LSH32 [LOGIC]

32-bit Cascadable Barrel Shifter; 32位级联桶形移位
LSH32
型号: LSH32
厂家: LOGIC DEVICES INCORPORATED    LOGIC DEVICES INCORPORATED
描述:

32-bit Cascadable Barrel Shifter
32位级联桶形移位

文件: 总9页 (文件大小:204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LSH32  
32-bit Cascadable Barrel Shifter  
DEVICES INCORPORATED  
FEATURES  
DESCRIPTION  
The LSH32 is a 32-bit high speed  
shifter designed for use in floating  
point normalization, word pack/  
unpack, field extraction, and similar  
applications. It has 32 data inputs,  
and 16 output lines. Any shift  
configured such that any contiguous  
16-bit field (including wraparound of  
the 32 inputs) may be presented to the  
output pins under control of the shift  
code field (wrap mode). Alterna-  
tively, the wrap feature may be  
32-bit Input, 32-bit Output Multi-  
plexed to 16 Lines  
Full 0-31 Position Barrel Shift  
Capability  
Integral Priority Encoder for 32-bit  
Floating Point Normalization  
configuration of the 32 inputs, includ- disabled, resulting in zero or sign bit  
ing circular (barrel) shifting, left shifts fill, as appropriate (fill mode). The  
with zero fill, and right shift with sign shift code control assignments and the  
Sign-Magnitude or Two’s Comple-  
ment Mantissa Representation  
32-bit Linear Shifts with Sign or  
extend are possible. In addition, a  
built-in priority encoder is provided  
to aid floating point normalization.  
resulting input to output mapping for  
the wrap mode are shown in Table 1.  
Zero Fill  
Independent Priority Encoder  
Outputs for Block Floating Point  
Essentially the LSH32 is configured as  
a left shift device. That is, a shift code  
of 000002 results in no shift of the  
input field. A code of 000012 provides  
an effective left shift of 1 position, etc.  
When viewed as a right shift, the shift  
code corresponds to the two’s com-  
plement of the shift distance, i.e., a  
shift code of 111112 (–110) results in a  
right shift of one position, etc.  
68-pinPLCC, J-Lead  
SHIFT ARRAY  
The 32 inputs to the LSH32 are  
applied to a 32-bit shift array. The 32  
outputs of this array are multiplexed  
down to 16 lines for presentation at  
the device outputs. The array may be  
LSH32 BLOCK DIAGRAM  
When not in the wrap mode, the  
LSH32 fills bit positions for which  
there is no corresponding input bit.  
The fill value and the positions filled  
depend on the RIGHT/LEFT (R/L)  
direction pin. This pin is a don’t care  
input when in wrap mode. For left  
shifts in fill mode, lower bits are filled  
with zero as shown in Table 2. For  
right shifts, however, the SIGN input  
is used as the fill value. Table 3  
SIGN  
I31-I0  
32  
32:5  
PRIORITY  
ENCODE  
32  
5
32-bit  
BARREL  
SHIFT  
SI4-SI0  
depicts the bits to be filled as a  
function of shift code for the right shift  
case. Note that the R/L input changes  
only the fill convention, and does not  
affect the definition of the shift code.  
RIGHT/LEFT  
FILL/WRAP  
ARRAY  
16  
16  
NORM  
In fill mode, as in wrap mode, the shift  
code input represents the number of  
shift positions directly for left shifts,  
but the two’s complement of the shift  
code results in the equivalent right  
shift. However, for fill mode the R/L  
input can be viewed as the most  
2:1  
16  
5
SO  
4
-SO  
0
Y
15-Y  
0
OE MS/LS  
Special Arithmetic Functions  
08/16/2000–LDS.32-Q  
1
LSH32  
DEVICES INCORPORATED  
32-bit Cascadable Barrel Shifter  
significant bit of a 6-bit two’s comple-  
ment shift code, comprised of R/L  
TABLE 1. WRAP MODE SHIFT CODE DEFINITIONS  
concatenated with the SI4–SI0 lines.  
Thus a positive shift code (R/L = 0)  
results in a left shift of 0–31 positions,  
and a negative code (R/L = 1) a right  
shift of up to 32 positions. The LSH32  
can thus effectively select any contigu-  
ous 32-bit field out of a (sign extended  
and zero filled) 96-bit "input."  
Shift Code Y31 Y30 Y29  
••• Y16 Y15  
••• Y2 Y1 Y0  
00000  
00001  
00010  
I31 I30 I29  
