1646I [Linear]

CompactPCI Dual Hot Swap Controller; CompactPCI的双通道热插拔控制器
1646I
型号: 1646I
厂家: Linear    Linear
描述:

CompactPCI Dual Hot Swap Controller
CompactPCI的双通道热插拔控制器

控制器 PC
文件: 总20页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1646  
CompactPCI Dual  
Hot Swap Controller  
U
DESCRIPTIO  
FEATURES  
The LTC®1646 is a Hot SwapTM controller that allows a  
board to be safely inserted and removed from a live  
CompactPCI bus slot. Two external N-Channel transistors  
control the 3.3V and 5V supplies. The supplies can be  
ramped-up in current limit or a programmable rate. Elec-  
tronic circuit breakers protect both supplies against  
overcurrentfaultconditions.ThePWRGDoutputindicates  
when all of the supply voltages are within tolerance. The  
OFF/ON pin is used to cycle the board power or reset the  
circuit breaker. The PRECHARGE output can be used to  
bias the bus I/O pins during card insertion and extraction.  
PCI_RST# is logically combined on-chip with HEALTHY#  
in order to generate LOCAL_PCI_RST# which can be used  
to reset the CPCI card logic if either of the supply voltages  
is not within tolerance.  
Allows Safe Board Insertion and Removal from a  
Live, CompactPCITM Bus  
Controls 3.3V and/or 5V Supplies  
Programmable Foldback Current Limit During  
Power-Up  
Dual Level Circuit Breakers Protect Supplies from  
Overcurrent and Short-Circuit Faults  
LOCAL_PCI_RST# Logic On-Chip  
PRECHARGE Output Biases I/O Pins During Card  
Insertion and Extraction  
User Programmable Supply Voltage Power-Up Rate  
15V High Side Drive for External N-Channel  
MOSFETS  
PWRGD, RESETOUT and FAULT Outputs  
U
APPLICATIO S  
The LTC1646 is available in the 16-pin narrow SSOP  
package.  
CompactPCI Bus Removable Boards  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Hot Swap is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
COMPACT PCI COMPACT PCI  
BACKPLANE  
CONNECTOR  
(MALE)  
CIRCUIT CARD  
CONNECTOR  
(FEMALE)  
R2  
Z2  
Z1  
0.007  
Q1  
1%  
IRF7413  
5V  
5A  
5V  
R1  
2.7Ω  
1.8Ω  
Q2  
LONG 5V  
3.3V  
0.005, 1%  
IRF7413  
3.3V  
7.6A  
0.1µF  
0.1µF  
R4  
10Ω  
R5  
LONG 3.3V  
BD_SEL#  
R3  
10Ω  
1k, 5%  
V(I/O)  
C1  
0.01µF  
8
9
10  
7
12  
11  
5
3V  
3V  
GATE 3V  
5V  
5V  
5V  
OUT  
IN  
SENSE  
OUT  
IN  
SENSE  
1.2k  
V(I/O)  
3k  
1k  
10k  
2
1
15  
3
OFF/ON  
FAULT  
TIMER  
0.1µF  
3k  
3V  
OUT  
LTC1646  
4
HEALTHY#  
PCI_RST#  
PWRGD  
3k  
16  
RESETIN  
RESETOUT  
GND  
6
PRECHARGE  
13  
DRIVE  
14  
18Ω  
1k  
18Ω  
12Ω  
4.7nF  
3V  
5V  
IN  
IN  
GROUND  
I/O PIN 1  
MMBT2222A  
PRECHARGE OUT  
1V ±10%  
3V  
5V  
IN  
3.3V  
10k  
I
= ± 55mA  
OUT  
RESET#  
10Ω  
DATA LINE EXAMPLE  
I/O  
PCI  
BRIDGE  
(21154)  
DATA BUS  
DATA BUS  
1646 F01  
Z1, Z2: BZX84C6V2  
Figure 1  
1646fa  
1
LTC1646  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
Supply Voltages: 5VIN, 3VIN............................................... 10V  
Input Voltages: (Pins 15, 16) .....................0.3V to 10V  
Output Voltages: (Pins 1, 3, 4) ..................0.3V to 10V  
Analog Voltages and Currents:  
(Pin 9) .................................... –0.3V to (3VIN + 0.3V)  
(Pins 2, 5, 7, 11, 13, 14) ........ –0.3V to (5VIN + 0.3V)  
(Pin 10) .......................................................... ±20mA  
Operating Temperature Range:  
RESETOUT  
TIMER  
1
2
3
4
5
6
7
8
16 RESETIN  
15 OFF/ON  
FAULT  
14  
13  
12  
11  
10  
9
DRIVE  
PWRGD  
PRECHARGE  
5V  
5V  
IN  
OUT  
GND  
5V  
SENSE  
3V  
GATE  
3V  
OUT  
3V  
IN  
SENSE  
LTC1646C ............................................... 0°C to 70°C  
LTC1646I.............................................–40°C to 85°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 135°C/W  
ORDER PART NUMBER  
GN PART MARKING  
LTC1646CGN  
LTC1646IGN  
1646  
1646I  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V  
= 5V and V  
= 3.3V unless otherwise noted.  
A
5VIN  
3VIN  
SYMBOL PARAMETER  
Supply Current  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
V
OFF/ON = 0V  
1.5  
4
mA  
DD  
5VIN  
V
Undervoltage Lockout  
5V  
3V  
2.3  
2.3  
2.50  
2.55  
2.7  
2.7  
V
V
LKO  
IN  
IN  
V
Foldback Current Limit Voltage  
V
V
V
V
= (V  
– V  
– V  
– V  
– V  
), V  
), V  
), V  
), V  
= 0V, TIMER = 0V  
= 4V, TIMER = 0V  
= 0V, TIMER = 0V  
= 2V, TIMER = 0V  
15  
50  
15  
50  
20  
55  
20  
55  
30  
65  
30  
65  
mV  
mV  
mV  
mV  
FB  
FB  
FB  
FB  
FB  
5VIN  
5VIN  
3VIN  
3VIN  
5VSENSE  
5VSENSE  
3VSENSE  
3VSENSE  
5VOUT  
5VOUT  
3VOUT  
3VOUT  
= (V  
= (V  
= (V  
V
Circuit Breaker Trip Voltage  
V
V
= (V  
= (V  
– V  
– V  
), V  
), V  
= 5V, TIMER Open  
= 3.3V, TIMER Open  
50  
50  
56  
56  
65  
65  
mV  
mV  
CB  
OC  
SS  
CP  
CB  
CB  
5VIN  
3VIN  
5VSENSE  
3VSENSE  
5VOUT  
3VOUT  
t
t
I
Overcurrent Fault Response Time  
(V  
(V  
– V  
– V  
) = 100mV, TIMER Open  
) = 100mV, TIMER Open  
10  
10  
21  
21  
30  
30  
µs  
µs  
5VIN  
3VIN  
5VSENSE  
3VSENSE  
Short-Circuit Fault Response Time (V  
(V  
– V  
– V  
) = 200mV, TIMER Open  
) = 200mV, TIMER Open  
0.145  
0.145  
1
1
µs  
µs  
5VIN  
3VIN  
5VSENSE  
3VSENSE  
GATE Pin Output Current  
OFF/ON = 0V, V  
OFF/ON = 5V, V  
OFF/ON = 0V, V  
= 0V, TIMER = 0V  
= 5V, TIMER = 0V  
= 5V, FAULT = 0V, TIMER Open  
–18  
80  
4
–13  
200  
7
–8  
300  
12  
µA  
µA  
mA  
GATE  
GATE  
GATE  
V
V
External Gate Voltage  
(GATE to GND)  
OFF/ON = 0V, I  
OFF/ON = 0V, V  
= –1µA  
= 3.3V, I  
12  
11  
15  
13  
16  
15  
V
V
GATE  
TH  
GATE  
= –1µA  
5VIN  
GATE  
Power Good Threshold Voltage  
3V  
5V  
2.8  
4.5  
2.9  
4.65  
3.0  
4.75  
V
V
OUT  
OUT  
V
V
No 5V Input Mode Window Voltage  
Input Low Voltage  
V
= V  
– V  
