use of a smaller transformer compared to continuous  
conduction mode and no subharmonic oscillation.  
At low output currents the LT3573 delays turning on the  
switch, and thus operates in discontinuous mode. Unlike  
a traditional flyback converter, the switch has to turn on  
to update the output voltage information. Below 0.6V on  
The Block Diagram shows an overall view of the system.  
Many of the blocks are similar to those found in traditional  
switching regulators including: internal bias regulator,  
oscillator, logic, current amplifier and comparator, driver,  
and output switch. The novel sections include a special  
flyback error amplifier and a temperature compensation  
circuit. In addition, the logic system contains additional  
logic for boundary mode operation, and the sampling  
error amplifier.  
the V pin, the current comparator level decreases to  
C
its minimum value, and the internal oscillator frequency  
decreases in frequency. With the decrease of the internal  
oscillator, the part starts to operate in DCM. The output  
current is able to decrease while still allowing a minimum  
switch off-time for the error amp sampling circuitry. The  
typical minimum internal oscillator frequency with V  
C
equal to 0V is 40kHz.  
3573f  
7
LT3573  
APPLICATIONS INFORMATION  
ERROR AMPLIFIER—PSEUDO DC THEORY  
programming resistors, transformer turns ratio and diode  
forward voltage drop:  
IntheBlockDiagram, theR (R4)andR (R3)resistors  
REF  
FB  
can be found. They are external resistors used to program  
the output voltage. The LT3573 operates much the same  
way as traditional current mode switchers, the major  
difference being a different type of error amplifier which  
derives its feedback information from the flyback pulse.  
RFB  
1
VOUT = VBG  
VF ISEC (ESR)  
R
α N  
REF  
PS  
Additionally, it includes the effect of nonzero secondary  
output impedance (ESR). This term can be assumed to  
be zero in boundary control mode. More details will be  
discussed in the next section.  
Operation is as follows: when the output switch, Q1, turns  
off, its collector voltage rises above the V rail. The am-  
IN  
plitude of this flyback pulse, i.e., the difference between  
Temperature Compensation  
it and V , is given as:  
IN  
The first term in the V  
equation does not have a tem-  
OUT  
V
= (V  
+ V + I  
• ESR) • N  
SEC PS  
FLBK  
OUT  
F
perature dependence, but the diode forward drop has a  
significant negative temperature coefficient. To compen-  
sate for this, a positive temperature coefficient current  
V = D1 forward voltage  
F
I
= Transformer secondary current  
SEC  
source is connected to the R pin. The current is set by  
REF  
ESR = Total impedance of secondary circuit  
= Transformer effective primary-to-secondary turns ratio  
a resistor to ground connected to the T pin. To cancel the  
C
temperature coefficient, the following equation is used:  
N
PS  
δVF  
δT  
RFB  
RTC  
RFB  
1
NPS  
1
δVTC  
δT  
The flyback voltage is then converted to a current by  
= −  
or,  
the action of R and Q2. Nearly all of this current flows  
FB  
through resistor R  
to form a ground-referred volt-  
REF  
δVTC RFB  
RTC  
=
age. This voltage is fed into the flyback error amplifier.  
The flyback error amplifier samples this output voltage  
information when the secondary side winding current is  
zero. The error amplifier uses a bandgap voltage, 1.23V,  
as the reference voltage.  
NPS δVF / δT δT  
NPS  
(δV /δ ) = Diode’s forward voltage temperature coef-  
F
T
ficient  
(δV /δT) = 2mV  
TC  
The relatively high gain in the overall loop will then cause  
V
= 0.55V  
TC  
the voltage at the R  
resistor to be nearly equal to the  
REF  
bandgap reference voltage V . The relationship between  
The resistor value given by this equation should also be  
verifiedexperimentally,andadjustedifnecessarytoachieve  
optimal regulation over temperature.  
BG  
V
FLBK  
and V may then be expressed as:  
BG  
VBG  
RREF  
VFLBK  
RFB  
α
=
or,  
The revised output voltage is as follows:  
RFB  
1
RFB ⎛ ⎞  
1
VOUT = VBG  
VF  
VFLBK = VBG  
⎟ ⎜  
⎟ ⎜ ⎟  
R
N
α
R
α⎠  
REF  
PS  
REF  
α = Ratio of Q1 I to I , typically  
0.986  
VTC  
RFB  
NPS α  
C
E
ISEC (ESR)  
R
V
BG  
= Internal bandgap reference  
TC  
In combination with the previous V  
expression yields  
FLBK  
an expression for V , in terms of the internal reference,  
OUT  
3573f  
8
LT3573  
APPLICATIONS INFORMATION  
ERROR AMPLIFIER—DYNAMIC THEORY  
Selecting R and R  
Resistor Values  
REF  
FB  
Due to the sampling nature of the feedback loop, there  
are several timing signals and other constraints that are  
required for proper LT3573 operation.  
The expression for V  
developed in the Operation sec-  
OUT,  
tion, can be rearranged to yield the following expression  
for R :  
FB  
RREF NPS  
V
+ V α + V  
(
)
OUT  
F
TC  
Minimum Current Limit  
RFB  
=
VBG  
The LT3573 obtains output voltage information from the  
SW pin when the secondary winding conducts current.  
The sampling circuitry needs a minimum amount of time  
to sample the output voltage. To guarantee enough time,  
a minimum inductance value must be maintained. The  
primary side magnetizing inductance must be chosen  
above the following value:  
where,  
V
= Output voltage  
OUT  
V = Switching diode forward voltage  
F
α = Ratio of Q1, IC to IE, typically 0.986  
N
V
= Effective primary-to-secondary turns ratio  
= 0.55V  
PS  
tMIN  
IMIN  
1.4µH  
