L9D125G80BG4I8 [LOGIC]

2.5 Gb, DDR - SDRAM Integrated Module; 2.5 GB, DDR - SDRAM集成模块
L9D125G80BG4I8
型号: L9D125G80BG4I8
厂家: LOGIC DEVICES INCORPORATED    LOGIC DEVICES INCORPORATED
描述:

2.5 Gb, DDR - SDRAM Integrated Module
2.5 GB, DDR - SDRAM集成模块

动态存储器 双倍数据速率
文件: 总45页 (文件大小:6016K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
Benefits  
FEATURES  
53% SPACE savings vs. Monolithic,  
TSOPII-66 solution  
DDR SDRAM Data Rate = 200, 250,  
266, and 333 Mbps  
DQS edge-aligned with data for  
READ; center-aligned with data for  
WRITE  
Reduced I/O routing (34%)  
Package:  
DLL to align DQx and DQSLx,  
DQSHx transitions with CLKx  
Reduced trace length providing  
improved/reduced parasitic capaci-  
tance  
• 25mm x 25mm, Encapsulated  
Plastic Ball Grid array (PBGA), 219  
balls, 1.27mm pitch.  
Four internal banks for concurrent  
operation  
Impedance matched (60ohm) pack-  
2.5V ±0.2V Core Power supply  
aging  
One data mask per byte, IMOD con-  
tains (10) bytes  
2.5V ±0.2V I/O Power supply  
(SSTL_2 compatible)  
High TCE organic laminate inter-  
poser  
Programmable IOL/IOH Option  
Auto PRECHARGE option  
Differential Clock inputs (CLKx,  
CLKx\)  
Suitable for High Reliability applica-  
tions  
Commands entered on each positive  
CLKx edge  
Auto REFRESH and SELF  
REFRESH Modes  
Internal pipelined double-data-  
rate (DDR) Architecture; two data  
accesses per clock cycle  
Available in INDUSTRIAL,  
EXTENDED and Mil-Temp ranges  
Organized as 16M x 72/80  
Programmable Burst Length:  
2, 4, or 8  
Weight: LOGIC Devices, Inc.  
L9D125G80BG4 = 2.75 grams  
Bidirectional data strobe (DQSLx,  
DQsHx) per byte transmitted/  
received with data  
typical  
i.e. source-synchronous data capture  
*Note: This integrated product and/or its specifications are subject to change without notice.  
Latest document should be retrieved from LDI prior to your design consideration.  
IMOD SOLUTION  
MONOLITHIC SOLUTION  
S
A
V
I
N
G
S
O
P
T
I
O
N
S
11.9  
11.9  
11.9  
11.9  
11.9  
25mm  
22.3  
25mm  
625mmꢀ  
53%  
34%  
AREA  
I/O  
5 X 265mmꢀ = 1328mmꢀ PLUS  
5 X 66 pins = 320 pins total  
219 Balls/Locations  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
1
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
L9D125G80BG4, DDR1 SIGNAL LOCATION DIAGRAM  
1
2
3
4
5
6
7
A9  
A0  
A2  
A12  
8
9
10  
A8  
11  
12  
13  
DQ16  
DQ18  
DQ20  
DQ22  
DQML1  
WE1\  
CS1\  
14  
15  
16  
DQ0  
DQ2  
DQ4  
DQ5  
DQ14  
DQ12  
DQ10  
DQ8  
DQ15  
DQ13  
DQ11  
DQ9  
VSS  
VSS  
VCC  
VSS  
VSS  
VCC  
A10  
A7  
A11  
A6  
VCCQ VCCQ  
DQ17  
DQ19  
DQ21  
DQ23  
VSS  
DQ31  
DQ29  
DQ27  
DQ26  
NC  
VSS  
A
B
C
D
E
F
A
B
C
D
E
F
DQ1  
DQ3  
DQ6  
A1  
VCC  
VSS  
VSS  
VCC  
VSS  
DQ30  
DQ28  
DQ25  
DQ24  
A5  
A4  
A3  
VCCQ VCCQ  
RFU  
BA0  
RFU  
BA1  
RFU  
VSS  
DQ7 DQML0 VCC DQMH0 DQSH3 DQSL0 DQSH0  
DQSL1 DQSH1  
Vref  
CAS0\  
CS0\  
VSS  
WE0\  
RAS0\  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
CLK0 DQSL3  
RAS1\  
CAS1\  
VCC  
VSS DQMH1 CLK1  
CKE0  
VCCQ  
VCCQ  
CS3\  
CLK0\  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK1\  
VCCQ  
VCCQ  
RAS2\  
WE2\  
CKE1  
VCC  
G
H
J
G
H
J
VSS  
VSS  
VSS  
VSS  
VCC  
VSS  
VCC  
CLK3\  
NC  
CKE3  
CLK3  
DQSL4  
CLK2\  
CKE2  
CS2\  
CAS2\  
K
L
K
L
CAS3\ RAS3\  
DQSL2 CLK2  
DQ56 DQMH3 VCC  
WE3\ DQML3 CKE4 DQMH4 CLK4  
CAS4\  
DQ71  
DQ69  
DQ67  
DQ65  
9
WE4\  
RAS4\  
CS4\ DQMH2 VSS  
DQML2 DQ39  
M
N
P
R
T
M
N
P
R
T
DQ57  
DQ60  
DQ62  
VSS  
1
DQ58  
DQ59  
DQ61  
DQ63  
2
DQ55  
DQ53  
DQ51  
DQ49  
3
DQ54 DQSH4 CLK4\  
DQ73  
DQ75  
DQ77  
DQ72  
DQ74  
DQ76  
DQ78  
8
DQ70 DQML4 DQSH2 DQ41  
DQ40  
DQ42  
DQ44  
DQ46  
14  
DQ37  
DQ36  
DQ34  
DQ32  
15  
DQ38  
DQ35  
DQ33  
VCC  
16  
DQ52  
DQ50  
VSS  
VCC  
VSS  
VCC  
DQ68  
DQ66  
DQ64  
10  
VCC  
VSS  
VSS  
11  
VCC  
VSS  
VSS  
12  
DQ43  
DQ45  
DQ47  
13  
DQ48 VCCQ VCCQ DQ79  
4
5
6
7
Address  
V + (I/O Power)  
NC  
UNPOPULATED  
Level REF  
V + (Core Power)  
CNTRL  
VSS  
Data IO  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
2
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
F
u n c t io n a l  
Bl o c k  
Dia g r a m  
VCCQ  
VCC  
VRef  
VSS  
A0-A12, BA0-1  
A, BA  
A, BA  
A, BA  
A, BA  
A, BA  
VSS VRef VCC VCCQ  
DQ  
0
DQ  
0
CS0\  
RAS0\  
CAS0\  
CKE0  
CLK0  
CLK0\  
WE0\  
DQML0  
DQMH0  
DQSL0  
DQSH0  
DQ  
7
8
DQ  
7
8
D0  
DQ  
DQ  
DQ 15  
DQ 15  
VSS VRef VCC VCCQ  
DQ 16  
DQ  
0
CS1\  
RAS1\  
CAS1\  
CKE1  
CLK1  
CLK1\  
WE1\  
DQML1  
DQMH1  
DQSL1  
DQSH1  
DQ 23  
DQ  
7
8
D1  
DQ 24  
DQ  
DQ 31  
DQ 15  
VSS VRef VCC VCCQ  
DQ 32  
DQ  
0
CS2\  
RAS2\  
CAS2\  
CKE2  
CLK2  
CLK2\  
WE2\  
DQML2  
DQMH2  
DQSL2  
DQSH2  
DQ 39  
DQ  
7
8
D2  
DQ 40  
DQ  
DQ 47  
DQ 15  
VSS VRef VCC VCCQ  
DQ 48  
DQ  
0
CS3\  
RAS3\  
CAS3\  
CKE3  
CLK3  
CLK3\  
WE3\  
DQML3  
DQMH3  
DQSL3  
DQSH3  
DQ 55  
DQ  
7
8
D3  
DQ 56  
DQ  
DQ 63  
DQ 15  
VSS VRef VCC VCCQ  
DQ 64  
DQ  
0
CS4\  
RAS4\  
CAS4\  
CKE4  
CLK4  
CLK4\  
WE4\  
DQML4  
DQMH4  
DQSL4  
DQSH4  
DQ 71  
DQ  
7
8
D4  
DQ 72  
DQ  
DQ 79  
DQ 15  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
3
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
Pin/Ba l l lo c a t io n s /DeFinitions a n D Fu n c t io n a l De s c r iP t io n  
BGA Locations  
Symbol  
Type  
Description  
F4, F16, G5, G15, K1,  
Clock: CKx and CKx\ are differential clock inputs. All address and control input signals are  
CNTL. Input  
CKX,CKX\  
K12, L2, L13, N6, M8  
G4, G16, K2, K13, M6  
sampled on the crossing of the positive edge of CKx and negative edge of CKx\. Output data  
(DQ’s and DQS) is referenced to the crossings of the differential clock inputs.  