, V  
= V = 3.3V  
3VOUT  
50  
120  
200  
0.8  
mV  
V
3VONLY  
IL  
3VONLY  
5VIN  
3VIN  
5VOUT  
OFF/ON, RESETIN, FAULT  
1646fa  
2
LTC1646  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
= 5V and V = 3.3V unless otherwise noted.  
temperature range, otherwise specifications are at T = 25°C. V  
A
5VIN  
3VIN  
SYMBOL PARAMETER  
CONDITIONS  
OFF/ON, RESETIN, FAULT  
, FAULT = 0V  
MIN  
2
TYP  
MAX  
UNITS  
V
V
Input High Voltage  
V
V
IH  
TIMER Threshold Voltage  
OFF/ON Input Current  
V
1.15  
1.25  
1.35  
TIMER  
TIMER  
I
OFF/ON = 5V  
OFF/ON = 0V  
±0.08  
±0.08  
±10  
±10  
µA  
µA  
IN  
RESETIN Input Current  
RESETIN = 5V  
RESETIN = 0V  
±0.08  
±0.08  
±10  
±10  
µA  
µA  
5V  
3V  
Input Current  
Input Current  
5V  
3V  
= 5V, 5V = 0V  
OUT  
66  
66  
100  
100  
1000  
1.5  
µA  
µA  
SENSE  
SENSE  
SENSE  
SENSE  
= 3.3V, 3V  
= 0V  
OUT  
3V Input Current  
3V = 3.3V  
460  
0.9  
0.9  
µA  
IN  
IN  
5V  
3V  
Input Current  
Input Current  
5V  
3V  
= 5V, OFF/ON = 0V  
mA  
mA  
OUT  
OUT  
OUT  
OUT  
= 3.3V, OFF/ON = 0V  
1.5  
I
TIMER Pin Current  
OFF/ON = 0V, V  
OFF/ON = 5V, V  
= 0V  
= 5V  
–7  
–5  
6.6  
–3  
µA  
mA  
TIMER  
TIMER  
TIMER  
R
DIS  
5V  
3V  
Discharge Impedance  
Discharge Impedance  
OFF/ON = 5V  
OFF/ON = 5V  
120  
120  
220  
220  
OUT  
OUT  
V
V
Output Low Voltage  
FAULT, PWRGD, RESETOUT, I = 2mA  
, V = 5V and 3.3V  
0.25  
1.00  
0.4  
V
V
OL  
PRECHARGE Reference Voltage  
V
0.90  
1.10  
PXG  
PRECHARGE 5VIN  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to ground unless otherwise  
specified.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
5V Supply Current vs  
IN  
5V Current Foldback Profile  
3.3V Current Foldback Profile  
Temperature  
12  
11  
10  
9
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
12  
11  
10  
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
R
= 0.005  
1
R
= 0.007  
1
SENSE  
SENSE  
0
0
0
1
2
3
4
5
–50  
–25  
0
25  
50  
75  
100  
0
1
2
3
4
5
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
1646 G02  
1646 G03  
1646 G01  
1646fa  
3
LTC1646  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
5V Undervoltage Lockout  
3V Undervoltage Lockout  
5V Foldback Current Limit  
IN  
IN  
IN  
Voltage vs Temperature  
Voltage vs Temperature  
Voltage vs Temperature  
2.60  
2.55  
2.50  
2.45  
2.40  
2.60  
2.55  
2.50  
2.45  
2.40  
60  
50  
40  
30  
20  
10  
0
LOW-TO-HIGH TRANSITION  
5V  
= 4V  
OUT  
HIGH-TO-LOW TRANSITION  
LOW-TO-HIGH TRANSITION  
HIGH-TO-LOW TRANSITION  
5V  
= 0V  
OUT  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1646 G04  
1646 G05  
1646 G06  
3V Foldback Current Limit  
5V Circuit Breaker Trip Voltage  
3V Circuit Breaker Trip Voltage  
IN  
IN  
IN  
Voltage vs Temperature  
vs Temperature  
vs Temperature  
60  
50  
40  
30  
20  
10  
0
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
3V  
= 2V  
OUT  
3V  
= 0V  
OUT  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1646 G07  
1646 G08  
1646 G09  
5V /3V Overcurrent Fault  
5V /3V Short-Circuit Fault  
IN IN  
Response Time vs Temperature  
IN  
IN  
Response Time vs Temperature  
Gate Current vs Temperature  
22.00  
21.75  
21.50  
21.25  
21.00  
20.75  
20.50  
20.25  
20.00  
170  
160  
150  
140  
130  
120  
110  
100  
–10  
–11  
–12  
–13  
–14  
–15  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1646 G10  
1646 G11  
1646 G12  
1646fa  
4
LTC1646  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Good Threshold Voltage vs  
Gate ISINK vs Temperature  
Gate Voltage vs Temperature  
Temperature (3V  
)
OUT  
10  
9
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
3.00  
2.95  
2.90  
2.85  
2.80  
FAULT = 0V  
I = –1µA  
5V = 5V  
IN  
8
7
5V = 3.3V  
IN  
6
5
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1646 G13  
1646 G14  
1646 G15  
Power Good Threshold Voltage vs  
Temperature (5V  
Timer Threshold Voltage vs  
Temperature  
5V  
Input Current vs  
SENSE  
)
Temperature  
OUT  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1646 G16  
1646 G17  
1646 G18  
3V  
Input Current vs  
SENSE  
Temperature  
3V Input Current vs Temperature  
IN  
Timer Current vs Temperature  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
480  
475  
470  
465  
460  
455  
450  
445  
–4.00  
–4.25  
–4.50  
–4.75  
–5.00  
–5.25  
–5.50  
–5.75  
–6.00  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1646 G19  
1646 G20  
1646 G21  
1646fa  
5
LTC1646  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
RESETOUT, PWRGD and FAULT  
5V /3V  
Discharge  
OUT  
OUT  
Output Low Voltage vs I  
Impedance vs Temperature  
SINK  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
180  
160  
140  
120  
100  
80  
90°C  
25°C  
–45°C  
60  
40  
20  
0
0
1
2
3
4
5
–50  
–25  
0
25  
50  
75  
100  
I
(mA)  
TEMPERATURE (°C)  
SINK  
1646 G22  
1646 G23  
U
U
U
PI FU CTIO S  
RESETOUT (Pin 1): Open Drain Digital Output. Connect  
the CPCI LOCAL_PCI_RST# signal to the RESETOUT pin.  
RESETOUT is the logical combination of RESETIN and  
PWRGD (see Table 4).  
PWRGD (Pin 4) :Open Drain Power Good Digital Output.  
Connect the CPCI HEALTHY# signal to the PWRGD pin.  
PWRGD remains low while V3VOUT 2.9V and V5VOUT  
4.65V. When either of the supplies falls below its power  
good threshold voltage, PWRGD will go high after a 50µs  
deglitching time.  
TIMER(Pin2):CurrentFaultInhibitTimingInput.Connect  
a capacitor from TIMER to GND. With the chip turned off,  
the TIMER pin is internally held at GND. When the chip is  
turned on, a 5µA pull-up current source is connected to  
TIMER. Current limit and voltage compliance faults will be  