LPRI VOUT  
NPS = VOUT NPS •  
TC  
V ⎠  
The equation assumes the temperature coefficients of  
the diode and V are equal, which is a good first-order  
t
I
= minimum off-time, 350ns  
MIN  
MIN  
TC  
approximation.  
= minimum current limit, 250mA  
Strictly speaking, the above equation defines R not as  
The minimum current limit is higher than that on the Elec-  
trical Characteristics table due to the overshoot caused by  
the comparator delay.  
FB  
an absolute value, but as a ratio of R . So the next ques-  
REF  
tion is, “What is the proper value for R ?” The answer  
REF  
is that R  
should be approximately 6.04k. The LT3573  
REF  
Leakage Inductance Blanking  
is trimmed and specified using this value of R . If the  
REF  
impedance of R  
varies considerably from 6.04k, ad-  
REF  
When the output switch first turns off, the flyback pulse  
appears.However,ittakesanitetimeuntilthetransformer  
primary side voltage waveform approximately represents  
the output voltage. This is partly due to the rise time on  
the SW node, but more importantly due to the trans-  
former leakage inductance. The latter causes a very fast  
voltage spike on the primary side of the transformer that  
is not directly related to output voltage (some time is also  
required for internal settling of the feedback amplifier  
circuitry). The leakage inductance spike is largest when  
the power switch current is highest.  
ditional errors will result. However, a variation in R  
of  
REF  
several percent is acceptable. This yields a bit of freedom  
in selecting standard 1% resistor values to yield nominal  
R /R ratios.  
FB REF  
Tables 1-4 are useful for selecting the resistor values for  
R
R
and R with no equations. The tables provide R ,  
REF  
REF  
FB FB  
and R values for common output voltages and  
TC  
common winding ratios.  
Table 1. Common Resistor Values for 1:1 Transformers  
V
(V)  
N
R
FB  
(kΩ)  
R
(kΩ)  
R
TC  
(kΩ)  
OUT  
PS  
REF  
3.3  
1.00  
1.00  
1.00  
1.00  
1.00  
18.7  
6.04  
19.1  
Inordertomaintainimmunitytothesephenomena, axed  
delay is introduced between the switch turn-off command  
andthebeginningofthesampling.Theblankingisinternally  
set to 150ns. In certain cases, the leakage inductance may  
not be settled by the end of the blanking period, but will  
not significantly affect output regulation.  
5
27.4  
64.9  
80.6  
107  
6.04  
6.04  
6.04  
6.04  
28  
12  
15  
20  
66.5  
80.6  
105  
3573f  
9
LT3573  
APPLICATIONS INFORMATION  
Table 2. Common Resistor Values for 2:1 Transformers  
relatively constant maximum output current regardless of  
input voltage. This is due to the continuous nonswitching  
behavior of the two currents. A flyback converter has both  
discontinuous input and output currents which makes it  
similar to a nonisolated buck-boost. The duty cycle will  
affect the input and output currents, making it hard to  
predict output power. In addition, the winding ratio can  
be changed to multiply the output current at the expense  
of a higher switch voltage.  
V
OUT  
(V)  
N
R
FB  
(kΩ)  
R
(kΩ)  
R
TC  
(kΩ)  
PS  
REF  
3.3  
2.00  
2.00  
2.00  
2.00  
37.4  
6.04  
18.7  
5
56  
6.04  
6.04  
6.04  
28  
12  
15  
130  
162  
66.5  
80.6  
Table 3. Common Resistor Values for 3:1 Transformers  
(V) (kΩ) (kΩ)  
V
OUT  
N
R
FB  
R
R
TC  
(kΩ)  
PS  
REF  
3.3  
3.00  
3.00  
3.00  
56.2  
6.04  
20  
The graphs in Figures 1-3 show the maximum output  
power possible for the output voltages 3.3V, 5V, and 12V.  
Themaximumpoweroutputcurveisthecalculatedoutput  
power if the switch voltage is 50V during the off-time. To  
achieve this power level at a given input, a winding ratio  
value must be calculated to stress the switch to 50V,  
resulting in some odd ratio values. The curves below are  
examplesofcommonwindingratiovaluesandtheamount  
of output power at given input voltages.  
5
80.6  
165  
6.04  
6.04  
28.7  
54.9  
10  
Table 4. Common Resistor Values for 4:1 Transformers  
(V) (kΩ) (kΩ)  
V
N
R
R
R
(kΩ)  
OUT  
PS  
FB  
REF  
TC  
3.3  
4.00  
4.00  
76.8  
113  
6.04  
6.04  
19.1  
28  
5
One design example would be a 5V output converter with  
a minimum input voltage of 20V and a maximum input  
voltageof30V. Athree-to-onewindingratiotsthisdesign  
example perfectly and outputs close to six watts at 30V  
but lowers to five watts at 20V.  
Output Power  
A flyback converter has a complicated relationship be-  
tween the input and output current compared to a buck  
or a boost. A boost has a relatively constant maximum  
input current regardless of input voltage and a buck has a  
8
8
8
MAXIMUM  
OUTPUT  
POWER  
MAXIMUM  
OUTPUT  
POWER  
MAXIMUM  
OUTPUT  
POWER  
N = 5:1  
N = 2:1  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
N = 2:1  
N = 3:1  
N = 3:1  
N = 7:1  
N = 3:1  
N = 1:1  
N = 2:1  
N = 1:1  
10 15 20 25 30  
INPUT VOLTAGE (V)  
45  
0
5
35 40  
10 15 20 25 30  
INPUT VOLTAGE (V)  
45  
0
5
35 40  
10 15 20 25 30  
INPUT VOLTAGE (V)  
45  
0
5
35 40  
3573 F01  
3573 F03  
3573 F02  
Figure 1. Output Power for 3.3V Output  
Figure 2. Output Power for 5V Output  
Figure 3. Output Power for 12V Output  
3573f  
10  
LT3573  
APPLICATIONS INFORMATION  
TRANSFORMER DESIGN CONSIDERATIONS  
Linear Technology has worked with several leading mag-  
netic component manufacturers to produce pre-designed  
flybacktransformersforusewiththeLT3573.Table5shows  
the details of several of these transformers.  