I30 I29 I28  
I29 I28 I27  
I28 I27 I26  
••• I16 I15  
••• I15 I14  
••• I14 I13  
••• I13 I12  
••• I2  
••• I1  
••• I0  
I1  
I0  
I0  
I31  
I31 I30  
00011  
••• I31 I30 I29  
•••  
•••  
•••  
•••  
•••  
I0  
•••  
OUTPUT MULTIPLEXER  
01111  
10000  
10001  
I16 I15 I14  
I15 I14 I13  
I14 I13 I12  
I13 I12 I11  
••• I1  
••• I0  
••• I19 I18 I17  
••• I18 I17 I16  
••• I17 I16 I15  
••• I16 I15 I14  
The shift array outputs are applied to  
a 2:1 multiplexer controlled by the  
MS/LS select line. This multiplexer  
makes available at the output pins  
either the most significant or least  
significant 16 outputs of the shift  
array.  
I31  
••• I31 I30  
••• I30 I29  
10010  
•••  
•••  
•••  
•••  
I3  
I2  
I1  
I0  
I2  
I1  
I0  
I1  
•••  
•••  
I5  
I4  
I3  
I2  
I4  
I3  
I2  
I1  
11100  
11101  
11110  
11111  
••• I20 I19  
••• I19 I18  
••• I18 I17  
••• I17 I16  
••• I6  
••• I5  
••• I4  
••• I3  
PRIORITY ENCODER  
I0  
The 32-bit input bus drives a priority  
encoder which is used to determine  
the first significant position for  
I31  
I31 I30  
purposes of normalization. The  
priority encoder produces a five-bit  
code representing the location of the  
first non-zero bit in the input word.  
Code assignment is such that the  
priority encoder output represents the  
number of shift positions required to  
left align the first non-zero bit of the  
input word. Prior to the priority  
encoder, the input bits are individu-  
ally exclusive OR’ed with the SIGN  
input. This allows normalization in  
floating point systems using two’s  
complement mantissa representation.  
A negative value in two’s complement  
representation will cause the exclusive  
OR gates to invert the input data to  
the encoder. As a result the leading  
significant digit will always be "1."  
This affects only the encoder inputs;  
the shift array always operates on the  
raw input data. The priority encoder  
function table is shown in Table 4.  
TABLE 2. FILL MODE SHIFT CODE DEFINITIONS — LEFT SHIFT  
Shift Code Y31 Y30 Y29  
••• Y16 Y15  
••• Y2 Y1 Y0  
00000  
00001  
00010  
I31 I30 I29  
I30 I29 I28  
I29 I28 I27  
I28 I27 I26  
••• I16 I15  
••• I15 I14  
••• I14 I13  
••• I13 I12  
••• I2  
••• I1  
••• I0  
I1  
I0  
0
I0  
0
0
00011  
•••  
•••  
0
0
0
•••  
•••  
•••  
•••  
I0  
0
•••  
•••  
•••  
•••  
0
0
0
0
0
0
0
0
0
01111  
10000  
10001  
I16 I15 I14  
I15 I14 I13  
I14 I13 I12  
I13 I12 I11  
••• I1  
••• I0  
•••  
0
0
10010  
•••  
•••  
0
0
•••  
•••  
0
0
0
•••  
•••  
I3  
I2  
I1  
I0  
I2  
I1  
I0  
0
I1  
I0  
0
•••  
•••  
•••  
•••  
•••  
0
0
0
0
0
0
0
0
•••  
•••  
•••  
•••  
•••  
0
0
0
0
0
0
0
0
0
0
0
0
11100  
11101  
11110  
11111  
0
Special Arithmetic Functions  
08/16/2000–LDS.32-Q  
ffs2  
LSH32  
DEVICES INCORPORATED  
32-bit Cascadable Barrel Shifter  
NORMALIZE MULTIPLXER  
TABLE 3. FILL MODE SHIFT CODE DEFINITIONS — RIGHT SHIFT  
The NORM input, when asserted  
Shift Code Y31 Y30 Y29  
••• Y16 Y15  
••• Y2 Y1 Y0  
results in the priority encoder output  
driving the internal shift code inputs  
directly. It is exactly equivalent to  
routing the SO4–SO0 outputs back to  
the SI4–SI0 inputs. The NORM input  
provides faster normalization of 32-bit  
data by avoiding the delay associated  
with routing the shift code off chip.  
When using the NORM function, the  
LSH32 should be placed in fill mode,  
with the R/L input low.  
00000  
00001  
00010  
S
S
S
S
S
S
S
S
S
•••  
•••  
•••  
S
S
S
S
S
S
•••  
•••  
•••  
S
S
S
S
S I31  
S I31 I30  
00011  
S
S
S
•••  
•••  
S
S
••• I31 I30 I29  
•••  
•••  
•••  
S
S
S
S
S
S
S
S
S
•••  
•••  
•••  
•••  
01111  
10000  
10001  
S
S
••• I19 I18 I17  
••• I18 I17 I16  
••• I17 I16 I15  
••• I16 I15 I14  
S I31  
••• I31 I30  
••• I30 I29  
APPLICATIONS EXAMPLES  
10010  
S
S
S
Normalization of mantissas up to 32  
bits can be accomplished directly by a  
single LSH32. The NORM input is  
asserted, and fill mode and left shift  