ignored until the voltage at the TIMER pin is greater than  
1.25V.  
5VOUT (Pin 5): 5V Output Sense. The PWRGD pin will not  
pulllowuntilthe5VOUT pinvoltageexceeds4.65V. Ifno5V  
input supply is available, tie the 5VOUT pin to the 3VOUT pin  
in order to disable the 5VOUT power good function.  
GND (Pin 6): Chip Ground  
FAULT (Pin 3): Open Drain Digital I/O. FAULT is pulled low  
when a current limit fault is detected. Faults are ignored  
while the voltage at the TIMER pin is less than 1.25V. Once  
the TIMER cycle is complete, FAULT will pull low and the  
chip will latch off in the event of an overcurrent fault. The  
chipwillremainlatchedintheoffstateuntiltheOFF/ONpin  
is cycled high then low or the power is cycled.  
3VOUT (Pin7):3.3VOutputSense.ThePWRGDpinwillnot  
pull low until the 3VOUT pin voltage exceeds 2.90V. If no  
3.3V input supply is available, tie the 3VOUT pin to the  
5VOUT pin.  
3VIN (Pin 8): 3.3V Supply Sense Input. An undervoltage  
lockout circuit prevents the switches from turning on  
whenthevoltageatthe3VIN pinislessthan2.5V.Ifno3.3V  
input supply is available, connect a diode between 5VIN  
and 3VIN (tie anode to 5VIN and cathode to 3VIN ). See  
Figure 11.  
Forcing the FAULT pin low with an external pull-down will  
cause the chip to be latched into the off state after a 21µs  
deglitching time.  
1646fa  
6
LTC1646  
U
U
U
PI FU CTIO S  
3VSENSE (Pin 9): 3.3V Current Limit Set. With a sense  
resistor placed in the supply path between 3VIN and  
3VSENSE, the GATE pin voltage will be adjusted to maintain  
a constant voltage across the sense resistor and a con-  
stant current through the switch while the TIMER pin  
voltage is less than 1.25V. A foldback feature makes the  
current limit decrease as the voltage at the 3VOUT pin  
approaches GND.  
When the TIMER pin voltage is greater than 1.25V, the  
circuit breaker function is enabled. If the voltage across  
the sense resistor exceeds 56mV but is less than 150mV,  
the circuit breaker is tripped after a 21µs time delay. In the  
event the sense resistor voltage exceeds 150mV, the  
circuit breaker trips immediately and the chip latches off.  
To disable the 5V current limit, short 5VSENSE and 5VIN  
together.  
When the TIMER pin voltage exceeds 1.25V, the circuit  
breakerfunctionisenabled. Ifthevoltageacrossthesense  
resistor exceeds 56mV, the circuit breaker is tripped after  
a 21µs time delay. In the event the sense resistor voltage  
exceeds 150mV, the circuit breaker trips immediately and  
the chip latches off. To disable the 3.3V current limit,  
3VSENSE and 3VIN can be shorted together.  
5VIN (Pin 12): 5V Supply Sense Input. An undervoltage  
lockout circuit prevents the GATE pin voltage from  
ramping up when the voltage at the 5VIN pin is less than  
2.5V. If no 5V input supply is available, tie the 5VIN pin to  
the 3VIN pin.  
PRECHARGE (Pin 13): Precharge Monitor Input. An on-  
chip error amplifier with a 1V reference servos the DRIVE  
pin voltage to keep the precharge node at 1V. If the  
precharge function is not being used, tie the PRECHARGE  
pin to GND.  
GATE (Pin 10): High Side Gate Drive for the External 3.3V  
and 5V N-Channel pass transistors. Requires an external  
series RC network for the current limit loop compensation  
and setting the minimum ramp-up rate. During power-up,  
the slope of the voltage rise at the GATE is set by the 13µA  
current source connected to the internal charge pump and  
the external capacitor connected to GND or by the 3.3V or  
5V current limit and the bulk capacitance on the 3VOUT or  
5VOUT supply lines. During power-down, the slope of the  
ramp down voltage is set by the 200µA current source  
connected to GND and the external GATE capacitor.  
DRIVE (Pin 14): Precharge Base Drive Output. Provides  
base drive for an external NPN emitter-follower which in  
turn biases the PRECHARGE node. If the precharge func-  
tion is not being used, allow the DRIVE pin to float.  
OFF/ON(Pin15):DigitalInput.ConnecttheCPCIBD_SEL#  
signal to the OFF/ON pin. When the OFF/ON pin is pulled  
low, the GATE pin is pulled high by a 13µA current source.  
When the OFF/ON pin is pulled high the GATE pin will be  
pulled to ground by a 200µA current source.  
The voltage at the GATE pin will be modulated to maintain  
a constant current when either the 3V or 5V supplies go  
into current limit while the TIMER pin voltage is less than  
1.25V. If a current fault occurs after the TIMER pin voltage  
exceeds 1.25V, the GATE pin is immediately pulled to  
GND.  
The OFF/ON pin is also used to reset the electronic circuit  
breaker. If the OFF/ON pin is cycled high and low following  
the trip of the circuit breaker, the circuit breaker is reset,  
and a normal power-up sequence will occur.  
RESETIN (Pin 16): Digital Input. Connect the CPCI  
PCI_RST#signaltotheRESETINpin.PullingRESETINlow  
will cause the RESETOUT pin to pull low.  
5VSENSE (Pin 11): 5V Current Limit Set. With a sense  
resistor placed in the supply path between 5VIN and  
5VSENSE, the GATE pin voltage will be adjusted to maintain  
a constant voltage across the sense resistor and a con-  
stant current through the switch while the TIMER pin  
voltage is less than 1.25V. A foldback feature makes the  
current limit decrease as the voltage at the 5VOUT pin  
approaches GND.  
1646fa  
7
LTC1646  
W
TEST DIAGRA  
V
No 5V Input Mode Window Voltage  
3VONLY  
V
= 5V – 3V 5V  
= 3V  
= 3.3V, 3V = 3.3V  
IN  
3VONLY  
IN IN  
OUT  
OUT  
V
3VONLY  
3.3V  
V
5VIN  
–V  
3VONLY  
5V  
PWRGD  
1646 T01  
0V  
W U  
W
TI I G DIAGRA S  
t
OC  
Overcurrent Fault Detect  
FALL TIME 1µs, 5V = 5V, 3V = 3.3V  
IN IN  
5V  
OR 3.3V  
V
V
5VSENSE  
OR  
3VSENSE  
100mV  
t
OC  