Transformer specification and design is perhaps the most  
criticalpartofsuccessfullyapplyingtheLT3573.Inaddition  
to the usual list of caveats dealing with high frequency  
isolated power supply transformer design, the following  
information should be carefully considered.  
Table 5. Predesigned Transformers—Typical Specifications, Unless Otherwise Noted  
TRANSFORMER  
PART NUMBER  
L
L
R
R
SEC  
TARGET  
SIZE (W × L × H)  
PRI  
LEAKAGE  
PRI  
(μH)  
(nH)  
N :N :N  
B
(mΩ)  
125  
117  
117  
82  
(mΩ)  
5.6  
7.5  
9.5  
11  
VENDOR  
APPLICATIONS  
(mm)  
P
S
PA2364NL  
PA2363NL  
PA2362NL  
PA2454NL  
PA2455NL  
PA2456NL  
25  
1000  
850  
550  
430  
450  
390  
7:1:1  
5:1:1  
4:1:1  
3:1:1  
2:1:1  
1:1:1  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
12V- >3.3V, 1.5A  
12V- >5V, 1A  
15.24 × 13.1 × 11.45  
15.24 × 13.1 × 11.45  
15.24 × 13.1 × 11.45  
15.24 × 13.1 × 11.45  
15.24 × 13.1 × 11.45  
15.24 × 13.1 × 11.45  
25  
24  
24V- >3.3V, 1.5A  
24V- >5V, 1A  
24  
25  
82  
22  
24V- >12V, 0.5A  
25  
82  
84  
12V- >12V, 0.3A  
24V- >12V, 0.4A  
36V- >5V, 0.6A  
PA2617NL  
PA2626NL  
PA2627NL  
GA3429-BL  
GA3430-BL  
GA3431-BL  
750310471  
750310559  
750310562  
750310563  
21  
30  
50  
25  
25  
25  
25  
24  
25  
25  
245  
403  
766  
566  
685  
945  
350  
400  
330  
325  
1:1:0.33  
3:1:1  
3:1:1  
4:1:1  
5:1:1  
7:1:1  
3:1:1  
4:1:1  
2:1:1  
1:1:0.5  
164  
240  
420  
95  
166  
66  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
Coilcraft  
24V- >15V, 0.4A  
24V- >5V, 1A  
12.70 × 10.67 × 9.14  
12.70 × 10.67 × 9.14  
15.24 × 13.1 × 11.45  
15.24 × 12.7 × 11.43  
15.24 × 12.7 × 11.43  
15.24 × 12.7 × 11.43  
15.24 × 13.3 × 11.43  
15.24 × 13.3 × 11.43  
15.24 × 13.3 × 11.43  
15.24 × 13.3 × 11.43  
44  
24V- >5V, 1A  
7.5  
5.5  
5.5  
11  
24V- >3.3V, 1.5A  
12V- >5V, 1A  
90  
Coilcraft  
90  
Coilcraft  
12V- >3.3V, 1.5A  
24V- >5V, 1A  
57  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
51  
16  
24V- >3.3V, 1.5A  
24V- >12V, 0.5A  
60  
20  
60  
60  
24V- >12V, 0.3A  
24V- >12V, 0.4A  
36V- >5V, 0.6A  
750310564  
750310799  
750370040  
750370041  
750370047  
L11-0059  
63  
25  
30  
50  
30  
24  
18  
450  
125  
150  
450  
150  
3:1:1  
1:1:0.33  
3:1:1  
3:1:1  
3:1:1  
3:1  
115  
60  
50  
74  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
BH Electronics  
24V- > 5V, 0.5A  
24V- >15V, 0.4A  
24V- >5V, 1A  
24V- >5V, 1A  
24V- >5V, 1A  
24V- >5V, 1A  
5V- >5V, 0.2A  
15.24 × 13.3 × 11.43  
9.14 × 9.78 × 10.54  
9.14 × 9.78 × 10.54  
9.14 × 9.78 × 10.54  
13.35 × 10.8 × 9.14  
9.52 × 9.52 × 4.95  
9.52 × 9.52 × 4.95  
60  
12.5  
26  
190  
60  
12.5  
266  
90  
266  
90  
L10-1019  
1:1  
BH Electronics  
3573f  
11  
LT3573  
APPLICATIONS INFORMATION  
Turns Ratio  
Leakage Inductance  
Note that when using an R /R  
resistor ratio to set Transformer leakage inductance (on either the primary or  
FB REF  
output voltage, the user has relative freedom in selecting secondary)causesavoltagespiketoappearattheprimary  
a transformer turns ratio to suit a given application.In after the output switch turns off. This spike is increasingly  
contrast, simpler ratios of small integers, e.g., 1:1, 2:1, prominent at higher load currents where more stored  
3:2, etc., can be employed to provide more freedom in energy must be dissipated. In most cases, a snubber  
setting total turns and mutual inductance.  
circuit will be required to avoid overvoltage breakdown at  
the output switch node. Transformer leakage inductance  
should be minimized.  
Typically,thetransformerturnsratioischosentomaximize  
availableoutputpower.Forlowoutputvoltages(3.3Vor5V),  
aN:1turnsratiocanbeusedwithmultipleprimarywindings An RCD (resistor capacitor diode) clamp, shown in Figure  
relative to the secondary to maximize the transformer’s 4, is required for most designs to prevent the leakage  
current gain (and output power). However, remember that inductance spike from exceeding the breakdown voltage  
the SW pin sees a voltage that is equal to the maximum of the power device. The flyback waveform is depicted in  
input supply voltage plus the output voltage multiplied by Figure 5. In most applications, there will be a very fast  
the turns ratio. This quantity needs to remain below the voltage spike caused by a slow clamp diode that may not  
ABS MAX rating of the SW pin to prevent breakdown of exceed60V.Oncethediodeclamps,theleakageinductance  
the internal power switch. Together these conditions place current is absorbed by the clamp capacitor. This period  
an upper limit on the turns ratio, N, for a given application. should not last longer than 150ns so as not to interfere  
Choose a turns ratio low enough to ensure:  
50V – V  
with the output regulation, and the voltage during this  
clamp period must not exceed 55V. The clamp diode turns  
off after the leakage inductance energy is absorbed and  
the switch voltage is then equal to:  
IN(MAX)  
N <  
VOUT + VF  
For larger N:1 values, a transformer with a larger physical  
size is needed to deliver additional current and provide a  
largeenoughinductancevaluetoensurethattheoff-timeis  
long enough to accurately measure the output voltage.  
V
= V  
+ N(V  
+ V )  
OUT F  
SW(MAX)  
IN(MAX)  
This voltage must not exceed 50V. This same equation  
also determines the maximum turns ratio.  
When choosing the snubber network diode, careful atten-  
tion must be paid to maximum voltage seen by the SW  