are selected. The normalized mantissa  
is then available at the device output  
in two 16-bit segments, under the  
control of the output data multiplexer  
select, the MS/LS.  
•••  
•••  
•••  
•••  
S
S
S
S
S
S
S
•••  
•••  
I5  
I4  
I3  
I2  
I4  
I3  
I2  
I1  
11100  
11101  
11110  
11111  
••• I20 I19  
••• I19 I18  
••• I18 I17  
••• I17 I16  
••• I6  
••• I5  
••• I4  
••• I3  
S I31  
S I31 I30  
If it is desirable to avoid the necessity  
of multiplexing output data in 16-bit  
segments, two LSH32 devices can be  
used in parallel. Both devices receive  
the same input word, with the MS/LS  
select line of one wired high, and the  
other low. Each device will then  
independently determine the shift  
distance required for normalization,  
and the full 32 bits of output data will  
be available simultaneously.  
TABLE 4. PRIORITY ENCODER FUNCTION TABLE  
I31 I30 I29 ••• I16 I15 ••• I2  
I1  
I0 Shift Code  
1
0
0
X
1
0
X
X
1
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
X
X
X
X
X
X
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
•••  
X
X
X
X
X
X
X
X
X
00000  
00001  
00010  
0
0
0
0
0
0
0
0
0
1
0
0
X
1
0
X
X
X
X
X
X
X
X
X
01111  
10000  
10001  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
X
1
0
11110  
11111  
11111  
Special Arithmetic Functions  
08/16/2000–LDS.32-Q  
3
LSH32  
DEVICES INCORPORATED  
32-bit Cascadable Barrel Shifter  
LONG-WORD NORMALIZATION  
(MULTIPLE CYCLES)  
slices, including the first. The excep-  
tion is that all SI4 lines are grounded,  
limiting the shift distance to 16  
clock normalization requiring shifts  
longer than 16 bits can be accom-  
plished by a bank-select technique  
described below.  
Normalization of floating point  
positions. The shift distance required  
for normalization is produced by the  
priority encoder in the most signifi-  
cant slice. The priority encoder will  
produce the shift code necessary to  
normalize the input word if the  
leading non-zero digit is found in the  
upper 16 bits. If this is the case, the  
number of shift positions necessary to  
accomplish normalization is placed on  
the SO4–SO0 outputs for use by all  
slices, and the appropriate 0–15 bit  
shift is accomplished. If the upper 16  
bits are all zero, then the maximum  
shift of 15 places is executed. Single  
mantissas longer than 32 bits can be  
accomplished by cascading LSH32  
units. When cascading for normaliza-  
tion, the device inputs are overlapped  
such that each device lower in priority  
than the first shares 16 inputs with its  
more significant neighbor. Fill mode  
and left shift are selected, however,  
internal normalization (NORM) is not  
used. The most significant result half  
of each device is enabled to the  
SINGLE CYCLE LONG-WORD  
NORMALIZATION  
An extension of the above concept is a  
single clock normalization of long  
words (potentially requiring shifts of  
more than 15 places). The arrange-  
ment of LSH32s required is shown in  
Figure 1. Cascading of LSH32 units is  
accomplished by connecting the SI3–  
SI0 input lines of each unit to the SO3–  
SO0 outputs of the most significant  
device in the row as before. Essen-  
output. The shift out (SO4–SO0) lines  
of the most significant slice are  
connected to the shift in lines of all  
FIGURE 1. SINGLE CYCLE LONG-WORD NORMALIZATION USING LSH32S  
I
63-I48  
I
47-I32  
I
31-I16  
I
15-I  
0
0
MSBs  
4
4
4
4
5
5
5
5
4
4
4
4
4
4
LSH32  
LSH32  
SI3-0  
LSH32  
SI3-0  
LSH32  
SI3-0  
SI3-0  
SO4-0  
OE  
OE  
OE  
OE  
SI  
4
PRIORITY  
I
47-I32  
I
31-I16  
I
15-I  
0
0
ENCODE  
2:4  
LSH32  
LSH32  
SI3-0  
LSH32  
SI3-0  
DECODE  
SI3-0  
SO4-0  
OE  
OE  
0
OE  
SI  
4
I
31-I16  
I15-I0  
LSH32  
LSH32  
SI3-0  
SI3-0  
SO4-0  
OE  
OE  
SI  
4
I
16-I  
0
0
LSH32  
SO4-0  
OE  
SI3-0  
SI  
4
Y
63-Y48  
Y
47-Y32  
Y
31-Y16  
Y15-Y0  
Special Arithmetic Functions  
08/16/2000–LDS.32-Q  
ffs4  
LSH32  
DEVICES INCORPORATED  
32-bit Cascadable Barrel Shifter  
tially the LSH32s are arranged in  