Clock Enable: CKE controls the clock inputs. CKE High enables, CKE Low disables the clock  
input pins. Driving CKE Low provides PRECHARGE POWER-DOWN. CKE is synchronous  
for POWER-DOWN entry and exit, and for SELF-REFRESH entry CKE is asynchronous for  
SELF-REFRESH exit and disabling the outputs. CKE must be maintained High throughout  
READ and WRITE accesses. Input buffers are disabled during POWER-DOWN, input buffers  
are disabled during SELF-REFRESH. CKE is an SSTL-2 input but will detect an LVCMOS  
LOW level after VCC is applied.  
CNTL. Input  
CKEx  
G1, G13, K4, K16, M12  
Chip Select: CSx\ enables the COMMAND register(s) of each of the five (5) integrated  
words. All commands are masked (registered) HIGH with CSx\ driven true. CSx\ provides for  
external word/bank selection on systems with multiple banks. CSx\ is considered part of the  
COMMAND CODE.  
CNTL. Input  
CSX\  
F12, G2, K15, L5, M11  
F1, G12, L4, L16, M9  
F2, F13, L15, M4, M10  
E2, E4, E13, F15, M2,  
M5, M7, M13, M15, N11  
Row Address Strobe: Command input along with CASx\ and WEx\  
CNTL. Input  
CNTL. Input  
CNTL. Input  
CNTL. Input  
RASX\  
CASX\  
WEX\  
Column Address Strobe: Command input along with RASx\ and WEx\  
WRITE (word): Command input along with CASx\ and RASx\  
Input Data Mask: DQM is an input mask signal for WRITE operations. Input Data is masked  
when DQML/Hx is sampled HIGH at time of a WRITE access DQML/Hx is sampled on both  
edges of DQSL/Hx.  
DQMLX,  
DQMHX  
E5, E6, E7, E10, E11,  
F5, K5, L12, N5, N12  
E12  
Data Strobe: Output flag on READ data and Input flag on WRITE data. DQS is edge-aligned  
with READ data, centered in WRITE data operations.  
DQSLX,  
DQSHX  
Vref  
Reference Voltage  
Level REF  
Input  
A7, A8, A9, A10, B7, B8,  
B9, B10, C7, C8, C9,  
C10, D7  
Address input: Provide the ROW address for ACTIVE commands and the COLUMN address  
and AUTO PRE-CHARGE bit (A10) for READ/WRITE commands to select one location out of  
the total array within a selected bank A10 sampled during a PRE-CHARGE command deter-  
mines whether the PRE-CHARGE applies to one bank or all banks. The address inputs also  
provide the OP-CODE during a MODE REGISTER SET command.  
A0-A12  
E8, E9  
Bank Address input: define which BANK is active during a READ, WRITE, or PRE-CHARGE  
command.  
Input  
BA0, BA1  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
4
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
Pin/Ba l l lo c a t io n s /DeFinitions a n D Fu n c t io n a l De s c r iP t io n co n t in u e D  
BGA Locations  
D8, D9, D10  
Symbol  
RFU  
Type  
Description  
Reserved Future Use: Pins reserved for future Address and Bank Select inputs  
Input  
A2, A3, A4, A13, A14,  
A15, B1, B2, B3, B4,  
B13, B14, B15, B16, C1,  
C2, C3, C4, C13, C14,  
C15, C16, D1, D2, D3,  
D4, D13, D14, D15, D16,  
E1, E16, M1, M16, N1,  
N2, N3, N4, N7, N8, N9,  
N10, N13, N14, N15,  
N16, P1, P2, P3, P4, P7,  
P8, P9, P10, P13, P14,  
P15, P16, R1, R2, R3,  
R4, R7, R8, R9, R10,  
R13, R14, R15, R16, T2,  
T3, T4, T7, T8, T9, T10,  
T13, T14, T15  
Data I/O  
Input/Output  
DQ0-DQ79  
B11, B12, C5, C6, E3,  
F3, G3, H3, H12, H16,  
J3, J12, J16, K3, L3, M3,  
P11, P12, R5, R6, T16  
A11, A12, D5, D6, H4,  
H15, J4, J15, T5, T6  
A5, A6, A16, B5, B6,  
C11, C12, D11, D12,  
E14, F14, G14, H1, H2,  
H5, H13, H14, J1, J2, J5,  
J13, J14, K14, L14, M14,  
P5, P6, R11, R12, T1,  
T11, T12  
Core Power  
Supply  
VCC  
I/O Power  
Supply  
Supply  
VCCQ  
VSS  
Ground (Digital)  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
5
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
FUNCTIONAL DESCRIPTION  
GENERAL DESCRIPTION  
The LOGIC Devices, 2.5Gb, DDR SDRAM IMOD, is one member of its  
Integrated Module family. This family of Integrated memory modules  
contains DDR3/DDR2 and DDR device definitions in three package foot-  
prints including this 25mm2, a 16mm x 22mm package and a 25mm x  
32mm footprint. This device, a high speed CMOS random-access, inte-  
grated memory device based on use of (5) silicon devices each contain-  
ing 536,870,912 bits. Each chip is internally configured as a quad-bank  
SDRAM. Each of the chips 134, 217, 728 bit banks is organized as 8,192  
rows by 1024 columns by 16bits. Each of the Silicon devices equates to  
a WORD or DUAL-BYTES, each BYTE containing Data Mask and Data  
Strobes.  
READ and WRITE accesses to the DDR SDRAM are burst oriented; accesses  
start at a selected location and continue for a programmed number of locations  
in a programmed sequence. Accesses begin with the registration of an ACTIVE  
command which is then followed by a READ or WRITE command. The address  
bits registered coincident with the ACTIVE command are used to select the  
bank and row to be accessed (BA0 and BA1 select the bank, A0-A12 select the  
row). The address bits registered coincident with the READ or WRITE com-  
mand are used to select the starting column location for the burst access.  
Prior to normal operation, the IMOD must be initialized. The following sections  
provide detailed information covering device initialization, register definition,  
command descriptions and device operation.  
The 2.5Gb DDR IMOD uses the double-data-rate (DDR) architecture to  
achieve high-speed operation. The double-data-rate architecture is a  
2n-prefetch architecture with an interface designed to transfer two data  
words per clock cycle via the I/O pins. A single READ or WRITE access  
for the 2.5Gb DDR IMOD effectively consists of a single 2n-bit wide, one  
clock cycle transfer at the internal DRAM core and two corresponding  
n-bit wide, one-half-clock cycle data transfers at the DQ (I/O) pins.  
A bidirectional data strobe (DQSLx, DQSHx) is transmitted externally,  
along with data, for use in data capture at the end-point receiver. DQSLx,  
DQSHx are strobes transmitted by the DDR SDRAM during READ opera-  
tions and by the memory controller during WRITE operations. Each  
strobe, DQSLx, DQSHx control each of two bytes contained within each  
of the (5) silicon chips contained in LDI’s IMOD.  
INITIALIZATION  
DDR SDRAMs must be powered up and initialized in a predefined manner.  
Operational procedures other than those specified may result in undefined  
operation. Power must first be applied to VCC and VCCQ simultaneously, and  
then to VREF (and to the System VTT). VTT must be applied after VCCQ to avoid  
device latch-up, which may cause permanent damage to the device. VREF  
can be applied after VCCQ but is expected to be nominally coincident with VTT.  
Except for CKE, inputs are not recognized as valid until after FREF is applied.  