pin. Schottky diodes are typically the best choice to be  
used in the snubber, but some PN diodes can be used if  
they turn on fast enough to limit the leakage inductance  
spike. The leakage spike must always be kept below 60V.  
For lower output power levels, a 1:1 or 1:N transformer  
can be chosen for the absolute smallest transformer size.  
A 1:N transformer will minimize the magnetizing induc-  
tance (and minimize size), but will also limit the available  
output power. A higher 1:N turns ratio makes it possible  
to have very high output voltages without exceeding the  
breakdown voltage of the internal power switch.  
Figures 6 and 7 show the SW pin waveform for a 24V ,  
IN  
5V  
application at a 1A load current. Notice that the  
OUT  
Linear Technology has worked with several magnetic  
componentmanufacturerstoproducepredesignedyback  
transformers for use with the LT3573. Table 5 shows the  
details of several of these transformers.  
leakage spike is very high (more than 65V) with the “bad”  
diode, while the “good” diode effectively limits the spike  
to less than 55V.  
3573f  
12  
LT3573  
APPLICATIONS INFORMATION  
V
SW  
L
S
< 60V  
< 55V  
< 50V  
C
R
+
D
t
> 350ns  
OFF  
TIME  
3573 F05  
t
< 150ns  
3573 F04  
SP  
Figure 4. RCD Clamp  
Figure 5. Maximum Voltages for SW Pin Flyback Waveform  
10V/DIV  
10V/DIV  
3573 F06  
3573 F07  
100ns/DIV  
100ns/DIV  
Figure 6. Good Snubber Diode Limits SW Pin Voltage  
Figure 7. Bad Snubber Diode Does Not Limit SW Pin Voltage  
3573f  
13  
LT3573  
APPLICATIONS INFORMATION  
Secondary Leakage Inductance  
The Switch Current Limit vs R  
plot in the Typical Per-  
ILIM  
formance Characteristics section depicts a more accurate  
current limit.  
In addition to the previously described effects of leakage  
inductance in general, leakage inductance on the second-  
ary in particular exhibits an additional phenomenon. It  
forms an inductive divider on the transformer secondary  
that effectively reduces the size of the primary-referred  
flyback pulse used for feedback. This will increase the  
output voltage target by a similar percentage. Note that  
unlike leakage spike behavior, this phenomenon is load  
independent. To the extent that the secondary leakage  
inductance is a constant percentage of mutual inductance  
(overmanufacturingvariations),thiscanbeaccommodated  
Undervoltage Lockout (UVLO)  
The SHDN/UVLO pin is connected to a resistive voltage  
divider connected to V as shown in Figure 8. The voltage  
IN  
threshold on the SHDN/UVLO pin for V rising is 1.22V.  
IN  
To introduce hysteresis, the LT3573 draws 2.5μA from the  
SHDN/UVLOpinwhenthepinisbelow1.22V.Thehysteresis  
is therefore user-adjustable and depends on the value of  
R1. The UVLO threshold for V rising is:  
IN  
by adjusting the R /R resistor ratio.  
FB REF  
1.22V (R1+ R2)  
V
=
+ 2.5µA R1  
IN(UVLO,RISING)  
R2  
The UVLO threshold for V falling is:  
Winding Resistance Effects  
Resistance in either the primary or secondary will reduce  
IN  
overall efficiency (P /P ). Good output voltage regula-  
OUT IN  
1.22V (R1+ R2)  
V
=
tion will be maintained independent of winding resistance  
IN(UVLO,FALLING)  
R2  
due to the boundary mode operation of the LT3573.  
To implement external run/stop control, connect a small  
NMOS to the UVLO pin, as shown in Figure 8. Turning the  
NMOS on grounds the UVLO pin and prevents the LT3573  
from operating, and the part will draw less than a 1μA of  
quiescent current.  
Bifilar Winding  
A bifilar, or similar winding technique, is a good way to  
minimize troublesome leakage inductances. However, re-  
member that this will also increase primary-to-secondary  
capacitanceandlimittheprimary-to-secondarybreakdown  
voltage, so bifilar winding is not always practical. The  
Linear Technology applications group is available and  
extremely qualified to assist in the selection and/or design  
of the transformer.  
V
IN  
R1  
R2  
SHDN/UVLO  
LT3573  
Setting the Current Limit Resistor  
RUN/STOP  
CONTROL  
(OPTIONAL)  
Themaximumcurrentlimitcanbesetbyplacingaresistor  
between the RILIM pin and ground. This provides some  
flexibilityinpickingstandardoff-the-shelftransformersthat  
may be rated for less current than the LT3573’s internal  
power switch current limit. If the maximum current limit  
is needed, use a 10k resistor. For lower current limits, the  
following equation sets the approximate current limit:  
GND  
3573 F08  
Figure 8. Undervoltage Lockout (UVLO)  
RILIM = 65 • 103(1.6A ILIM)+ 10k  
3573f  
14  
LT3573  
APPLICATIONS INFORMATION  
Minimum Load Requirement  
Loop Compensation  
The LT3573 obtains output voltage information through  
thetransformerwhilethesecondarywindingisconducting  
current. During this time, the output voltage (multiplied  
times the turns ratio) is presented to the primary side of  
the transformer. The LT3573 uses this reflected signal to  
regulate the output voltage. This means that the LT3573  
must turn on every so often to sample the output voltage,  
which delivers a small amount of energy to the output.  
This sampling places a minimum load requirement on the  
output of 1% to 2% of the maximum load.  
The LT3573 is compensated using an external resistor-  
capacitor network on the V pin. Typical values are in the  
C
range of R = 50k and C = 1nF (see the numerous sche-  
C
C
maticsintheTypicalApplicationssectionforotherpossible  
values). If too large of an R value is used, the part will be  
C