FAULT  
1V  
1646 T02  
t
SC  
Short-Circuit Fault Detect  
FALL TIME 30ns, 5V = 5V, 3V = 3.3V  
IN IN  
5V  
OR 3.3V  
V
V
5VSENSE  
OR  
3VSENSE  
200mV  
t
SC  
FAULT  
1V  
1646 T03  
1646fa  
8
LTC1646  
W
BLOCK DIAGRA  
5V  
5V  
3V  
3V  
3V  
5V  
IN  
SENSE  
SENSE  
9
IN  
OUT  
OUT  
GATE  
10  
12  
11  
8
7
5
V
GG  
5V  
3V  
OUT  
OUT  
13µA  
+–  
+
+
+ –  
55mV  
55mV  
+–  
+ –  
Q2  
Q3  
Q1  
200µA  
+
+
150mV  
150mV  
+–  
+ –  
2.5V  
UVL  
2.5V  
UVL  
C
P3  
+
OFF/ON 15  
FAULT  
3
REF  
Q7  
Q6  
C
P4  
+
PWRGD  
4
LOGIC  
1
RESETOUT  
REF  
Q4  
RESETIN 16  
5V  
in  
5µA  
+
1V  
TIMER  
2
Q5  
1646 BD  
6
14  
13  
PRECHARGE  
GND  
DRIVE  
U
W
U U  
APPLICATIO S I FOR ATIO  
Hot Circuit Insertion  
The LTC1646 is specifically designed for CPCI applica-  
tions where the chip resides on the plug-in board.  
When a circuit board is inserted into a live CompactPCI  
(CPCI)slot, thesupplybypasscapacitorsontheboardcan  
draw huge supply transient currents from the CPCI power  
bus as they charge up. The transient currents can cause  
glitches on the power bus, causing other boards in the  
system to reset.  
LTC1646 Feature Summary  
1. Allows safe board insertion and removal from a CPCI  
backplane.  
2. Controls 5V and 3.3V CPCI supplies.  
TheLTC1646isdesignedtoturnaboard’ssupplyvoltages  
on and off in a controlled manner, allowing the board to be  
safely inserted or removed from a live CPCI slot without  
glitching the system power supplies. The chip also pro-  
tectsthesuppliesfromshorts,prechargesthebusI/Opins  
during insertion and extraction and monitors the supply  
voltages.  
3. Current limit during power-up: the supplies are allowed  
to power up in current limit. This allows the chip to  
power up boards with widely varying capacitive loads  
without tripping the circuit breaker. The maximum  
allowable power-up time is programmable using the  
TIMER pin and an external capacitor.  
1646fa  
9
LTC1646  
U
W U U  
APPLICATIO S I FOR ATIO  
4. Programmable foldback current limit: a programmable  
analog current limit with a value that depends on the  
output voltage. If the output is shorted to ground, the  
current limit drops to keep power dissipation and  
supply glitches to a minimum.  
The main 3.3V and 5V inputs to the LTC1646 come from  
the medium length power pins. The long 3.3V, 5V connec-  
tor pins are shorted to the medium length 5V and 3.3V  
connector pins on the CPCI plug-in card and provide early  
power for the LTC1646’s precharge circuitry, the V(I/O)  
pull-up resistors and the PCI bridge chip. The BD_SEL#  
signal is connected to the OFF/ON pin while the PWRGD  
pin is connected to the HEALTHY# signal. The HEALTHY#  
signal is combined with the PCI_RST# signal on-chip to  
generate the LOCAL_PCI_RST# signal which is available  
at the RESETOUT pin.  
5. Dual-level,programmable5Vand3.3Vcircuitbreakers:  
this feature is enabled when the TIMER pin voltage  
exceeds 1.25V. If either supply exceeds current limit  
for more than 21µs, the circuit breaker will trip, the  
supplies will be turned off, and the FAULT pin is pulled  
low. In the event that either supply exceeds three times  
the set current limit, all supplies will be turned off and  
the FAULT pin is pin is pulled low without delay.  
The power supplies are controlled by placing external  
N-channel pass transistors in the 3.3V and 5V power  
paths.  
6. 15V high side drive for external 3.3V and 5V N-channel  
MOSFETs.  
Resistors R1 and R2 provide current fault detection and  
R5 and C1 provide current control loop compensation.  
Resistors R3 and R4 prevent high frequency oscillations  
in Q1 and Q2.  
7. PWRGD output: monitors the voltage status of the  
supply voltages.  
8. PCI_RST# combined on-chip with HEALTHY# to create  
LOCAL_PCI_RST# output. If HEALTHY# deasserts,  
LOCAL_PCI_RST# is asserted independent of  
PCI_RST#.  
When the CPCI card is inserted, the long 5V and 3.3V  
connector pins and GND pins make contact first. The  
LTC1646’s precharge circuit biases the bus I/O pins to 1V  
during this stage of the insertion (Figure 2). The 5V and  
3.3V medium length pins make contact during the next  
stage of insertion, but the slot power is disabled as long  
as the OFF/ON pin is pulled high by the 1.2k pull-up  
resistortoV(I/O). Duringthefinalstageofboardinsertion,  
the BD_SEL# short connector pin makes contact and the  
OFF/ON pin can be pulled low. This enables the pass  
transistors to turn on and a 5µA current source is con-  
nected to the TIMER pin.  
9. Precharge output: on-chip reference and amplifier pro-  
vide 1V for biasing bus I/O connector pins during CPCI  
card insertion and extraction.  
10. Space saving 16-pin SSOP package.  
PCI Power Requirements  
CPCIsystemsmayrequireuptofourpowerrails:5V,3.3V,  
12V and –12V. The LTC1646 is designed for CPCI applica-  
tions which only use the 5V and/or 3.3V supplies. The  
tolerance of the supplies as measured at the components  
on the plug-in card is summarized in Table 1.  
The current in each pass transistor increases until it  
reaches the current limit for each supply. The 5V and 3.3V  
supplies are then allowed to power up based on one of the  
following power-up rates:  
Table 1. PCI Power Supply Requirements  
SUPPLY  
5V  
TOLERANCE  
5V ±5%  
CAPACITIVE LOAD  
<3000µF  
ILIMIT(5V)  
ILIMIT(3V)  
dV 13µA  
=
,or =  
,or =  
(1)  
dt  
C1  
CLOAD(5VOUT)  
CLOAD(3VOUT)  
3.3V  
3.3V ±0.3V  
<3000µF  
whichever is slower.  
Current limit faults are ignored while the TIMER pin  
voltage is ramping up and is less than 1.25V. Once both  
supply voltages are within tolerance, HEALTHY# will pull  
Power-Up Sequence  