CKE during power-up is required to ensure that the DQ and DQS outputs will  
be in the High-Z state, where they will remain until driven in normal operation  
(by a READ access). After all power supply and reference voltages are stable,  
and the clock is stable, the IMOD requires a 200us delay prior to applying an  
executable command.  
The 2.5Gb DDR SDRAM operated from a differential clock (CLKx, CLKx\);  
the crossing of CLKx going HIGH and CLKx\ going LOW will be referred  
to as the positive edge of CLK. Commands (address and control signals)  
are registered at every positive edge of CLK. Input data is registered on  
both edges of DQS, and output data is referenced to both edges of DQS,  
as well as to both edges of CLK.  
Once the 200us delay has been satisfied, a DESELECT or NOP command  
should be applied, and CKE should be brought HIGH. Following the NOP com-  
mand, a PRECHARGE ALL command should be applied. Next a LOAD MODE  
REGISTER command should be issued for the extended mode register (BA1  
LOW and BA0 HIGH) to enable the DLL, followed by another LOAD MODE  
REGISTER command to the mode register (BA0/BA1 both LOW) to reset the  
DLL and to program the operating parameters. Two-hundred clock cycles are  
required between the DLL reset and any READ command. A PRECHARGE  
ALL command should then be applied, placing the device in the all banks idle  
state.  
READ and WRITE accesses to the DDR memory are burst oriented;  
accesses start at a selected location and continue for a programmed  
number of locations in a programmed sequence. Accesses begin with the  
registration of an ACTIVE command, which is then followed by a READ or  
WRITE command. The address bits registered coincident with the READ  
or WRITE command are used to select the bank and the starting column  
location for the burst access.  
The DDR IMOD provides for programmable READ or WRITE burst  
lengths of 2, 4, or 8 locations. An AUTO-PRECHARGE function may be  
enabled to provide a self-timed row PRECHARGE that is initiated at the  
end of the burst access.  
Once in the idle state, two AUTO PRECHARGE cycles must be performed  
t
( RFC must be satisfied). Additionally, a LOAD MODE REGISTER command  
for the mode register with the reset DLL bit deactivated (i.e. to program operat-  
ing parameters without resetting the DLL) is required. Following these require-  
ments, the DDR IMOD is ready for normal operation.  
The pipelined, multi-banked architecture of the DDR SDRAM architecture  
allows for concurrent operations, therefore providing high effective band-  
width, by hiding row PRECHARGE and activation time.  
An AUTO REFRESH mode is provided, along with a power-saving power-  
down mode.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
6
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
REGISTER DEFINITION  
mo D e re g is t e r  
Bu r s t le n g t h  
Bu r s t t y P e  
READ and WRITE accesses to the DDR IMOD  
are burst oriented, with the burst length being  
programmable, as shown in Figure 3. The  
burst length determines the maximum number  
of column locations that can be accessed for a  
given READ or WRITE command. Burst lengths  
of 2, 4, or 8 locations are available for both the  
sequential and interleaved burst types.  
The MODE REGISTER is used to define the spe-  
cific mode of operation of the DDR IMOD. This  
definition includes the selection of a burst length,  
a burst type, a CAS latency as shown in Figure  
2 and the operating mode, as shown in Figure 3.  
The MODE REGISTER is programmed via the  
MODE REGISTER SET command (with BA0=0  
and BA1=0) and will retain the stored information  
until it is programmed again or the device real-  
izes a loss of power (except for bit A8 which is  
self clearing).  
Accesses within a given burst may be pro-  
grammed to be either sequential or interleaved;  
this is referred to as the burst type and is selected  
via bit M3.  
The ordering of accesses within a burst is deter-  
mined by the burst length, the burst type and the  
starting column address, as shown in Table 1.  
Reserved states should not be used, as unknown  
operation or incompatibility issues with future  
version may result.  
Reprogramming the MODE REGISTER will not  
alter the contents of the memory, provided it is  
performed correctly. The MODE REGISTER  
must be loaded (reloaded) when all banks are idle  
and no bursts are in progress, and the controller  
must wait the specified time before initiating the  
subsequent operation. Violating either of these  
requirements will result in unspecified operation.  
MODE REGISTER bits A0-A2 specify the burst  
length, A3 specifies the type of burst (sequential  
or interleaved), A4-A6 specify the CAS latency,  
and A7-A12 specify the operating mode.  
When a READ or WRITE command is issued,  
a block of columns equal to the burst length is  
effectively selected. All accesses for that burst  
take place within this block, meaning that the  
burst will wrap within the block if a boundary is  
reached. The block is uniquely selected by A1-Ai  
when the burst length is set to two; by A2-Ai when  
the burst length is set to four and by A3-Ai when  
the burst length is set to eight. The remaining  
(least significant) address bits are used to select  
the starting location within the block. The pro-  
grammed burst length applies to both the READ  
and WRITE bursts.  
ta B l e 1: Bu r s t DeFinition  
Order of Accesses within a Burst  
Burst Length Starting Column Address Type = Sequential  
Type = Interleaved  
Notes  
1. For a burst length of two, A1-Ai selects  
a two-data-element block; A0 selects the  
starting column within the block.  
2
A0  
0
0-1  
1-0  
0-1  
1-0  
1
2. For a burst length of four, A2-Ai selects  
a four-data-element block; A0-1 selects the  
starting column within the block.  
4
A1  
0
A0  
0
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0
1
3. For a burst length of eight, A3-Ai selects  
an eight-data-element block; A0-2 selects  
the starting column within the block.  
1
0
1
1
8
A2  
0
A1  
0
A0  
0
4. Whenever a boundary of the block is  
reached within a given sequence above,  
the following access wraps within the block.  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
7
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
READ LATENCY  
Table 2 - Ca s la t e n c y  
Allowable Operating Frequency (MHz)  
The READ latency is the delay in clock cycles, between the registration of  
a READ command and the availability of the first bit of output data. The  
latency can be set to 2 or 2.5 clocks.  
Speed  
-10  
-8  
CAS Latency = 2  
CAS Latency = 2.5  
≤100  
≤ 83  
≤100  
≤125  
NA  
If a READ command is registered at clock edge [n], and the latency is  
[m] clocks, the data will be available by clock edge [n+m]. Table 2 indi-  
cates the operating frequencies at which each CAS latency setting can  
be used.  
≤125  
-75  
-6  
≤133  
≤166  
Reserved states should not be used as unknown operation or incompat-  
ibility with future versions may result.  
OPERATING MODE  
The normal operating mode is selected by issuing a MODE REGISTER SET command with bits A7-A12, each set to zero, and bits A0-A6, set to the desired  
values. A DLL reset is initiated by issuing a MODE REGISTER SET command with bits A7 and A9-A12, each set to zero, bit A8 set to one, and bits A0-A6, set to  
the desired values. Although not required, JEDEC specifications recommend when a LOAD MODE REGISTER command is issued to reset the DLL, it should  
always be followed by a LOAD MODE REGISTER command to select normal operating mode.  
All other combinations of values for A7-A12 are reserved for future use and/or test modes. Test modes and reserved states should not be used because  
unknown operation or incompatibility from future versions may result.  
EXTENDED MODE REGISTER  
The EXTENDED MODE REGISTER controls functions beyond those controlled by the MODE REGISTER; these additional functions are DLL enable/disable,  
output drive strength, and QFC#. These functions are controlled via the bits shown in Figure 4. The EXTENDED MODE REGISTER command to the MODE  
REGISTER (with BA0=1, BA1=0) and the register will retain the stored information until it is programmed again or the device realizes loss of power. The  
enabling of the DLL should always be followed by a LOAD MODE REGISTER command to the MODE REGISTER (BA0=BA1=LOW) to reset the DLL.  
The EXTENDED MODE REGISTER must be loaded when all banks are idle and no bursts are in progress, and the controller must wait the specified time before  
initiating any subsequent operation. Violating either of these requirements could result in unspecified operation.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
8
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
REGISTER DEFINITION  
Fig u r e 1 - mo D e re g is t e r DeFinition  
BA1 BA0 An . . . A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address bus  
1
n
n + 2 n + 1  
. . .  