multiple rows or banks such that the  
inputs to successive rows are left-  
shifted by 16 positions. The outputs  
of each row are multiplexed onto a  
three-state bus. The normalization  
problem then reduces to selecting  
from among the several banks that  
one which has the first non-zero bit  
of the input value among its 16 most  
significant positions. If the most  
significant one in the input file was  
within the upper 16 locations of a  
given bank, the SO4 output of the  
The number of shift positions can be  
BLOCK FLOATING POINT  
determined simply by concatenation  
of the SO3–SO0 outputs of the most  
significant slice in the selected row  
with the encoded Output Enable-bits  
determining the row number. Note  
that lower rows need not be fully  
populated. This is because they  
represent left shifts in multiples of 16  
positions, and the lower bits of the  
output word will be zero filled. In  
order to accomplish this zero fill, the  
least significant device in each row is  
always enabled, and the row select is  
With a small amount of external logic,  
block floating point operations are  
easily accomplished by the LSH32.  
Data resulting from a vector operation  
are applied to the LSH32 with the  
NORM-input deasserted. The SO4–  
SO0 outputs fill then represent the  
normalization shift distance for each  
vector element in turn. By use of an  
external latch and comparator, the  
maximum shift distance encountered  
across all elements in the vector is  
saved for use in the next block opera-  
tion (or block normalization). During  
this subsequent pass through the data,  
the shift code saved from the previous  
pass is applied uniformly across all  
elements of the vector. Since the  
LSH32 is not used in the internal  
normalize mode, this operation can be  
pipelined, thereby obtaining the  
desired shift distance for the next pass  
while simultaneously applying the  
normalization required from the  
previous pass.  
most significant slice in that bank will instead connected to the SI4 input.  
be low. Single clock normalization  
can thus be accomplished simply by  
enabling onto the three-state output  
bus the highest priority bank in which containing that device is not selected.  
this condition is met. In this way the  
input word will be normalized  
This will force the shift length of the  
least significant device to a value  
greater than 15 whenever the row  
This results in zero fill being accom-  
plished by the equivalently positioned  
slice in a higher bank, as shown in the  
diagram.  
regardless of the number of shift  
positions required to accomplish this.  
Special Arithmetic Functions  
08/16/2000–LDS.32-Q  
5
LSH32  
DEVICES INCORPORATED  
32-bit Cascadable Barrel Shifter  
MAXIMUM RATINGS Above which useful life may be impaired (Notes 1, 2, 3, 8)  
Storage temperature ........................................................................................................... –65°C to +150°C  
Operating ambient temperature........................................................................................... –55°C to +125°C  
VCC supply voltage with respect to ground ............................................................................ –0.5 V to +7.0 V  
Input signal with respect to ground ........................................................................................ –3.0 V to +7.0 V  
Signal applied to high impedance output ............................................................................... –3.0 V to +7.0 V  
Output current into low outputs............................................................................................................. 25 mA  
Latchup current ............................................................................................................................... > 400 mA  
OPERATING CONDITIONS To meet specified electrical and switching characteristics  
Mode  
Temperature Range (Ambient)  
0°C to +70°C  
Supply Voltage  