The LTC1646 is specifically designed for hot swapping  
CPCI boards. The typical application is shown in Figure 1.  
low and LOCAL_PCI_RST# is free to follow PCI_RST#.  
1646fa  
10  
LTC1646  
W U U  
APPLICATIO S I FOR ATIO  
U
GATE  
10V/DIV  
GATE  
10V/DIV  
5V  
3V  
OUT  
OUT  
5V  
3V  
OUT  
OUT  
5V/DIV  
5V/DIV  
TIMER  
5V/DIV  
TIMER  
5V/DIV  
BD_SEL#  
5V/DIV  
BD_SEL#  
5V/DIV  
HEALTHY#  
5V/DIV  
HEALTHY#  
5V/DIV  
LCL_PCI_RST#  
5V/DIV  
LCL_PCI_RST#  
5V/DIV  
PRECHARGE  
5V/DIV  
PRECHARGE  
5V/DIV  
20ms/DIV  
1646 F02  
10ms/DIV  
1646 F03  
Figure 2. Normal Power-Up Sequence  
Figure 3. Normal Power-Down Sequence  
Power-Down Sequence  
allows the chip to power up CPCI boards with widely  
varying capacitive loads on the supplies. The power-up  
time for either of the two outputs is given by:  
When BD_SEL# is pulled high, a power-down sequence  
begins (Figure 3).  
Internal switches are connected to each of the output  
supply voltage pins to discharge the bypass capacitors to  
ground. The TIMER pin (Pin 2) is immediately pulled low.  
The GATE pin (Pin 10) is pulled down by a 200µA current  
source to prevent the load currents on the 3.3V and 5V  
supplies from going to zero instantaneously in order to  
prevent glitching the power supply voltages. When either  
oftheoutputvoltagesdipsbelowitsthreshold,HEALTHY#  
pulls high and LOCAL_PCI_RST# will be asserted low.  
CLOAD(XVOUT) • XVOUT  
ILIMIT(XVOUT) – ILOAD(XVOUT)  
tON (XVOUT) = 2 •  
(2)  
Where XVOUT = 5VOUT or 3VOUT. For example, for  
CLOAD(5VOUT) = 2000µF, ILIMIT = 7A, and ILOAD = 5A, the  
5VOUT turn-on time will be ~10ms. By substituting the  
variables in Equation 2 with the appropriate values, the  
turn-on time for the 3VOUT output can also be calculated.  
The timer period should be set longer than the maximum  
supply turn-on time but short enough to not exceed the  
maximumsafeoperatingareaofthepasstransistorduring  
a short-circuit. The timer period for the LTC1646 is given  
by:  
Once the power-down sequence is complete, the CPCI  
card may be removed from the slot. During extraction, the  
precharge circuit will continue to bias the bus I/O pins at  
1V until the 5V and 3.3V long connector pin connections  
are separated.  
CTIMER •1.25V  
tTIMER  
=
(3)  
5µA  
Timer  
As a design aid, the timer period as a function of the timing  
capacitor using standard values from 0.01µF to 1µF is  
shown in Table 2.  
During a power-up sequence, a 5µA current source is  
connected to the TIMER pin and current limit faults are  
ignored until the voltage exceeds 1.25V. This feature  
1646fa  
11  
LTC1646  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 2. t  
C
vs C  
TIMER  
TIMER  
Unlike a traditional circuit breaker function where huge  
currents can flow before the breaker trips, the current  
foldback feature assures that the supply current will be  
kept at a safe level and prevents voltage glitches at the  
input supply when powering up into a short circuit.  
t
C
t
TIMER  
TIMER  
TIMER  
TIMER  
0.01µF  
0.022µF  
0.033µF  
0.047µF  
0.068µF  
0.082µF  
0.1µF  
2.5ms  
5.5ms  
8.25ms  
11.8ms  
17ms  
0.22µF  
0.33µF  
0.47µF  
0.68µF  
0.82µF  
1µF  
55ms  
82.5ms  
118ms  
170ms  
205ms  
250ms  
After power-up (TIMER pin voltage >1.25V), the 5V and  
3.3V supplies are protected from overcurrent and short-  
circuit conditions by dual-level circuit breakers. If the  
sense resistor voltage of either supply current exceeds  
56mV but is less than 150mV, an internal timer is started.  
If the supply is still overcurrent after 21µs, the circuit  
breaker trips and both supplies are turned off (Figure 5).  
20.5ms  
25ms  
The TIMER pin is immediately pulled low when BD_SEL#  
goes high.  
Short-Circuit Protection  
During a normal power-up sequence, if the TIMER pin is  
done ramping and a supply is still in current limit, all of the  
pass transistors will be immediately turned off and FAULT  
(Pin 3) will be pulled low as shown in Figure 4.  
5V 5V  
IN  
SENSE  
50mV/DIV  
Inordertopreventexcessivepowerdissipationinthepass  
transistors and to prevent voltage spikes on the supplies  
during short-circuit conditions, the current limit on each  
supply is designed to be a function of the output voltage.  
As the output voltage drops, the current limit decreases.  
GATE  
10V/DIV  
GATE  
FAULT  
5V/DIV  
5V/DIV  
5V  
OUT  
3V  
OUT  
2V/DIV  
10µs/DIV  
1646 F05  
TIMER  
1V/DIV  
Figure 5. Overcurrent Fault on 5V  
BD_SEL#  
5V/DIV  
If a short-circuit occurs and the sense resistor voltage of  
either supply current exceeds 150mV, the circuit breakers  
trip without delay and the chip latches off (Figure 6). The  
chip will stay in the latched-off state until OFF/ON (Pin 15)  
is cycled high then low, or the 5VIN (Pin 12) power supply  
is cycled.  
LCL_PCI_RST#  
5V/DIV  
HEALTHY#  
5V/DIV  
FAULT  
5V/DIV  
The current limit and the foldback current level for the 5V  
and 3.3V outputs are both a function of the external sense  
resistor (R1 for 3VOUT and R2 for 5VOUT, see Figure 1). As  
10ms/DIV  
1646 F04  
Figure 4. Power-Up into a Short on 3.3V Output  
shown in Figure 1, a sense resistor is connected between  
1646fa  
12  
LTC1646  
W U U  
APPLICATIO S I FOR ATIO  
U
Calculating RSENSE  
An equivalent circuit for one of the LTC1646’s circuit  
breakers useful in calculating the value of the sense  
resistor is shown in Figure 7. To determine the most  
appropriate value for the sense resistor first requires the  
maximum current required by the load under worst-case  
conditions.  
5V –5V  
IN  
SENSE  
100mV/DIV  
I
R
LOAD(MAX)  
SENSE  
1
2
GATE  
10V/DIV  
5V  
IN  
3
4
12  
5V  
11  
5V  
SENSE  
IN  
+
FAULT  
5V/DIV  
V