9
8
7
6
5
4
3
2
1
0
Mode register  
(Mx)  
Operating mode  
0
0
CAS Latency BT Burst length  
M2 M1 M0 Burst Length  
Mode Register Definition  
Base mode register  
Extended mode register  
Reserved  
Mn + 1  
Mn + 2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
2
0
1
0
1
0
0
1
1
M3  
0
Burst Type  
Sequential  
Interleaved  
4
8
Reserved  
1
Reserved  
Reserved  
Reserved  
Reserved  
Mn . . . M9 M8 M7 M6–M0 Operating Mode  
0
0
0
0
0
0
0
1
0
0
Valid  
Valid  
Normal operation  
Normal operation/reset DLL  
All other states reserved  
M6 M5 M4  
CAS Latency  
Reserved  
Reserved  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3
Reserved  
Reserved  
2.5  
Reserved  
Note: 1. n is the most significant row address bit  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
9
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
REGISTER DEFINITION  
Fig u r e 2 - ca s e la t e n c y  
T0  
T1  
T2  
T2n  
T3  
T3n  
CK#  
CK  
Comman d  
READ  
NOP  
NOP  
NOP  
CL = 2  
DQS  
DQ  
T0  
T1  
T2  
T2n  
T3  
T3n  
CK#  
CK  
Comman d  
READ  
NOP  
NOP  
NOP  
CL = 2.5  
DQS  
DQ  
T0  
T1  
T2  
T3  
T3n  
CK#  
CK  
Comman d  
READ  
NOP  
NOP  
NOP  
CL = 3  
DQS  
DQ  
Transitioning Data  
t
Don’t Care  
Note:  
BL = 4 in the cases shown; shown with nominal AC, tDQSCK, andtDQSQ.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
10  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
REGISTER DEFINITION  
Fig u r e 3 - ex t e n D e D mo D e re g is t e r  
BA1 BA0 An . . . A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address bus  
1
n + 2 n + 1 n . . .  
9
8
7
6
5
4
3
2
1
0
Extended mode  
register (Ex)  
Operating Mode  
0
1
DSDLL  
DLL  
E0  
0
1
Enable  
Disable  
Mn + 2 Mn + 1 Mode Register Definition  
0
0
1
1
0
1
0
1
Base mode register  
Extended mode register  
Reserved  
2
Drive Strength  
Normal  
E1  
0
1
Reduced  
Reserved  
3
En . . . E9 E8 E7 E6 E5 E4 E3 E2 E1, E0 Operating Mode  
0
0
0
0
0
0
0
0
0
0
Valid  
Reserved  
Reserved  
Notes: 1. n is the most significant row addres.s bit.  
2. The reduced drive strength option is available only on Design Revision F and K.  
3. The QFC# option is not supported.  
ou t P u t Dr iv e st r e n g t h  
Dll en a B l e /Dis a B l e  
The DLL must be enabled for normal operation. The DLL enable is required  
during power-up initialization and upon returning to normal operation after  
having disabled the DLL for the purpose of debug or evaluation. When the  
device exits SELF REFRESH mode, the DLL is enabled, 200 clock cycles  
must occur before a READ command can be issued.  
The normal full drive strength for all outputs are specified to be SSTL2,  
Class II. The DDR IMOD supports an option for reduced drive. This option  
is intended for the support of the lighter load and/or point-to-point environ-  
ments. The selection of the reduced drive strength will alter the DQs and  
DQSs from SSTL2, Class II drive strength to a reduced drive strength, which  
is approximately 54% of the SSTL, Class II drive strength.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
11  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
REGISTER DEFINITION  
co m m a n D s  
The TRUTH TABLE (below) provides a quick reference of available commands, followed by a written description of each command.  
tr u t h ta B l e  
Notes  
Name (Function)  
CSx\  
RASx\  
CASx\  
WEx\  
ADDR  
H
X
X
X
X
1,9  
Deselect (NOP)  
L
L
L
L
L
L
L
L
H
L
H
H
L
H
H
H
L
X
Bank/Row  
Bank/Column  
Bank/Column  
X
1,9  
1,3  
1,4  
1,4  
1,8  
1,5  
6,7  
1,2  
No Operation (NOP)  
ACTIVE (select bank and activate row)  
READ (select bank and column, and start READ burst)  
WRITE (select bank and column and start WRITE burst)  
BURST TERMINATE  
H
H
H
L
L
H
H
L
L
L
Code  
PRECHARGE (deactivate row in bank or banks)  
AUTO REFRESH or SELF REFRESH (enter soft refresh mode)  
LOAD MODE REGISTER  
L
H
L
X
L
L
OP Code  
tr u t h ta B l e - Dm oP e r a t io n  
Notes  
Name (Function)  
DQMLx, DQMHx  
DQSLx, DQSHx  
L
Valid  
1,10  
WRITE ENABLE  
H
X
1,10  
WRITE INHIBIT  
NOTES:  
6. This command is AUTO REFRESH if CKE is HIGH; SELF REFRESH if  
CKE is LOW.  
1. CKE is HIGH for all commands shown except SELF REFRESH.  
2. A0-A12 define the op-code to be written to the selected MODE  
REGISTER BA0, BA1 select either the MODE REGISTER or the  
EXTENDED MODE REGISTER.  
7. Internal REFRESH counter controls row addressing; all inputs and I/Os  
are “Don’t Care” except for CLE.  
8. Applies only to READ bursts with AUTO PRECHARGE disabled. This  
command is undefined (and should not be used) for READ burst with  
AUTO PRECHARGE enabled.  
3. A0-A12 provide row addresses, and BA0, BA1 provide bank addresses.  
4. A0-A9 provide column address; A10 HIGH enables the AUTO  
PRECHARGE feature (non-persistent), while A10 LOW disables the  
AUTO PRECHARGE feature; BA0, BA1 provide bank address.  
9. DESELECT and NOP are functionally interchangeable.  
10. Used to mask WRITE data; provided coincident with the corresponding  
data.  
5. A10 LOW; BA0, BA1 determine the bank being PRECHARGED. A10  
HIGH all banks PRECHARGED and BA0, BA1 or “Don’t Care”.  
De s e l e c t  
The DESELECT function (CSx\=HIGH) prevents new commands from being executed by the DDR IMOD. The IMOD is effectively deselected. Operations  
already in progress are not affected.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
12  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
REGISTER DEFINITION  
Ac t iv e  
no oP e r a t io n (noP)  
The ACTIVE command is used to open (or activate) a row in a particular  
bank for a subsequent access. The value on the BA0, BA1 inputs selects  
the bank and the address provided on inputs A0-A12, selects the row. This  
row remains active (or opens) for accesses until a PRECHARGE command  
is issued to that bank. A PRECHARGE command must be issued before  
opening a different row in the same bank.  
The NO OPERATION command is used to perform a NOP to the selected  
DDR Silicon within the IMOD (CSx\=LOW). This prevents unwanted com-  
mands from being registered during idle or wait states. Operations already  
in progress are not affected.  
Lo a D mo D e re g is t e r  
The MODE REGISTER is loaded via inputs A0-A12. The LOAD MODE REG-  
ISTER command can only be issued when all banks idle and a subsequent  
t
executable command cannot be issued until MRD is met.  
ac t iv a t in g a sP e c iF ic ro w in a sP e c iF ic Ba n k  
CK#  
CK  
CKE HIGH  
CS#  
RAS#  
CA S#  
WE#  
Address  
Row  
Bank  
BA0, BA1  
Don’t Care  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
13  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
re a D  
The READ command is used to initiate a burst READ access to an active row. The value on the BA0, BA1 inputs selects the bank, and the address provided  
on inputs A0-A9 selects the starting column location. The value on input A10 determines whether or not AUTO PRECHARGE is used. If AUTO PRECHARGE  
is selected, the row being accessed will be PRECHARGED at the end of the READ burst; If AUTO PRECHARGE is not selected, the row will remain open for  
subsequent accesses.  