more susceptible to high frequency noise and jitter. If too  
smallofanR valueisused,thetransientperformancewill  
C
suffer. The value choice for C is somewhat the inverse  
C
of the R choice: if too small a C value is used, the loop  
C
C
may be unstable, and if too large a C value is used, the  
C
transient performance will also suffer. Transient response  
plays an important role for any DC/DC converter.  
BIAS Pin Considerations  
For applications with an input voltage less than 15V, the  
Design Example  
BIAS pin is typically connected directly to the V pin. For  
IN  
The following example illustrates the converter design  
process using LT3573.  
input voltages greater than 15V, it is preferred to leave the  
BIAS pin separate form the V pin. In this condition, the  
IN  
BIAS pin is regulated with an internal LDO to a voltage of  
3V.BykeepingtheBIASpinseparatefromtheinputvoltage  
at high input voltages, the physical size of the capacitors  
can be minimized (the BIAS pin can then use a 6.3V or  
10V rated capacitor).  
Given the input voltage of 20V to 28V, the required output  
is 5V, 1A.  
V
= 20V, V  
= 1A  
= 28V, V = 5V, V = 0.5V  
OUT F  
IN(MIN)  
IN(MAX)  
and I  
OUT  
1. Select the transformer turns ratio to accommodate  
the output.  
Overdriving the BIAS Pin with a Third Winding  
The LT3573 provides excellent output voltage regulation  
without the need for an optocoupler, or third winding, but  
for some applications with higher input voltages (>20V),  
it may be desirable to add an additional winding (often  
called a third winding) to improve the system efficiency.  
For proper operation of the LT3573, if a winding is used as  
a supply for the BIAS pin, ensure that the BIAS pin voltage  
is at least 3.15V and always less than the input voltage.  
The output voltage is reflected to the primary side by a  
factor of turns ratio N. The switch voltage stress V is  
SW  
expressed as:  
NP  
NS  
N =  
VSW(MAX) = V + N(VOUT + VF) < 50V  
IN  
Or rearranged to:  
For a typical 24V application, overdriving the BIAS pin  
IN  
50 V  
will improve the efficiency gain 4-5%.  
IN(MAX)  
N <  
(VOUT + VF)  
Ontheotherhand,theprimarysidecurrentismultipliedby  
the same factor of N. The converter output capability is:  
1
2
IOUT(MAX) = 0.8 (1D) • NIPK  
N(VOUT + VF)  
D =  
V + N(VOUT + VF)  
IN  
3573f  
15  
LT3573  
APPLICATIONS INFORMATION  
Table 7.Switching Frequency at Different Primary Inductance  
at IPK  
The transformer turns ratio is selected such that the  
converter has adequate current capability and a switch  
stress below 50V. Table 6 shows the switch voltage stress  
and output current capability at different transformer  
turns ratio.  
f
SW  
AT V  
f
AT V  
IN(MIN)  
SW IN(MAX)  
L (μH)  
25  
(kHz)  
236  
121  
61  
(kHz)  
305  
157  
80  
50  
Table 6. Switch Voltage Stress and Output Current Capability vs  
Turns-Ratio  
100  
Note: The switching frequency is calculated at maximum output.  
V
AT V  
I
AT V  
IN(MIN)  
DUTY CYCLE  
(%)  
SW(MAX)  
IN(MAX)  
OUT(MAX)  
N
(V)  
(A)  
Inthisdesignexample,theminimumprimaryinductanceis  
used to achieve a nominal switching frequency of 275kHz  
at full load. The PA2454NL from Pulse Engineering is  
chosen as the flyback transformer.  
1:1  
2:1  
3:1  
4:1  
33.5  
39  
0.53  
0.88  
1.12  
1.30  
16~22  
28~35  
37~45  
44~52  
44.5  
50  
Given the turns ratio and primary inductance, a custom-  
izedtransformercanbedesignedbymagneticcomponent  
manufacturer or a multi-winding transformer such as a  
Coiltronics Versa-Pac may be used.  
BIAS winding turns ratio is selected to program the BIAS  
voltage to 3~5V. The BIAS voltage shall not exceed the  
input voltage.  
3. Select the output diodes and output capacitor.  
The turns ratio is then selected as primary: secondary:  
BIAS = 3:1:1.  
The output diode voltage stress V is the summation of  
D
the output voltage and reflection of input voltage to the  
secondary side. The average diode current is the load  
current.  
2. Select the transformer primary inductance for target  
switching frequency.  
TheLT3573requiresaminimumamountoftimetosample  
the output voltage during the off-time. This off-time,  
V
N
IN  
VD = VOUT  
+
t
, shall be greater than 350ns over all operating  
OFF(MIN)  
conditions. The converter also has a minimum current  
The output capacitor should be chosen to minimize the  
output voltage ripple while considering the increase in  
size and cost of a larger capacitor. The following equation  
calculates the output voltage ripple.  
limit, L , of 250mA to help create this off-time. This  
defines the minimum required inductance as defined as:  
MIN  
N(VOUT + VF)  
LMIN  
=
• tOFF(MIN)  
LI 2  
2CVOUT  
IMIN  
PK  
ΔVMAX  
=
The transformer primary inductance also affects the  
switchingfrequencywhichisrelatedtotheoutputripple.If  
abovetheminimuminductance,thetransformer’sprimary  
inductancemaybeselectedforatargetswitchingfrequency  
range in order to minimize the output ripple.  
4. Select the snubber circuit to clamp the switch  
voltage spike.  
Aybackconvertergeneratesavoltagespikeduringswitch  
turn-off due to the leakage inductance of the transformer.  
In order to clamp the voltage spike below the maximum  
rating of the switch, a snubber circuit is used. There are  
many types of snubber circuits, for example R-C, R-C-D  
The following equation estimates the switching fre-  
quency.  
1
1
fSW  
=
=
IPK  
IPK  
NPS(VOUT + VF)  
tON + tOFF  
+
V