LTC1646*  
CB  
+
V
V
V
= 65mV  
= 56mV  
= 50mV  
CB(MAX)  
CB(NOM)  
CB(MIN)  
5µs/DIV  
1646 F06  
*ADDITIONAL DETAILS  
OMITTED FOR CLARITY  
1646 F07  
Figure 6. Short-Circuit Fault on 5V  
5VIN (Pin 12) and 5VSENSE (Pin 11) for the 5V supply. For  
the 3.3V supply, a sense resistor is connected between  
3VIN (Pin 8) and 3VSENSE (Pin 9). The current limit and the  
current foldback current level are given by Equations 4  
and 5:  
Figure 7. Circuit Breaker Equivalent  
Circuit for Calculating R  
SENSE  
Two other parameters affect the value of the sense resis-  
tor. First is the tolerance of the LTC1646’s circuit breaker  
threshold. The LTC1646’s nominal circuit breaker  
threshold is VCB(NOM) = 56mV; however, it exhibits a  
–6mV/+9mV tolerance due to process variations. Second  
is the tolerance (RTOL) in the sense resistor. Sense  
resistors are available in RTOLs of ±1%, ±2% and ±5%  
and exhibit temperature coefficients of resistance (TCRs)  
between ±75ppm/°C and ±100ppm/°C. How the sense  
resistor changes as a function of temperature depends on  
the I2R power being dissipated by it.  
55mV  
RSENSE(XVOUT)  
(4)  
(5)  
ILIMIT(XVOUT)  
=
20mV  
RSENSE(XVOUT)  
IFOLDBACK(XVOUT)  
=
where XVOUT = 5VOUT or 3VOUT  
.
As a design aid, the current limit and foldback level for  
commonly used values for RSENSE is shown in Table 3.  
Table 3. I  
and I  
I
vs R  
I
The first step in calculating the value of RSENSE is based on  
ITRIP(MAX) and the lower limit for the circuit breaker  
threshold,VCB(MIN).ThemaximumvalueforRSENSE inthis  
case is expressed by Equation 6:  
LIMIT(XVOUT)  
()  
FOLDBACK(XVOUT)  
SENSE  
R
SENSE  
LIMIT(XVOUT)  
FOLDBACK(XVOUT)  
0.005  
0.006  
0.007  
0.008  
0.009  
0.01  
11A  
9.2A  
7.9A  
6.9A  
6.1A  
5.5A  
4A  
3.3A  
2.9A  
2.5A  
2.2A  
2A  
VCB(MIN)  
ITRIP(MAX)  
RSENSE(MAX)  
=
(6)  
The second step is to determine the nominal value of the  
where XVOUT = 3VOUT or 5VOUT  
.
sense resistor which is dependent on its tolerance  
1646fa  
13  
LTC1646  
W U U  
U
APPLICATIO S I FOR ATIO  
(RTOL = ±1%, ±2% or ±5%) and standard sense resistor  
values. Equation 7 can be used to calculate the nominal  
value from the maximum value found by Equation 6:  
VCB(MAX)  
RSENSE(MIN)  
ITRIP(MAX,NEW)  
=
=
VCB(MAX)  
65mV  
=
= 9.8A  
RSENSE(MAX)  
0.0065  
RTOL  
100  
RSENSE(N0M) • 1–  
RSENSE(NOM)  
=
RTOL  
100  
(7)  
1+  
Since ITRIP(MAX, NEW) > ILOAD(MAX), a larger value for  
RSENSE should be selected and the process repeated again  
to lower ITRIP(MAX, NEW) without substantially affecting  
Often, the result of Equation 7 may not yield a standard  
sense resistor value. In this case, two sense resistors with  
the same RTOL can be connected in parallel to yield  
RSENSE(NOM)  
The last step requires calculating a new value for  
ITRIP(MAX)(ITRIP(MAX, NEW)) based on a minimum value for  
RSENSE (RSENSE(MIN)) and the upper limit for the circuit  
breaker threshold, VCB(MAX). Should the calculated value  
for ITRIP(MAX, NEW) be much greater than the design value  
for ITRIP(MAX), a larger sense resistor value should be  
selected and the process repeated. The new value for  
ITRIP(MAX, NEW) is given by Equation 8:  
ILOAD(MAX)  
.
.
Output Voltage Monitor  
The status of both 5V and 3.3V output voltages is moni-  
toredbythepowergoodfunction.Inaddition,thePCI_RST#  
signal is logically combined on-chip with the HEALTHY#  
signal to create LOCAL_PCI_RST# (see Table 4).  
Table 4. LOCAL_PCI_RST# Truth Table  
PCI_RST#  
HEALTHY#  
LOCAL_PCI_RST#  
LO  
LO  
HI  
LO  
HI  
LO  
LO  
HI  
VCB(MAX)  
RSENSE(MIN)  
LO  
HI  
ITRIP(MAX,NEW)  
=
(8)  
HI  
LO  
RTOL  
100  
where RSENSE(MIN) = RSENSE(NOM) • 1–  
If either of the output voltages drop below the power good  
thresholdformorethan50µs,theHEALTHY#signalwillbe  
pulledhighandtheLOCAL_PCI_RST#signalwillbepulled  
low.  
Example: A 5V supply exhibits a nominal 5A load with a  
maximum load current of 6.8A (ILOAD(MAX) = 6.8A), and  
sense resistors with ±5% RTOL will be used. According to  
Equation 6, VCB(MIN) = 50mV and RSENSE(MAX) is given by:  
Precharge  
The PRECHARGE input and DRIVE output pins are in-  
tended for use in generating the 1V precharge voltage that  
is used to bias the bus I/O connector pins during board  
insertion. The LTC1646 is also capable of generating  
precharge voltages other than 1V. Figure 8 shows a circuit  
that can be used in applications requiring a precharge  
voltage less than 1V. The circuit in Figure 9 can be used for  
applicationsthatneedprechargevoltagesgreaterthan1V.  
Table 5 lists suggested resistor values for R1 and R2 vs  
precharge voltage for the application circuits shown in  
Figures 8 and 9.  
VCB(MIN)  
ITRIP(MAX)  
50mV  
6.8A  
RSENSE(MAX)  
=
=
= 0.0074  
The nominal sense resistor value is (Equation 7):  
RSENSE(MAX)  
0.0074Ω  
RSENSE(NOM)  
=
=
= 0.007Ω  
RTOL  
100  
5
1+  
1+  
100  
And the new current-limit trip point is Equation 8:  
1646fa  
14  
LTC1646  
W U U  
APPLICATIO S I FOR ATIO  
U
Table 5. R1 and R2 Resistor Values vs Precharge Voltage  
Other CompactPCI Applications  
V
R1  
R2  
V
R1  
R2  
PRECHARGE  
PRECHARGE  
The LTC1646 can be easily configured for applications  
whereno5Vsupplyispresentbysimplytying the5VIN and  
5VSENSE pins to the 3VIN pin and tying the 5VOUT pin to the  
3VOUT pin (Figure 10).  
1.5V  
1.4V  
1.3V  
1.2V  
1.1V  
1V  
18Ω  
18Ω  
18Ω  
18Ω  
18Ω  
18Ω  
9.09Ω  
7.15Ω  
5.36Ω  
3.65Ω  
1.78Ω  
0Ω  
0.9V  
0.8V  
0.7V  
0.6V  
0.5V  
16.2Ω  
14.7Ω  
12.1Ω  
11Ω  
1.78Ω  
3.65Ω  
5.11Ω  
7.15Ω  
9.09Ω  
9.09Ω  
LTC1646*  
PRECHARGE DRIVE  
LTC1646*  
GND  
6
GND PRECHARGE  
13  
DRIVE  
14  
13  
14  
6
18  
1k  
18  
1k  
4.7nF  
4.7nF  