reaD co m m a n D  
CK#  
CK  
CKE  
CS#  
HIGH  
RAS#  
CAS#  
WE#  
Col  
Address  
EN AP  
DISAP  
A10  
BA0, BA1  
Bank  
Don’t Care  
Note:  
EN AP = enable auto precharge  
DIS AP = disable auto precharge.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
14  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
wr it e  
The WRITE command is used to initiate a burst WRITE access to an active row. The value on the BA0, BA1 inputs selects the bank, and the address provided  
on inputs A0-A9 selects the starting column location. The value on the input A10 determines whether or not AUTO PRECHARGE is used. If AUTO PRE-  
CHARGE is selected, the row being accessed will be AUTO PRECHARGED at the end of the WRITE burst; If AUTO PRECHARGE is not selected, the row will  
remain open for subsequent accesses. Input data appearing on the DQ lines is written to the memory array subject to DQMLx, DQMHx for each WORD. If a  
given DQM signal is registered LOW, the corresponding data will be written to memory; if the DQM signal is registered HIGH, the corresponding data inputs will  
be ignored, and a WRITE will not be executed to that byte column location.  
write co m m a n D  
CK#  
CK  
CKE HIGH  
CS#  
RAS#  
CAS#  
WE#  
Address  
A10  
Col  
EN AP  
DIS AP  
Bank  
BA0, BA1  
Don’t Care  
Note:  
EN AP = enable auto precharge  
DIS AP = disable auto precharge..  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
15  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
Pr e c h a r g e  
The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. The bank or banks will be available for a  
t
subsequent row access a specified time ( RP) after the PRECHARGE command is issued. Except in the case of concurrent auto PRECHARGE, where a  
READ or WRITE command to a different bank is allowed as long as it does not violate any other timing parameters. Input A10 determines whether one or all  
banks are to be PRECHARGED and in the case where only one bank is to be PRECHARGED, inputs BA0, BA1 select the bank. In all other cases BA0, BA1  
are treated as “Don’t Care”. Once a bank has been PRECHARGED, it is in the idle state and must be activated prior to any READ or WRITE commands being  
issued to that bank. A PRECHARGE command will be treated as a NOP if there is no open row in that bank, or if the previously open row is already in the  
process of PRECHARGING.  
Precharge co m m a n D  
CK#  
CK  
CKE HIGH  
CS#  
RAS#  
CAS#  
WE#  
Address  
All banks  
A10  
One bank  
BA0, BA1  
Bank1  
Don’t Care  
Note:  
1. If A10 is HIGH, bank address becomes “Don’t Care.”  
au t o Pr e c h a r g e  
AUTO PRECHARGE is a feature which performs the same individual bank PRECHARGE function described prior, but without requiring an explicit command.  
This is accomplished by using A10 to enable the command/function in conjunction with a specific READ or WRITE command. A PRECHARGE of the bank/  
row that is addressed with the READ or WRITE command is automatically performed upon completion of the READ or WRITE burst. AUTO PRECHARGE is  
non-persistent in that it is either enabled or disabled for each individual READ or WRITE command. The device supports concurrent AUTO PRECHARGE if  
the command to the other bank does not interrupt the data transfer to the current bank.  
AUTO PRECHARGE ensures that the PRECHARGE is initiated at the earliest valid stage within a burst. This earliest valid stage is determined as if an explicit  
t
PRECHARGE command was issued at the earliest possible time without violating RAS (MIN).  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
16  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AB s o l u t e ma x im u m ra t in g s  
Bu r s t te r m in a t e  
Parameter  
MIN  
MAX UNITS  
+3.6V  
V
VCC Supply Voltage relative to VSS  
The BURST TERMINATE command is used to truncate READ bursts.  
The most recently registered READ command prior to the BURST TER-  
MINATE command will be truncated. The open page which the READ  
burst was terminated from, remains open.  
-1.0V  
+3.6V  
V
VCCQ I/O Supply Voltage relative to VSS  
VREF and inputs Voltage relative to VSS  
I/O pins Voltage relative to VSS  
Storage Temperature  
-1.0V  
-1.0V  
-0.5V  
-55  
+3.6V  
V
VCCQ + 0.5V  
+150  
V
Au t o re F r e s h  
C
50  
mA  
Short circuit current  
−−  
AUTO REFRESH is used during normal operations of the IMOD and is  
analogous to CASx\-BEFORE-RASx\ (CBR) REFRESH in conventional  
DRAMs. This command is non-persistent so it must be issued each time  
a REFRESH is required.  
Ca P a c it a n c e  
The addressing is generated by the internal REFRESH controller. This  
makes the address bits “Don’t Care” during an AUTO REFRESH com-  
mand. Each DDR die within the IMOD, requires AUTO REFRESH cycles  
at an average of 7.8125 us (maximum).  
Parameter  
SYMBOL  
MAX UNITS  
pF  
5
Input Capacitance [CKx\CKx\]  
C
l1  
pF  
30  
Addresses, BA0-1  
C
A
To allow for improved efficiency in scheduling and switching between  
tasks, some flexibility in the absolute REFRESH interval is provided. A  
maximum of eight AUTO REFRESH commands can be posted to any  
given DDR die, meaning that the maximum absolute interval between any  
AUTO REFRESH command is 9 x 7.8125uS (70.3uS). This maximum  
absolute interval is to allow future support for DLL updates internal to the  
DDR SDRAM die.  
pF  
Input Capacitance [All other Input Pins]  
DQ line  
C
7
12  
pF  
8
C
10  
Although not a JEDEC requirement, to provide for future functionality  
enhancements, CKEx must be active (HIGH) during the AUTO REFRESH  
period. The AUTO REFRESH period begins when the AUTO REFRESH  
t
command is registered and ends RFC later.  
Se l F re F r e s h  
The SELF REFRESH command can be used to retain data in the DDR  
IMOD even if the rest of the system is powered down. When in the SELF  
REFRESH mode, the DDR IMOD retains data without external clocking.  
The SELF REFRESH command is initiated like an AUTO REFRESH com-  
mand except CKEx is disabled (LOW). The DLL is automatically enabled  
upon entering SELF REFRESH (200 clock cycles must then occur before  
a READ command can be issued). Input signals except CLEx are “Don’t  
Care” during SELF REFRESH.  
The procedure for exiting SELF REFRESH requires a sequence of com-  
mands. First, CLKx must be stable prior to CKEx going back to HIGH.  
Once CLEx is HIGH, the DDR die must have a NOP command issued  
t
for XSNR, because time is required for the completion of any internal  
REFRESH in progress.  