IN L  
L
3573f  
16  
LT3573  
APPLICATIONS INFORMATION  
andZenerclamps.Amongthem,RCDiswidelyused.Figure  
9 shows the RCD snubber in a flyback converter.  
R
resistor for temperature compensation of the output  
TC  
voltage. R is selected as 6.04k.  
REF  
A typical switch node waveform is shown in Figure 10.  
A small capacitor in parallel with R filters out the noise  
REF  
during the voltage spike, however, the capacitor should  
limit to 10pF. A large capacitor causes distortion on volt-  
age sensing.  
During switch turn-off, the energy stored in the leakage  
inductance is transferred to the snubber capacitor, and  
eventually dissipated in the snubber resistor.  
6. Optimize the compensation network to improve the  
transient performance.  
VC (VC N • VOUT  
)
1
2
LSI2PK fSW  
=
R
The transient performance is optimized by adjusting the  
compensationnetwork.Forbestrippleperformance,select  
a compensation capacitor not less than 1nF, and select a  
compensation resistor not greater than 50k.  
The snubber resistor affects the spike amplitude V and  
C
duration t , the snubber resistor is adjusted such that  
SP  
t
is about 150ns. Prolonged t may cause distortion  
SP  
SP  
to the output voltage sensing.  
7. Current limit resistor, soft-start capacitor and UVLO  
resistor divider  
The previous steps finish the flyback power stage de-  
sign.  
Use the current limit resistor R  
to lower the current  
LIM  
5. Select the feedback resistor for proper output  
voltage.  
limitifacompacttransformerdesignisrequired.Soft-start  
capacitorhelpsduringthestart-upoftheybackconverter.  
Select the UVLO resistor divider for intended input opera-  
tion range. These equations are aforementioned.  
Using the resistor Tables 1-4, select the feedback resis-  
tor R , and program the output voltage to 5V. Adjust the  
FB  
L
S
+
C
R
V
C
NV  
OUT  
D
V
IN  
3573 F10  
t
SP  
3573 F09  
Figure 9. RCD Snubber in a Flyback Converter  
Figure 10. Typical Switch Node Waveform  
3573f  
17  
LT3573  
TYPICAL APPLICATIONS  
Low Input Voltage 5V Isolated Flyback Converter  
D1  
+
V
3:1  
V
IN  
OUT  
5V  
C1  
R1  
5V, 350mA  
C6  
0.22μF  
R8  
2k  
T1  
24μH  
C5  
10μF  
200k  
2.6μH  
V
IN  
47μF  
SHDN/UVLO  
V
R2  
90.9k  
OUT  
D2  
R3  
80.6k  
R
FB  
LT3573  
R
REF  
R4  
6.04k  
TC  
R
SW  
SW  
ILIM  
SS  
VC  
GND TEST BIAS  
R5  
10k  
R6  
28.7k  
R7  
57.6k  
V
IN  
T1: PULSE PA2454NL OR WÜRTH ELEKTRONIK 750310471  
C2  
10nF  
C3  
D1: B340A  
1000pF  
D2: 1N4148  
C5: MURATA, GRM32ER71A476K  
3573 TA02  
12V Isolated Flyback Converter  
D1  
+
V
2:1:1  
V
IN  
OUT1  
5V  
12V, 100mA  
C1  
10μF  
R1  
C6  
R8  
2k  
T1  
C5  
200k  
10.9μH  
D2  
0.22μF  
V
IN  
43.6μH  
47μF  
SHDN/UVLO  
+
V
OUT1  
R2  
90.9k  
D3  
R3  
118k  
V
OUT2  
R
FB  
C6  
LT3573  
10.9μH  
R
47μF  
REF  
R4  
6.04k  
V
OUT2  
–12V, 100mA  
TC  
SW  
SW  
R
ILIM  
SS  
VC  
GND TEST BIAS  
R5  
10k  
R6  
59k  
R7  
56.2k  
V
IN  
C2  
10nF  
C3  
3300pF  
T1: COILTRONICS VPH1-0076-R  
D1, D2: B240A  
D3: 1N4148  
C5, C6: MURATA, GRM32ER71A476K  
3573 TA03  
3573f  
18  
LT3573  
TYPICAL APPLICATIONS  
5V Isolated Flyback Converter  
D1  
V
+
IN  
3:1:1  
V
OUT  
12V TO  
5V, 700mA  
C1  
10μF  
24V  
(*40V)  
R1  
499k  
C6  
0.22μF  
R8  
2k  
T1  
24μH  
C5  
2.6μH  
V
IN  
47μF  
SHDN/UVLO  
V
R2  
71.5k  
OUT  
D3  
R3  
80.6k  
R
FB  
LT3573  
R
REF  
R4  
6.04k  
TC  
R
SW  
ILIM  
SS  
VC  
GND  
BIAS  
TEST  
D2  
R6  
R5  
R7  
28.7k 10k  
45.3k  
*OPTIONAL THIRD  
WINDING FOR  
40V OPERATION  
C2  
10nF  
C4  
4.7μF  
L1C  
2.6μH  
C3  
1000pF  
3573 TA04  
T1: PULSE PA2454NL  
OR WÜRTH ELEKTRONIK 750370047  
D1: B340A  
D3: 1N4148  
C5: MURATA, GRM32ER71A476K  
Efficiency  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 24V  
IN  
V
= 12V  
IN  
400 600 800 1000 1200 1400  
(mA)  
0
200  
I
OUT  
3573 TA04b  
3573f  
19  
LT3573  
TYPICAL APPLICATIONS  
3.3V Isolated Flyback Converter  
D1  
V
+
IN  
4:1:1  
V
OUT  
12V TO 24V  
3.3V, 1A  
C1  
10μF  
(*40V)  
R1  
499k  
C6  
0.22μF  
R8  
2k  
T1  
24μH  
C5  
1.5μH  
V
IN  
47μF  
SHDN/UVLO  
V
R2  
71.5k  
OUT  
D3  
R3  
76.8k  
R
FB  
LT3573  
R
REF  
R4  
6.04k  
TC  
R
SW  
ILIM  
SS  
VC  
GND TEST BIAS  
D2  
R6  
R5  
R7  
25.5k  
19.1k 10k  
*OPTIONAL THIRD  
WINDING FOR  
40V OPERATION  
C4  
4.7μF  
C2  
10nF  
C3  
1500pF  
L1C  
1.5μH  
3573 TA05  
T1: PULSE PA2362NL  
OR COILCRAFT GA3429-BL  
D1: B340A  
D3: 1N4148  
12V Isolated Flyback Converter  
D1  
3:1  
V
OUT  
V
IN  
5V  
12V, 400mA  
C1  
10μF  
R1  
C6  
R8  
2k  
C5  
T1  
58.5μH  
499k  
6.5μH  
0.22μF  
V
IN  
47μF  
SHDN/UVLO  
R2  
71.5k  
V
OUT  
D2  
R3  
178k  
LT3573  
R
FB  
R
REF  
R4  
6.04k  
TC  
R
ILIM  
SW  
SS  
VC  
GND TEST BIAS  
R7  
40.2k  
R5  
10k  
R6  
59k  
V
IN  
C2  
10nF  
C3  
4700pF  
T1: COILTRONICS VP1-0102-R  
D1: B340A  
D2: 1N4148  
3573 TA06  
3573f  
20  
LT3573  
TYPICAL APPLICATIONS  
Four Output 12V Isolated Flyback Converter  
V
+
IN  
2:1:1:1:1  
T1  
V
OUT1  
12V TO  
12V, 60mA  
24V  
C1  
D1  
D2  
C5  
C6  
R8  
2k  
10.9μH  
10μF  
43.6μH  
R1  
V
47μF  
0.22μF  
IN  
499k  
+
V
OUT1  
D5  
SHDN/UVLO  
V
OUT2  
R2  
71.5k  
12V, 60mA  
R3  
118k  
C6  
10.9μH  
47μF  
LT3573  
R
FB  
V
OUT2  
OUT3  
R
REF  
TC  
R4  
6.04k  
+
V
R
12V, 60mA  
ILIM  
D3  
D4  
C7  
10.9μH  
10.9μH  
47μF  
V
SW  
SS  
OUT3  
OUT4  
VC  
GND TEST BIAS  
+
R5  
10k  
R6  
59k  
R7  
20k  
V
V
12V, 60mA  
IN  
C8  
C2  
10nF  
C3  
47μF  
0.01μF  
V
OUT4  