R2  
12Ω  
12Ω  
R1  
R2  
MMBT2222A  
R1  
MMBT2222A  
PRECHARGE OUT  
PRECHARGE OUT  
3V  
IN  
3V  
IN  
R1  
R1 + R2  
• 1V  
V
=
V
=
• 1V  
PRECHARGE  
PRECHARGE  
R1 + R2  
R1  
1646 F08  
1646 F09  
*ADDITIONAL DETAILS OMITTED FOR CLARITY  
*ADDITIONAL DETAILS OMITTED FOR CLARITY  
Figure 8. Precharge Voltage <1V Application Circuit  
Figure 9. Precharge Voltage >1V Application Circuit  
COMPACT PCI COMPACT PCI  
BACKPLANE  
CONNECTOR  
(MALE)  
CIRCUIT CARD  
CONNECTOR  
(FEMALE)  
Z1  
0.005  
1%  
IRF7413  
1
2
3.3V  
7.6A  
OUT  
3.3V  
3
4
0.1µF  
LONG 3.3V  
1.8Ω  
10Ω  
V(I/O)  
1k  
0.010µF  
0.1µF  
8
3V  
IN  
9
10  
7
12  
IN  
11  
5
1.2k  
3V  
GATE 3V  
5V  
5V  
5V  
OUT  
SENSE  
OUT  
SENSE  
1k  
10k  
3V  
2
1
15  
3
BD_SEL#  
OFF/ON  
FAULT  
TIMER  
V(I/O)  
3k  
3k  
OUT  
LTC1646  
4
3k  
HEALTHY#  
PCI_RST#  
PWRGD  
16  
RESETIN  
RESETOUT  
GND  
6
PRECHARGE  
13  
DRIVE  
14  
18Ω  
1k  
4.7nF  
18Ω  
12Ω  
3V  
IN  
GROUND  
I/O PIN 1  
PRECHARGE OUT  
MMBT2222A  
1V ±10%  
3.3V  
RESET#  
1k  
I
= ± 55mA  
OUT  
3V  
IN  
10Ω  
DATA LINE EXAMPLE  
I/O  
PCI  
BRIDGE  
(21154)  
DATA BUS  
DATA BUS  
Z1: BZX84C6V2  
1646 F10  
Figure 10. 3.3V Supply Only Typical Application  
1646fa  
15  
LTC1646  
W U U  
U
APPLICATIO S I FOR ATIO  
COMPACT PCI COMPACT PCI  
BACKPLANE CIRCUIT CARD  
CONNECTOR CONNECTOR  
(MALE)  
(FEMALE)  
Z1  
0.007Ω  
5V  
IN  
IRF7413  
2
1
5V  
OUT  
5V  
3
4
LONG  
5V  
2.7Ω  
10Ω  
BAV16W  
1k  
0.1µF  
0.01µF  
8
9
SENSE  
12  
11  
10  
GATE 5V  
5
7
3V 3V  
IN  
5V  
5V  
3V  
IN  
SENSE  
OUT OUT  
6
GND  
GND  
LTC1646  
Z1: BZX84C6V2  
1646 F11  
Figure 11. 5V Supply Only Typical Application  
If no 3.3V supply is present, Figure 11 illustrates how the  
LTC1646 should be configured. First, 3VSENSE (Pin 9) is  
connected to 3VIN (Pin 8), 3VOUT (Pin 7) is connected to  
5VOUT (Pin 5) and the LTC1646’s 3VIN pin is connected  
through a diode (BAV16W) to 5VIN.  
Overvoltage Transient Protection  
Good engineering practice calls for bypassing the supply  
rail of any analog circuit. Bypass capacitors are often  
placed at the supply connection of every active device, in  
additiontooneormorelarge-valuebulkbypasscapacitors  
per supply rail. If power is connected abruptly, the large  
bypass capacitors slow the rate of rise of the supply  
voltage and heavily damp any parasitic resonance of lead  
or PC trace inductance working against the supply bypass  
capacitors.  
For applications where the BD_SEL# connector pin is  
typically grounded on the backplane, the circuit in  
Figure 12 allows the LTC1646 to be reset simply by  
pressing a pushbutton switch on the CPCI plug-in board.  
This arrangement eliminates the requirement to extract  
andreinserttheCPCIboardinordertoresettheLTC1646’s  
circuit breakers.  
The opposite is true for LTC1646 Hot Swap circuits  
mounted on plug-in cards. In most cases, there is no  
supply bypass capacitor present on the powered 3.3V or  
5V side of the MOSFET switch. An abrupt connection,  
produced by inserting the board into a backplane connec-  
tor, results in a fast rising edge applied on the 3.3V and the  
5V line of the LTC1646.  
PUSH-  
BUTTON  
SWITCH  
V(I/0)  
COMPACT PCI  
BACKPLANE  
CONNECTOR  
(MALE)  
COMPACT PCI  
CIRCUIT CARD  
CONNECTOR  
(FEMALE)  
1.2k  
BD_SEL#  
15  
6
OFF/ON  
1k  
100Ω  
LTC1646  
LONG GND  
GND  
1646 F12  
Figure 12. BD_SEL# Pushbutton Toggle Switch  
1646fa  
16  
LTC1646  
W U U  
APPLICATIO S I FOR ATIO  
U
Since there is no bulk capacitance to damp the parasitic  
trace inductance, supply voltage transients excite para-  
sitic resonant circuits formed by the power MOSFET  
capacitance and the combined parasitic inductance from  
the wiring harness, the backplane and the circuit board  
traces. These ringing transients appear as a fast edge on  
the 3.3V or 5V supply, exhibiting a peak overshoot to 2.5  
times the steady-state value followed by a damped sinu-  
soidal response whose duration and period is dependent  
on the resonant circuit parameters. Since the absolute  
maximum supply voltage of the LTC1646 is 10V, transient  
protection against 3.3V and 5V supply voltage spikes and  
ringing is highly recommended.  
LTC1646 circuit schematics, Zener diodes and snubber  
networks have been added to each 3.3V and 5V supply rail  
and should be used always. These protection networks  
should be mounted very close to the LTC1646’s supply  
voltage using short lead lengths to minimize lead induc-  
tance. This is shown schematically in Figure 13 and a  
recommended layout of the transient protection devices  
around the LTC1646 is shown in Figure 14.  
5V  
IN  
VIAS TO  
GND PLANE  
TZ1  
C2  
C3  
In these applications, there are two methods for eliminat-  
ing these supply voltage transients: using Zener diodes to  
clip the transient to a safe level and snubber networks.  
Snubbers are RC networks whose time constants are  
large enough to safely damp the inductance of the board’s  
parasitic resonant circuits. As a starting point, the shunt  
capacitorsinthesenetworksarechosentobe10× to100×  
the power MOSFET’s COSS under bias. The value of the  
series resistor (R6 and R7 in Figure 13) is then chosen to  
be large enough to damp the resulting series R-L-C circuit  
and typically ranges from 1to 10. Note that in all  
LTC1646*  
TZ2  
GND  
3V  
IN  
*ADDITIONAL DETAILS OMITTED FOR CLARITY  
DRAWING IS NOT TO SCALE!  
1646 F14  
Figure 14. Recommended Layout for  
Transient Protection Components  
R2  
0.007  
Q1  
IRF7413  
V
5V  
IN1  
OUT  
5V  
AT 5A  
R6 2.7Ω  
R1  
0.005Ω  
Q2  
LONG 5V  
IRF7413  
V
3V  
OUT  
AT 7.6A  
IN2  
3.3V  
R7 1.8Ω  
LONG 3.3V  
C1  
0.01µF  