A simple algorithm for meeting both REFRESH and DLL requirements is  
to apply NOPs for 200 clock cycles before applying any other command.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
17  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
Dc el e c t r ic a l ch a r a c t e r is t ic s a n D oP e r a t in g co n D it io n s (no t e s 1, 6)  
VCC, VCCQ=+2.5V±0.2V;-55°C≤TA≤+125°C  
Parameter  
Symbol  
MIN  
TYP  
MAX  
UNITS  
VCC  
2.3  
2.5  
2.7  
Supply Voltage  
V
V
V
V
VCCQ  
VREF  
VTT  
VIH  
VIL  
2.3  
2.5  
0.50 x VCCQ  
VREF  
2.7  
I/O Supply Voltage  
0.49 x VCCQ  
VREF - 0.04  
0.51 x VCCQ  
VREF + 0.04  
I/O Reference Voltage  
I/O Termination Voltage  
Input High Voltage  
Input Low Voltage  
II  
-2  
-5  
+2  
+5  
Input Leakage Current:  
Any input 0V≤VIN≤VCC, VREF pin 0V≤VIN≤1.35V  
All other pins not under test = 0V  
Output Leakage Current:  
DQ lines disabled; 0V≤VOUT≤VCCQ  
Full Drive Output Option  
uA  
uA  
IOZ  
IOH  
IOL  
IOH  
IOL  
-16.8  
+16.8  
-9  
−−  
−−  
−−  
−−  
mA  
mA  
mA  
mA  
Reduced Drive Output Option  
Ambient Operating Temperature  
+9  
TA  
TA  
TA  
-40  
-40  
-55  
25  
25  
25  
85  
Industrial = “I”  
Extended = “E”  
Mil-Temp = “M”  
°C  
°C  
°C  
105  
125  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
18  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
icc oP e r a t in g sP e c iF ic a t io n l i m i t s a n D co n D it io n s (no t e s 1-5, 10, 12, 14)  
VCC, VCCQ=+2.5V±0.2V;-55°C≤TA≤+125°C  
333 Mbps 266/250 Mbps  
200 Mbps  
@CL=2  
520  
Parameter  
Symbol  
ICC0  
@CL=2.5  
@CL=2  
600  
Units  
mA  
640  
OPERATING current: One bank active - precharge  
t
t
t
t
t
t
CL= CK(MIN), RC= RC(MIN), RAS= RAS MIN(ICC); DQ, DQM, DQS inputs  
changing once per clock cycle; Address and Control inputs changing once  
every two clock cycles  
650  
25  
ICC1  
ICC2P  
ICC2F  
790  
25  
710  
25  
mA  
mA  
mA  
OPERATING current: One bank active - READ - precharge current  
t
t
t
t
Active-Read-Precharge; Burst=2; RC= RC(MIN); CK= CK(MIN); IOUT=0mA;  
Address and control inputs changing once per clock cycle (notes: 22, 48)  
Precharge POWER-DOWN current  
t
t
All banks idle; POWER-DOWN mode; CK= CK(MIN), CKE=LOW (notes: 23,  
32, 50)  
195  
225  
225  
IDLE STANDBY current  
t
t
CS\=HIGH; All banks idle; POWER-DOWN mode; CK= CK(MIN);  
CKE=HIGH; Address and other Control inputs changing once per clock cycle;  
VSS=VREF for DQ, DQS and DM (note: 51)  
150  
200  
ICC3P  
175  
175  
mA  
mA  
ACTIVE POWER-DOWN, STANDBY current  
t
t
One bank active; POWER-DOWN mode; CK= CK(MIN), CKE=LOW (notes:  
23, 32, 50)  
ICC3N  
225  
225  
ACTIVE STANDBY current  
t
t
CS\=HIGH; CKE=HIGH; One bank Active Precharge; RC= RAS(MAX);  
t
t
CK= CK(MIN); DQ, DQM and DQS inputs changing twice per clock cycle;  
Address and other control inputs changing once per cycle (note: 22)  
OPERATING current Burst=2 READS  
245  
ICC4R  
ICC4W  
350  
300  
mA  
mA  
Continuous Burst; One bank active; Address and Control inputs changing  
t
t
once per clock cycle; CK= CK(MIN); IOUT=0mA cycle (notes: 22, 48)  
OPERATING current Burst=2 WRITES  
775  
1250  
1025  
Continuous Burst; One bank active; Address and Control inputs changing  
t
t
once per clock cycle; CK= CK(MIN); DQ, DQM and DQS inputs changing  
twice per clock cycle (note: 22)  
t
t
1400  
50  
REF= RC (MIN) (notes: 27, 50)  
mA  
mA  
mA  
mA  
ICC5  
ICC5A  
ICC6  
1450  
50  
1450  
50  
AUTO REFRESH current  
t
t
REF=7.8125us (notes: 27, 50) = RC (MIN)  
25  
25  
25  
SELF REFRESH current; CKE=0.2V  
1700  
ICC7  
2000  
1925  
OPERATING current  
t
t
Four bank interleaving READS (BL=4) with AUTO PRECHARGE; RC= RC  
t
t
(MIN); CK= CK (MIN); Address and Control inputs change only during  
ACTIVE READ or WRITE commands (notes: 22, 49)  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
19  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
ac el e c t r ic a l sP e c iF ic a t io n s a n D re c o m m e n D oP e r a t in g ch a r a c t e r is t ic s (no t e s 1-5, 14-17, 33)  
-6, 333 Mbps  
-75, 266 [250]Mbps  
-8, 250 [200]Mbps  
-10, 200 [167] Mbps  
167 MHz,  
133 MHz  
125 MHz  
100 MHz  
CLKx CL = 2.5  
CLKx CL = 2.5 [2]  
CLKx CL = 2.5 [2]  
CLKx CL = 2.5 [2]  
Parameter  
Symbol MIN MAX MIN MAX MIN MAX MIN MAX UNITS  
t
ns  
CLK  
CLK  
ns  
AC  
-0.8  
0.45  
0.45  
8
-0.8  
0.45  
0.45  
10  
0.8  
0.55  
0.55  
13  
-0.7  
0.45  
0.45  
6
0.7  
0.55  
0.55  
13  
-0.75  
0.45  
0.45  
7.5  
0.75  
0.55  
0.55  
13  
0.8  
0.55  
0.55  
13  
Access window of DQs from CLKx / CLKx\  
CLKx High level Width  
t
t
t
CH  
t
CL  
CK  
CK  
CLKx Low level Width  
t
t
t
CL=2.5  
Clock Cycle Time  
ns  
CL=2  
10  
15  
7.5  
13  
10  
13  
13  
13  
ns  
DH  
0.6  
0.6  
2
0.6  
0.6  
0.45  
0.45  
1.75  
-0.6  
0.35  
0.35  
0.5  
DQ and DM Input Hold Time relative to DQS  
DQ and DM Input Setup Time relative to DQS  
DQ and DM Input Pulse Width  
t
ns  
DS  
0.5  
t
ns  
DIPW  
2
1.75  
-0.75  
0.35  
0.35  
t
ns  
DQSCK  
-0.8  
0.35  
0.35  
-0.8  
0.35  
0.35  
0.8  
0.6  
0.75  
0.8  
Access window of DQs from CLKx / CLKx\  
DQS Input HIGH Pulse Width  
t
t
t
CLK  
CLK  
ns  
DQSH  
t
DQSL  
DQS Input LOW Pulse Width  
t
DQSQ  
0.6  
0.45  
1.25  
0.5  
0.6  
DQS-DQ Skew, DQS to last DQ valid, per grp.  
t
t
t
t
CLK  
CLK  
CLK  
ns  
DQSS  
0.75  
0.2  
0.75  
0.2  
1.25  
0.75  
0.2  
0.75  
0.2  
1.25  
1.25  
WRITE command to first DQS latching transition  
DQS falling edge to CLKx rising - setup time  
DQS falling edge to CLKx rising - hold time  
Half Clock period  
t
DSS  
t
DSH  
0.2  
0.2  
0.2  
0.2  
t
t
t
t
t
t
t
t
t
HP  
CH, CL  
CH, CL  
CH, CL  
CH, CL  
t
ns  
HZ  
0.8  
0.7  
0.75  
0.8  
Data-Out HIGH impedance window from CLKx / CLKx\  
Data-Out LOW impedance window from CLKx / CLKx\  
Address and Control Input hold time  
Address and Control Input setup time  
Address and Control Input hold time  
Address and Control Input setup time  
Load Mode Register  
t
ns  
LZ  
-0.8  
1.1  
1.1  
1.1  
1.1  
-0.8  
1.1  
1.1  
1.1  
1.1  
-0.70  
0.75  
0.75  
0.8  
-0.75  
0.9  
0.9  
1
t
ns  
IHF  
t
ns  
ISF  
t
HIS  
t
ISS  
0.8  
1
t
ns  
ns  
MRD  
16  
t
16  
t
12  
t
15  
t
t
t
t
t
t
HP- QHS  
HP- QHS  
HP- QHS  
HP- QHS  
QH  
DQ-DQS hold. DQS to first DQ to go non-valid  
Data Hold skew factor  
t
ms  
ms  
ms  
ns  
QHS  
1
0.55  
0.75  
1
t
RAS  
RAP  
40  
20  
70  
80  
20  
20  
40  
120000  
42  
15  
70000  
40  
120000  
120000  
ACTIVE to PRECHARGE command  
ACTIVE to READ with AUTO PRECHARGE command  
ACTIVE to ACTIVE/AUTO REFRESH command per.  