T1: COILTRONICS VPH1-0076-R  
D1-D4: B240A  
D5: 1N4148  
3573 TA07  
5V Isolated Flyback Converter Using a Tiny Transformer  
D1  
3:1  
V
OUT  
V
12V  
IN  
5V, 600mA  
C1  
R1  
C6  
R8  
2k  
C5  
T1  
20μH  
10μF  
200k  
2.2μH  
0.22μF  
V
IN  
47μF  
SHDN/UVLO  
R2  
90.9k  
V
OUT  
D2  
R3  
80.6k  
LT3573  
R
FB  
R
REF  
R4  
6.04k  
TC  
ILIM  
SS  
R
SW  
VC  
GND TEST BIAS  
R7  
47.5k  
R5  
30k  
R6  
28.7k  
V
IN  
C2  
10nF  
C3  
1000pF  
T1: BH ELECTRONICS L11-0059  
D1: B340A  
D2: 1N4148  
3573 TA08  
3573f  
21  
LT3573  
TYPICAL APPLICATIONS  
5V Isolated Flyback Converter Using Coupling Inductor  
D1  
+
V
1:1  
V
IN  
OUT  
5V  
5V, 0.2A  
C6  
0.22μF  
R8  
2k  
C5  
47μF  
C1  
10μF  
T1  
23.6μH  
R1  
200k  
23.6μH  
V
IN  
SHDN/UVLO  
V
OUT  
R2  
90.9k  
D2  
R3  
26.1k  
LT3573  
R
FB  
R
REF  
R4  
6.04k  
TC  
R
SS  
VC  
ILIM  
SW  
GND TEST BIAS  
R7  
56.2k  
R5  
10k  
R6  
26.1k  
V
IN  
C2  
10nF  
C3  
1500pF  
T1: BH ELECTRONICS, L10-1022  
D1: B220A  
D2: CMD5H-3  
3573 TA09  
300V Isolated Flyback Converter  
D1  
+
V
V
1:17  
OUT  
IN  
300V, 5mA  
5V TO 15V  
C6  
0.22μF  
R8  
4.7k  
C1  
10μF  
T1  
26μH  
C5, 0.47μF, 400V  
POLY FILM  
R1  
100k  
7.583mH  
V
IN  
SHDN/UVLO  
V
OUT  
R2  
36k  
D2  
R3  
90.9k  
LT3573  
R
FB  
R
REF  
R4  
6.04k  
TC  
R
SS  
ILIM  
SW  
VC  
GND TEST BIAS  
R5  
10k  
R6  
20.5k  
R7  
10k  
V
IN  
C2  
10nF  
C3  
1000pF  
D1: TOSHIBA CRF02  
D2: ZETEX ZHCS 506TA  
3573 TA10  
3573f  
22  
LT3573  
PACKAGE DESCRIPTION  
MSE Package  
16-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1667 Rev A)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 p 0.102  
(.112 p .004)  
2.845 p 0.102  
(.112 p .004)  
0.889 p 0.127  
(.035 p .005)  
1
8
0.35  
REF  
5.23  
(.206)  
MIN  
1.651 p 0.102  
(.065 p .004)  
1.651 p 0.102  
(.065 p .004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
16  
9
0.305 p 0.038  
0.50  
(.0197)  
BSC  
NO MEASUREMENT PURPOSE  
4.039 p 0.102  
(.159 p .004)  
(NOTE 3)  
(.0120 p .0015)  
TYP  
0.280 p 0.076  
(.011 p .003)  
RECOMMENDED SOLDER PAD LAYOUT  
16151413121110  
9
REF  
DETAIL “A”  
0o – 6o TYP  
0.254  
(.010)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
GAUGE PLANE  
0.53 p 0.152  
(.021 p .006)  
1 2 3 4 5 6 7 8  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
MSOP (MSE16) 0608 REV A  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3573f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT3573  
TYPICAL APPLICATION  
9V to 30VIN, +5V/5VOUT Isolated Flyback Converter  
T1  
3:1:1:1  
D1  
D2  
+
V
V
IN  
OUT  
9V TO 30V  
C1  
+5V, 350mA  
C6  
R8  
2k  
C5  
47μF  
L1A  
63μH  
L1B  
H  
V
10μF  
IN  
0.22μF  
R1  
357k  
COM  
SHDN/UVLO  
LT3573  
D4  
R2  
51.1k  
L1C  
H  
C6  
R3  
80.6k  
47μF  
R
FB  
V
OUT  
R
REF  
5V, 350mA  
R4  
6.04k  
TC  
R
ILIM  
SS  
VC  
SW  
GND TEST BIAS  
D3  
R7  
23.7k  
C3  
R5  
R6  
28.7k 10k  
*OPTIONAL THIRD  
WINDING FOR  
>24V OPERATION  
C2  
10nF  
C4  
4.7μF  
L1D  
7μH  
2700pF  
T1: WÜRTH ELEKTRONIK 750310564  
3573 TA11  
RELATED PARTS  
PART NUMBER  
LT1424-5  
DESCRIPTION  
COMMENTS  
Isolated Flyback Switching Regulator  
Isolated Flyback Switching Regulator  
5V Output Voltage, No Optoisolator Required  
LT1424-9  
9V Output, Regulation Maintained Under Light Loads  
No Optoisolator or “Third Winding” Required, Up to 6W Output  
LT1425  
Isolated Flyback Switching Regulator with No  
External Power Devices  
LTC®1624  
LT1725  
Current Mode DC/DC Controller  
300kHz Operating Frequency; Buck, Boost, SEPIC Topologies;  
IN  
V
Up to 36V, SO-8 Package  
General Purpose Isolated Flyback Controller  
No Optoisolator Required, V and V  
Limited Only by External Power  
OUT  
IN  
Components  
LT1737  
High Power Isolated Flyback Controller  
No Optoisolator or “Third Winding” Required, Up to 50W Output  
LTC1871/LTC1871-1, Wide Input Range, No R  
TM Current Mode  
Adjustable Switching Frequency, 2.5V ≤ V ≤ 36V, Optional Burst Mode®  
SENSE  
IN  
LTC1871-7  
Flyback, Boost and SEPIC Controller  
Operation at Light Load  
LTC1872, LTC1872B SOT-23 Constant-Frequency Current Mode Boost 550kHz Switching Frequency, 2.5V to 9.8V V Range  
IN  
DC/DC Controller  
LT1950  
Current Mode PWM Controller  
Controller for Forward, Boost, Flyback and SEPIC Converters from 30W to 300W  
LTC3803/LTC3803-5 200kHz Flyback DC/DC Controller  
V
IN  
V
IN  
and V  
and V  
Limited Only by External Components  
Limited Only by External Components  
OUT  
OUT  
LTC3805/LTC3805-5 Adjustable Frequency Flyback Controller  
LTC3806  
LT3825  
LT3837  
LTC3872  
Synchronous Flyback Controller  
High Efficiency (89%); Multiple Output with Excellent Cross Regulation  
Isolated No-Opto Synchronous Flyback Controller  
Isolated No-Opto Synchronous Flyback Controller  
V
V
16V to 75V Limited by External Components, Up to 80W, Current Mode Control  
IN  
4.5V to 36V Limited by External Components, Up to 60W, Current Mode Control  
IN  
No R  
Boost Controller  
550kHz Fixed Frequency, 2.75V ≤ V ≤ 9.8V, ThinSOTTM or DFN Package  
SENSE  
IN  
LTC3873/LTC3873-5 No R  
Constant-Frequency Boost/Flyback/  
V
and V  
Limited by External Components, 200kHz Frequency, ThinSOT or  
OUT  
SENSE  
IN  
SEPIC Controller  
DFN Package  
Burst Mode is a registered trademark of Linear Technology Corporation. No R  
and ThinSOT are trademarks of Linear Technology Corporation.  
SENSE  
3573f  
LT 1008 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