4.75 V VCC 5.25 V  
4.50 V VCC 5.50 V  
Active Operation, Commercial  
Active Operation, Military  
–55°C to +125°C  
ELECTRICAL CHARACTERISTICS Over Operating Conditions (Note 4)  
Symbol  
VOH  
VOL  
VIH  
Parameter  
Test Condition  
Min  
Typ  
Max Unit  
Output High Voltage  
Output Low Voltage  
Input High Voltage  
Input Low Voltage  
Input Current  
VCC = Min., IOH = –2.0 mA  
VCC = Min., IOL = 8.0 mA  
2.4  
V
0.4  
VCC  
0.8  
V
V
2.0  
0.0  
VIL  
(Note 3)  
V
IIX  
Ground VIN VCC (Note 12)  
Ground VOUT VCC (Note 12)  
(Notes 5, 6)  
±20  
±20  
µA  
µA  
IOZ  
Output Leakage Current  
VCC Current, Dynamic  
VCC Current, Quiescent  
ICC1  
ICC2  
10  
30 mA  
1.5 mA  
(Note 7)  
Special Arithmetic Functions  
08/16/2000–LDS.32-Q  
ffs6  
LSH32  
DEVICES INCORPORATED  
32-bit Cascadable Barrel Shifter  
SWITCHING CHARACTERISTICS  
COMMERCIAL OPERATING RANGE (0°C to +70°C) Notes 9, 10 (ns)  
LSH32–  
*
42  
32  
20  
Symbol Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
tIY  
I, SIGN Inputs to Y Outputs  
42  
32  
20  
tIYN  
tISO  
tSIY  
tMSY  
tDIS  
tENA  
I, SIGN Inputs to Y Outputs, Normalize Mode  
I, SIGN Inputs to SO Outputs  
75  
55  
52  
28  
20  
20  
60  
42  
40  
24  
20  
20  
20  
20  
20  
15  
15  
15  
SI, RIGHT/LEFT to Y Outputs  
MS/LS Select to Y Outputs  
Three-State Output Disable Delay (Note 11)  
Three-State Output Enable Delay (Note 11)  
MILITARY OPERATING RANGE (–55°C to +125°C) Notes 9, 10 (ns)  
LSH32–  
*
50  
*
40  
*
30  
Symbol Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
tIY  
I, SIGN Inputs to Y Outputs  
50  
40  
30  
tIYN  
tISO  
tSIY  
tMSY  
tDIS  
tENA  
I, SIGN Inputs to Y Outputs, Normalize Mode  
I, SIGN Inputs to SO Outputs  
85  
65  
62  
32  
22  
22  
75  
52  
52  
26  
20  
20  
58  
42  
40  
24  
17  
17  
SI, RIGHT/LEFT to Y Outputs  
MS/LS Select to Y Outputs  
Three-State Output Disable Delay (Note 11)  
Three-State Output Enable Delay (Note 11)  
SWITCHING WAVEFORMS  
I
31-I0  
SIGN  
SI4-SI  
0
RIGHT/LEFT  
MS/LS  
tIY, tIYN  
SO  
4
-SO  
0
0
t
MSY  
tISO  
Y
31-Y  
t
SIY  
OE  
t
DIS  
t
ENA  
HIGH IMPEDANCE  
Y
31-Y  
0
*DISCONTINUED SPEED GRADE  
Special Arithmetic Functions  
08/16/2000–LDS.32-Q  
7
LSH32  
DEVICES INCORPORATED  
32-bit Cascadable Barrel Shifter  
NOTES  
1. Maximum Ratings indicate stress 9. AC specifications are tested with  
specifications only. Functional oper- input transition times less than 3 ns, measured to the 1.5 V crossing point  
11. For the tENA test, the transition is  
ationoftheseproductsatvaluesbeyond output reference levels of 1.5 V (except  
those indicated in the Operating Condi-  
with datasheet loads. For the tDIS test,  
the transition is measured to the  
tDIS test), and input levels of nominally  
tions table is not implied. Exposure to 0 to 3.0 V. Output loading may be a ±200mV level from the measured  
maximum rating conditions for ex- resistive divider which provides for steady-state output voltage with  
tended periods may affect reliability.  
±10mA loads. The balancing volt-  
age, VTH, is set at 3.5 V for Z-to-0  
specified IOH and IOL at an output  
voltage of VOH min and VOL max  
2. The products described by this spec-  
ification include internal circuitry de-  
signedto protect the chipfrom damag-  
ing substrate injection currents and ac-  
cumulationsofstaticcharge. Neverthe-  
less, conventional precautions should  
be observed during storage, handling,  
and use of these circuits in order to This device has high-speed outputs ca-  
avoid exposure to excessive electrical pable of large instantaneous current  
respectively. Alternatively, a diode and 0-to-Z tests, and set at 0 V for Z-  
bridge with upper and lower current to-1 and 1-to-Z tests.  
sources of IOH and IOL respectively,  
12. These parameters are only tested at  
and a balancing voltage of 1.5 V may be  
the high temperature extreme, which is  
used. Parasitic capacitance is 30 pF  
the worst case for leakage current.  