AUTO REFRESH command period  
ACTIVE to READ or WRITE delay  
PRECHARGE command period  
t
20  
70  
20  
65  
t
RC  
60  
t
t
ns  
RFC  
80  
72  
75  
ns  
RCD  
20  
15  
20  
t
ns  
RP  
20  
15  
20  
t
t
t
CLK  
CLK  
ns  
RPRC  
0.9  
0.4  
15  
0.9  
0.4  
15  
1.1  
0.6  
0.9  
0.4  
12  
1.1  
0.6  
0.9  
0.4  
15  
1.1  
0.6  
1.1  
0.6  
DQS READ Preamble  
t
RPST  
DQS READ Postamble  
t
RRD  
ACTIVE bank to ACTIVE bank b command  
DQS WRITE Preamble  
t
t
CLK  
ns  
WPRC  
0.25  
0
0.25  
0
0.25  
0
0.25  
0
t
WPRCS  
DQS READ Preamble Setup Time  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
20  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
ac el e c t r ic a l sP e c iF ic a t io n s a n D re c o m m e n D oP e r a t in g ch a r a c t e r is t ic s (no t e s 1-5, 14-17, 33)  
-6, 333 Mbps  
-75, 266 [250]Mbps  
-8, 250 [200]Mbps  
-10, 200 [167] Mbps  
167 MHz,  
133 MHz  
125 MHz  
100 MHz  
CLKx CL = 2.5  
CLKx CL = 2.5 [2]  
CLKx CL = 2.5 [2]  
CLKx CL = 2.5 [2]  
Parameter  
Symbol MIN MAX MIN MAX MIN MAX MIN MAX UNITS  
t
t
0.4  
0.4  
0.4  
0.6  
0.4  
0.6  
DQS WRITE Postamble  
CLK  
ns  
WPST  
t
12  
15  
15  
15  
WRITE Recovery Time  
WR  
t
t
1
t
1
t
1
t
1
t
Internal WRITE to READ command delay  
Data Valid Output Window  
CLK  
us  
WTR  
t
t
t
t
na  
QH- DQSQ  
QH- DQSQ  
QH- DQSQ  
QH- DQSQ  
t
70.3  
53  
70.3  
53  
REFRESH to REFRESH command Interval (Industrial)  
REFRESH to REFRESH command Interval (Extended)  
REFRESH to REFRESH command Interval (Mil-Temp)  
Average Periodic REFRESH Interval (Industrial)  
Average Periodic REFRESH Interval (Extended)  
Average Periodic REFRESH Interval (Mil-Temp)  
Terminating delay reference to VDD  
us  
REFC  
REFC  
REFC  
70.3  
35  
70.3  
53  
t
us  
t
35  
35  
us  
7.8  
3.9  
5.9  
3.9  
35  
t
t
t
7.8  
5.9  
3.9  
7.8  
5.9  
3.9  
us  
REFI  
REFI  
REFI  
7.8  
5.9  
3.9  
us  
us  
t
0
0
0
0
ns  
VTD  
t
75  
75  
80  
80  
Exit Self REFRESH to non-READ Command  
Exit Self REFRESH to READ Command  
ns  
XSNR  
XSRD  
t
t
200  
200  
200  
200  
CLK  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
21  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
ac sP e c iF ic a t io n no t e s  
V/ns, functionality is uncertain.  
1.All voltages referenced to VSS  
16. The CK/CK# input reference level (for timing referenced to CK/CK#) is  
the point at which CK and CK# cross; the input reference level for signals  
other than CK/CK# is VREF.  
2.Tests for AC timing, IDD, and electrical AC and DC characteristics may be  
conducted at nominal reference/supply voltage levels, but the related speci-  
fications and the device operation are guaranteed for the full voltage range  
specified.  
17. Inputs are not recognized as valid until VREF stabilizes. Once initialized,  
including self refresh mode, VREF must be powered within specified range.  
Exception: during the period before VREF stabilizes, CKE < 0.3 × VDD is  
recognized as LOW.  
3. Outputs (except for IDD measurements) measured with equivalent load:  
50  
Reference  
Output  
(VOUT)  
point  
18. The output timing reference level, as measured at the timing reference  
point (indicated in Note 3), is VTT.  
30pF  
t
t
19. HZ and LZ transitions occur in the same access time windows as data  
valid transitions. These parameters are not referenced to a specific voltage  
level, but specify when the device output is no longer driving (High-Z) or  
begins driving (Low-Z).  
4. AC timing and IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test  
environment, but input timing is still referenced to VREF (or to the crossing  
point for CK/CK#), and parameter specifications are guaranteed for the spec-  
ified AC input levels under normal use conditions. The minimum slew rate  
for the input signals used to test the device is 1 V/ns in the range between  
VIL(AC) and VIH(AC).  
20. The intent of the “Don’t Care” state after completion of the postamble  
is the DQS-driven signal should either be HIGH, LOW, or High-Z, and that  
any signal transition within the input switching region must follow valid input  
requirements. That is, if DQS transitions HIGH (above VIH[DC] MIN) then it  
5. The AC and DC input level specifications are as defined in the SSTL_2  
standard (that is, the receiver will effectively switch as a result of the signal  
crossing the AC input level and will remain in that state as long as the signal  
does not ring back above [below] the DC input LOW [HIGH] level).  
t
must not transition LOW (below VIH[DC] prior to DQSH [MIN]).  
21. This is not a device limit. The device will operate with a negative value,  
but system performance could be degraded due to bus turnaround.  
6. All speeds may not be offered on all device grades. Refer to “Ordering  
Information” for availability.  
22. It is recommended that DQS be valid (HIGH or LOW) on or before the  
WRITE command. The case shown (DQS going from High-Z to logic LOW)  
applies when no WRITEs were previously in progress on the bus. If a previ-  
ous WRITE was in progress, DQS could be HIGH during this time, depending  
7. VREF is expected to equal VDDQ/2 of the transmitting device and to track  
variations in the DC level of the same. Peak-to-peak noise (noncommon  
mode) on VREF may not exceed ±2% of the DC value. Thus, from VDDQ/2,  
VREF is allowed ±25mV for DC error and an additional ±25mV for AC noise.  
This measurement is to be taken at the nearest VREF bypass capacitor.  
t
on DQSS.  
t
t
t
23. MIN ( RC or RFC) for IDD measurements is the smallest multiple of CK  
t
that meets the minimum absolute value for the respective parameter. RAS  
(MAX) for IDD measurements is the largest multiple of CK that meets the  
maximum absolute value for RAS.  
t
t
8. VTT is not applied directly to the device. VTT is a system supply for signal  
termination resistors, it is expected to be set equal to VREF, and it must track  
variations in the DC level of VREF.  
24. The refresh period is 64ms. This equates to an average refresh rate  
of 7.8125μs (15.625μs for 128Mb DDR). However, an AUTO REFRESH  
command must be asserted at least once every 70.3μs (140.6μs for 128Mb  
DDR); burst refreshing or posting by the DRAM controller greater than 8  
REFRESH cycles is not allowed.  
9. VID is the magnitude of the difference between the input level on CK and  
the input level on CK#.  
10. The value of VIX and VMP is expected to equal VDDQ/2 of the transmitting  
device and must track variations in the DC level of the same.  
25. The I/O capacitance per DQS and DQ byte/group will not differ by more  
than this maximum amount for any given device.  
11. IDD is dependent on output loading and cycle rates. Specified values are  
obtained with minimum cycle times.  
t
26. The data valid window is derived by achieving other specifications: HP  
t
t
t
t
t
t
( CK/2), DQSQ, and QH ( QH = HP - QHS). The data valid window derates  
in direct proportion to the clock duty cycle and a practical data valid window  
can be derived. The clock is allowed a maximum duty cycle variation of 45/55,  
because functionality is uncertain when operating beyond a 45/55 ratio. 27.  
Referenced to each output group: x4 = DQS with DQ0–DQ3; x8 = DQS with  
DQ0–DQ7; x16 = LDQS with DQ0–DQ7 and UDQS with DQ8–DQ15.  
12. Enables on-chip refresh and address counters.  
13. IDD specifications are tested after the device is properly initialized and is  
averaged at the defined cycle rate.  
14. This parameter is sampled. VDD = +2.5V ±0.2V, VDDQ = +2.5V ±0.2V,  
VREF = VSS, f = 100MHz, TA= 25°C, VOUT(DC) = VDDQ/2, VOUT (peak-to-  
peak) = 0.2V. DM input is grouped with I/O pins, reflecting the fact that they  
are matched in loading.  