3573-000

D Type Connector, 14 Contact(s), Female, IDC Terminal, Socket
3M

3573-006

D Type Connector, 14 Contact(s), Female, IDC Terminal, Socket
3M

3573-1000

3M D Ribbon Wiremount Socket
3M

3573-1001

3M D Ribbon Wiremount Socket
3M

3573-1002

3M D Ribbon Wiremount Socket
3M

3573-1006

3M D Ribbon Wiremount Socket
3M

3573-200

FEMALE, OTHER D TYPE CONNECTOR, IDC, SOCKET
3M

3573-2000

CONNECTOR,D-SHELL,CABLE MNT,PLUG,14 CONTACTS,SKT,0.085 PITCH,WIRE TERMINAL,HOLE .138-.163
3M

35730-2900

3.56mm (.140") Diameter Pin Receptacle Terminal, Brass, 0.35mm (.138") Thickness, Wire Range 14-20 AWG (2.00-0.52mm²), Unplated
MOLEX

35730-3000

3.96mm (.156") Diameter Pin Terminal, Brass, 0.50mm (.020") Thickness, Wire Range 14-20 AWG (2.00-0.52mm²), Unplated
MOLEX

35730-3010

3.96mm (.156") Diameter Pin Terminal, Brass, 0.50mm (.020") Thickness, Wire Range 14-20 AWG (2.00-0.52mm²), Post-Tin Plated
MOLEX

35730-3030

3.96mm (.156") Diameter Pin Terminal, Brass, 0.50mm (.020") Thickness, Wire Range 14-20 AWG (2.00-0.52mm²), Au Plated
MOLEX