minimum, and may be distributed.  
FIGURE A. OUTPUT LOADING CIRCUIT  
stress values.  
pulses and fast turn-on/turn-off times.  
Asaresult, caremustbeexercisedinthe  
testing of this device. The following  
measures are recommended:  
S1  
DUT  
3. Thisdeviceprovideshardclampingof  
transient undershoot and overshoot. In-  
put levels below ground or above VCC  
I
OL  
VTH  
CL  
I
OH  
will be clamped beginning at –0.6 V and a. A 0.1 µF ceramic capacitor should be  
VCC + 0.6 V. The device can withstand installed between VCC and Ground  
indefinite operation with inputs in the leads as close to the Device Under Test  
range of –0.5 V to +7.0 V. Device opera- (DUT) as possible. Similar capacitors  
FIGURE B. THRESHOLD LEVELS  
t
ENA  
tDIS  
tion will not be adversely affected, how-  
ever, input current levels will be well in and the tester common, and device  
should be installed between device VCC  
OE  
0
1.5 V  
1.5 V  
excess of 100 mA.  
ground and tester common.  
Z
Z
3.5V Vth  
1.5 V  
1.5 V  
V
OL*  
0.2 V  
0.2 V  
0
1
Z
Z
4. Actualtestconditionsmayvaryfrom  
b. Ground and VCC supply planes  
those designated but operation is guar- must be brought directly to the DUT  
anteed as specified. socket or contactor fingers.  
V
OH*  
1
0V Vth  
VOL*  
Measured VOL with IOH = –10mA and IOL = 10mA  
5. Supply current for a given applica- c. Input voltages should be adjusted to  
V
OH* Measured VOH with IOH = –10mA and IOL = 10mA  
tioncanbeaccuratelyapproximatedby:  
compensateforinductivegroundand VCC  
noise to maintain required DUT input  
levels relative to the DUT ground pin.  
2
NCV F  
4
where  
10. Each parameter is shown as a min-  
imum or maximum value. Input re-  
quirements are specified from the point  
of view of the external system driving  
the chip. Setup time, for example, is  
specified as a minimum since the exter-  
nal system must supply at least that  
much time to meet the worst-case re-  
quirementsofallparts. Responsesfrom  
the internal circuitry are specified from  
the point of view of the device. Output  
delay, for example, is specified as a  
maximumsinceworst-caseoperationof  
anydevicealwaysprovidesdatawithin  
that time.  
N = total number of device outputs  
C = capacitive load per output  
V = supply voltage  
F = clock frequency  
6. Tested with all outputs changing ev-  
ery cycle and no load, at a 5 MHz clock  
rate.  
7. Tested with all inputs within 0.1 V of  
VCC or Ground, no load.  
8. These parameters are guaranteed  
but not 100% tested.  
Special Arithmetic Functions  
08/16/2000–LDS.32-Q  
ffs8  
LSH32  
DEVICES INCORPORATED  
32-bit Cascadable Barrel Shifter  
ORDERING INFORMATION  
68-pin  
68-pin  
1
2
3
4
5
6
7
8
9
10  
11  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
60  
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
I
I
30  
31  
GND  
I
I
29  
30  
I
I
28  
27  
I
I
26  
25  
I
I
24  
23  
I
I
22  
21  
I
I
20  
19  
I
I
18  
17  
I
I
16  
I14  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
13  
12  
11  
10  
9
B
SIGN  
I
31  
15 GND GND  
SO  
SO  
SO  
SO  
SO  
4
3
2
1
0
C
SO  
SO  
SO  
4
2
0
SIGN  
I
I
12  
10  
I
I
13  
11  
D
E
F
G
H
J
SO  
3
1
8
7
Top  
Top View  
Through Package  
(i.e., Component Side Pinout)  
SO  
I
8
6
4
2
0
I
9
7
5
3
1
NORM  
6
View  
SI  
SI  
SI  
SI  
SI  
R/L  
F/W  
31/15  
4
3
2
1
0
5
SI  
SI  
SI  
4 NORM  
I
I
I
I
I
I
I
I
4
3
2
SI  
3
1
2
1
0
SI  
0
V
V
CC  
CC  
F/W R/L  
Y
K
L
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
Y31/15  
Y
30/14  
29/13  
Y
28/12  
27/11  
Y
26/10  
Y
24/8  
23/7  
Y
22/6  
21/5  
Y
20/4  
19/3  
Y
18/2  
Y
16/0  
V
CC  
VCC  
Y
Y
Y
25/9  
Y
Y
Y
Y17/1 OE MS/LS  
Discontinued Package  
Plastic J-Lead Chip Carrier  
(J2)  
Ceramic Pin Grid Array  
(G1)  
Speed  
0°C to +70°C — COMMERCIAL SCREENING  
32 ns  
20 ns  
LSH32JC32  
LSH32JC20  
–55°C to +125°C — COMMERCIAL SCREENING  
–55°C to +125°C — MIL-STD-883 COMPLIANT  
Special Arithmetic Functions  
08/16/2000–LDS.32-Q  
9