R3  
10Ω  
R4  
10Ω  
R5  
1k  
8
9
10  
7
12  
11  
5
3V  
IN  
3V  
SENSE  
GATE 3V  
5V  
IN  
5V  
SENSE  
5V  
OUT  
OUT  
Z1  
LTC1646**  
GND  
Z2  
C2  
C3  
0.1µF  
0.1µF  
1646 F13  
6
Z1, Z2: BZX84C6V2  
**ADDITIONAL DETAILS OMITTED FOR CLARITY  
Figure 13. Place Transient Protection Device Close to the LTC1646  
1646fa  
17  
LTC1646  
U
W U U  
APPLICATIO S I FOR ATIO  
PCB Layout Considerations  
In the majority of applications, it will be necessary to use  
plated-through vias to make circuit connections from  
component layers to power and ground layers internal to  
thePCboard.For1ouncecopperfoilplating,ageneralrule  
is 1A of DC current per via, making sure the via is properly  
dimensioned so that solder completely fills any void. For  
otherplatingthicknesses, checkwithyourPCBfabrication  
facility.  
For proper operation of the LTC1646’s circuit breaker  
function, a 4-wire Kelvin connection to the sense resistors  
is highly recommended. A recommended PCB layout for  
thesenseresistor, thepowerMOSFET, andtheGATEdrive  
components around the LTC1646 is illustrated in  
Figure 15. In Hot Swap applications where load currents  
can reach 10A, narrow PCB tracks exhibit more resistance  
than wider tracks and operate at more elevated tempera-  
tures. Since the sheet resistance of 1 ounce copper foil is  
approximately0.5m/,trackresistancesaddupquickly  
in high current applications. Thus, to keep PCB track  
resistance and temperature rise to a minimum, the sug-  
gested trace width in these applications for 1 ounce  
copper foil is 0.03" for each ampere of DC current.  
Power MOSFET and Sense Resistor Selection  
Table 6 lists some current MOSFET transistors that are  
available and Table 7 lists some current sense resistors  
that can be used with the LTC1646’s circuit breakers.  
Table 8 lists supplier web site addresses for discrete  
componentmentionedthroughouttheLTC1646datasheet.  
Table 6. N-Channel Power MOSFET Selection Guide  
CURRENT LEVEL (A)  
PART NUMBER  
DESCRIPTION  
Dual N-Channel SO-8  
= 0.1Ω  
MANUFACTURER  
0 to 2  
MMDF3N02HD  
ON Semiconductor  
R
DS(ON)  
2 to 5  
MMSF5N02HD  
MTB50N06V  
IRF7413  
Single N-Channel SO-8  
= 0.025Ω  
ON Semiconductor  
ON Semiconductor  
International Rectifier  
Vishay-Siliconix  
R
DS(ON)  
5 to 10  
5 to 10  
5 to 10  
Single N-Channel DD Pak  
= 0.028Ω  
R
DS(ON)  
Single N-Channel SO-8  
= 0.01Ω  
R
DS(ON)  
Si4410DY  
Single N-Channel SO-8  
= 0.01Ω  
R
DS(ON)  
Table 7. Sense Resistor Selection Guide  
CURRENT LIMIT VALUE  
PART NUMBER  
DESCRIPTION  
MANUFACTURER  
1A  
LR120601R055F  
WSL1206R055  
0.055, 0.5W, 1% Resistor  
IRC-TT  
Vishay-Dale  
2A  
5A  
LR120601R028F  
WSL1206R028  
0.028, 0.5W, 1% Resistor  
0.011, 0.5W, 1% Resistor  
IRC-TT  
Vishay-Dale  
LR120601R011F  
WSL2010R011  
IRC-TT  
Vishay-Dale  
7.6A  
10A  
WSL2512R007  
WSL2512R005  
0.007, 1W, 1% Resistor  
0.005, 1W, 1% Resistor  
Vishay-Dale  
Vishay-Dale  
1646fa  
18  
LTC1646  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 8. Manufacturers’ Web Site  
MANUFACTURER  
International Rectifier  
ON Semiconductor  
IRC-TT  
WEB SITE  
www.irf.com  
www.onsemi.com  
www.irctt.com  
www.vishay.com  
www.vishay.com  
www.diodes.com  
Vishay-Dale  
Vishay-Siliconix  
Diodes, Inc.  
U
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ± .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1646fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC1646  
U
TYPICAL APPLICATIO  
CURRENT FLOW  
TO LOAD  
CURRENT FLOW  
TO LOAD  
SENSE  
RESISTOR  
SO-8  
D
D
D
D
G
S
S
S
V
V
OUT  
5V  
IN  
W
W
5V  
R3  
R5  
VIA  
TRACK WIDTH W:  
0.03" PER AMPERE  
ON 1 OZ Cu FOIL  
C1  
LTC1646*  
CURRENT FLOW  
TO SOURCE  
VIA TO GND  
C
TIMER  
GND  
W
GND  
*ADDITIONAL DETAILS OMITTED FOR CLARITY  
DRAWING IS NOT TO SCALE!  
1646 F15  
Figure 15. Recommended Layout for Power MOSFET, Sense Resistor, and Gate Components  
RELATED PARTS  
PART NUMBER  
LTC1421  
DESCRIPTION  
COMMENTS  
Hot Swap Controller  
Dual Supplies from 3V to 12V, Additionally –12V  
Single Supply Hot Swap in SO-8 from 3V to 12V  
Negative High Voltage Supplies from –10V to 80V  
Supplies from 9V to 80V, Autoretry/Latches Off  
3V to 15V, Overvoltage Protection Up to 33V  
3.3V, 5V, 12V, –12V Supplies for PCI Bus  
3.3V, 5V, ±12V Local Reset Logic and Precharge  
Operates from 1.2V to 12V, Power Sequencing  
Dual ON Pins for Supplies from 3V to 15V  
Single Supply, 2.5V to 16.5V, MSOP  
LTC1422  
Hot Swap Controller  
LT1640AL/LT1640AH  
LT1641/LT1641-1  
LTC1642  
Negative Voltage Hot Swap Controllers in SO-8  
Positive Voltage Hot Swap Controller in SO-8  
Fault Protected Hot Swap Controller  
PCI Bus Hot Swap Controllers  
CompactPCI Hot Swap Controller  
2-Channel Hot Swap Controller  
Dual Hot Swap Controller  
LTC1643L/LTC1643L-1/LTC1643H  
LTC1644  
LTC1645  
LTC1647  
LTC4211  
Hot Swap Controller with Multifunction Current Control  
1646fa  
LT 1205 REV A • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2000  

相关型号:

16471E3

Aluminum Capacitors Axial High Temperature, DIN-Based
VISHAY

1647284

CONN HOOD CPLNG BOTTOM SZB32 M32
PHOENIX

1647307

HEAVYCON SLEEVE HOUSING
PHOENIX

1647310

HEAVYCON SLEEVE HOUSING
PHOENIX

1647365

Rectangular Connector, ROHS COMPLIANT
PHOENIX

1647378

Rectangular Connector, ROHS COMPLIANT
PHOENIX

1647381

Rectangular Connector, ROHS COMPLIANT
PHOENIX

1647420

Rectangular Connector, ROHS COMPLIANT
PHOENIX

1647433

Rectangular Connector, ROHS COMPLIANT
PHOENIX

1647446

Rectangular Connector, ROHS COMPLIANT
PHOENIX

1647475

Rectangular Connector, ROHS COMPLIANT
PHOENIX

1647530

D Subminiature Connector, 9 Contact(s), Male, Crimp Terminal, ROHS COMPLIANT
PHOENIX