相关型号:

LSH32EC20

Shifter
ETC

LSH32EC32

Shifter
ETC

LSH32EC42

Shifter
ETC

LSH32GC20

Barrel Shifter, 32-Bit, CMOS, CPGA68, CERAMIC, PGA-68
LOGIC

LSH32GC32

Barrel Shifter, 32-Bit, CMOS, CPGA68, CERAMIC, PGA-68
LOGIC

LSH32GC42

Barrel Shifter, 32-Bit, CMOS, CPGA68, CAVITY-UP, CERAMIC, PGA-68
LOGIC

LSH32GM30

Shifter
ETC

LSH32GM40

Barrel Shifter, 32-Bit, CMOS, CPGA68, CAVITY-UP, CERAMIC, PGA-68
LOGIC

LSH32GM50

Shifter
ETC

LSH32GMB30

Barrel Shifter, 32-Bit, CMOS, CPGA68, CAVITY-UP, CERAMIC, PGA-68
LOGIC

LSH32GMB40

Barrel Shifter, 32-Bit, CMOS, CPGA68, CAVITY-UP, CERAMIC, PGA-68
LOGIC

LSH32GMB50

Barrel Shifter, 32-Bit, CMOS, CPGA68, CAVITY-UP, CERAMIC, PGA-68
LOGIC