28. This limit is actually a nominal value and does not result in a fail value.  
CKE is HIGH during the REFRESH command period ( RFC [MIN]), else CKE  
is LOW (that is, during standby).  
t
15. For slew rates less than 1 V/ns and greater than or equal to 0.5 V/ns. If  
t
the slew rate is less than 0.5 V/ns, timing must be derated: IS has an addi-  
tional 50ps per each 100 mV/ns reduction in slew rate from the 500 mV/ns.  
t
IH has 0ps added, that is, it remains constant. If the slew rate exceeds 4.5  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
22  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
ac sP e c iF ic a t io n no t e s  
29. To maintain a valid level, the transitioning edge of the input must:  
Fig u r e 4 - Fu l l Dr iv e Pu l l -Do w n ch a r a c t e r is t ic s  
a. Sustain a constant slew rate from the current AC level  
through to the target AC level, VIL(AC) or VIH(AC).  
160  
140  
120  
100  
80  
b. Reach at least the target AC level.  
c. After the AC target level is reached, continue to maintain at  
least the target DC level, VIL(DC) or VIH(DC).  
30. The input capacitance per pin group will not differ by more than this maxi-  
mum amount for any given device.  
60  
40  
31. CK and CK# input slew rate must be ≥1 V/ns (≥2 V/ns if measured  
differentially).  
20  
0
32. DQ and DM input slew rates must not deviate from DQS by more than  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
10%. If the DQ/DM/DQS slew rate is less than 0.5 V/ns, timing must be der-  
ated: 50ps must be added to DS and DH for each 100 mV/ns reduction in  
VOUT (V)  
t
t
slew rate.  
33. VDD must not vary more than 4% if CKE is not active while any bank is  
active.  
Fig u r e 5 - Fu l l Dr iv e Pu l l -uP ch a r a c t e r is t ic s  
0
-20  
34. The clock is allowed up to ±150ps of jitter. Each timing parameter is  
allowed to vary by the same amount.  
-40  
t
t
t
-60  
35. HP (MIN) is the lesser of CL (MIN) and CH (MIN) actually applied to the  
device CK and CK# inputs, collectively, during bank active.  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
36. READs and WRITEs with auto precharge are not allowed to be issued  
until RAS (MIN) can be satisfied prior to the internal PRECHARGE com-  
mand being issued.  
t
37. Any positive glitch must be less than 1/3 of the clock cycle and not more  
than +400mV or 2.9V, whichever is less. Any negative glitch must be less  
than 1/3 of the clock cycle and not exceed either –300mV or 2.2V, whichever  
is more positive. The average cannot be below the +2.5V minimum.  
0.0  
0.5  
1.0  
V
1.5  
DDQ - VOUT (V)  
2.0  
2.5  
38. Normal output drive curves:  
a. The full driver pull-down current variation from MIN to MAX  
process; temperature and voltage will lie within the outer  
bounding lines of the V-I curve of Figure 4.  
39. Reduced output drive curves:  
a. The full driver pull-down current variation from MIN to MAX  
process; temperature and voltage will lie within the outer  
bounding lines of the V-I curve of Figure 6.  
b. The driver pull-down current variation, within nominal voltage  
and temperature limits, is expected, but not guaranteed,  
to lie within the inner bounding lines of the V-I curve of  
Figure 4.  
b. The driver pull-down current variation, within nominal voltage  
and temperature limits, is expected, but not guaranteed, to lie  
within the inner bounding lines of the V-I curve of Figure 6.  
c. The full driver pull-up current variation from MIN to MAX  
process; temperature and voltage will lie within the outer  
bounding lines of the V-I curve of Figure 5.  
c. The full driver pull-up current variation from MIN to MAX  
process; temperature and voltage will lie within the outer  
bounding lines of the V-I curve of Figure 7.  
d. The driver pull-up current variation within nominal limits of  
voltage and temperature is expected, but not guaranteed, to  
lie within the inner bounding lines of the V-I curve of Figure 5.  
d. The driver pull-up current variation, within nominal voltage and  
temperature limits, is expected, but not guaranteed, to lie within  
the inner bounding lines of the V-I curve of Figure 7.  
e. The full ratio variation of MAX to MIN pull-up and pull-down  
current should be between 0.71 and 1.4 for drain-to-source  
voltages from 0.1V to 1.0V at the same voltage and temperature.  
e. The full ratio variation of the MAX-to-MIN pull-up and pull-  
down current should be between 0.71 and 1.4 for device  
drain-to-source voltages from 0.1V to 1.0V at the same voltage  
and temperature.  
f. The full ratio variation of the nominal pull-up to pull-down  
current should be unity ±10% for device drain-to-source  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
23  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
ac sP e c iF ic a t io n no t e s  
f. The full ratio variation of the nominal pull-up to pull-down  
current should be unity ±10%, for device drain-to-source  
voltages from 0.1V to 1.0V.  
45. During initialization, VDDQ, VTT, and VREF must be equal to or less than  
VDD + 0.3V. Alternatively, VTT may be 1.35V maximum during power-up,  
even if VDD/VDDQ are 0V, provided a minimum of 42Ω of series resistance is  
used between the VTT supply and the input pin.  
Fig u r e 6 - re D u c e D Dr iv e Pu l l -Do w n ch a r a c t e r is t ic s  
80  
70  
60  
50  
40  
30  
20  
10  
0
46. The current LDI part operates below 83 MHz (slowest specified JEDEC  
operating frequency). As such, future die may not reflect this option.  
47. When an input signal is HIGH or LOW, it is defined as a steady state logic  
HIGH or LOW.  
48. Random address is changing; 50% of data is changing at every transfer.  
49. Random address is changing; 100% of data is changing at every trans-  
fer.  
50. CKE must be active (HIGH) during the entire time a REFRESH com-  
mand is executed. That is, from the time the AUTO REFRESH command  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
t
is registered, CKE must be active at each rising clock edge, until RFC has  
V
OUT (V)  
been satisfied.  
51. IDD2N specifies the DQ, DQS, and DM to be driven to a valid HIGH or  
LOW logic level. IDD2Q is similar to IDD2F except IDD2Q specifies the address  
and control inputs to remain stable. Although IDD2F, IDD2N, and IDD2Q are  
similar, IDD2F is “worst case.”  
Fig u r e 7 - re D u c e D Dr iv e Pu l l -uP ch a r a c t e r is t ic s  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
52. Whenever the operating frequency is altered, not including jitter, the DLL  
is required to be reset followed by 200 clock cycles before any READ com-  
mand.  
53. This is the DC voltage supplied at the DRAM and is inclusive of all noise  
up to 20 MHz. Any noise above 20 MHz at the DRAM generated from any  
source other than that of the DRAM itself may not exceed the DC voltage  
range of 2.6V ±100mV.  
t
54. The -6 speed grades will operate with RAS (MIN) = 40ns and  
t
RAS (MAX) = 120,000ns at any slower frequency.  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
VDDQ - VOUT (V)  
40. The voltage levels used are derived from a minimum VDD level and the  
referenced test load. In practice, the voltage levels obtained from a properly  
terminated bus will provide significantly different voltage values.  
41. VIH overshoot: VIH (MAX) = VDDQ + 1.5V for a pulse width ≤ 3ns, and  
the pulse width can not be greater than 1/3 of the cycle rate. VIL undershoot:  
VIL (MIN) = –1.5V for a pulse width ≤ 3ns, and the pulse width can not be  
greater than 1/3 of the cycle rate.  
42. VDD and VDDQ must track each other.  
t
t
t
t
43. HZ (MAX) will prevail over DQSCK (MAX) + RPST (MAX) condition. LZ  
t
t
(MIN) will prevail over DQSCK (MIN) + RPRE (MAX) condition.  
t
t
44. RPST end point and RPRE begin point are not referenced to a specific  
t
voltage level but specify when the device output is no longer driving ( RPST)  
or begins driving ( RPRE).  
t
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
24  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
AC Switching diagrams reference 16 bits, LDI’s IMOD contains (5) 16 bit devices totaling 80 bits  
Fig u r e 8 - re a D Bu r s t  
T0  
T1  
NOP  
T2  
T2n  
T3  
T3n  
T4  
T5  
CK#  
CK  
READ  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
Bank a,  
Col n  
CL = 2  
DQS  
DQ  
DO  
n
T0  
T1  
T2  
T2n  
T3  
T3n  
T4  
T5  
CK#  
CK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
Bank a,  
Col n  
CL = 2.5  
DQS  
DQ  
DO  
n
T0  
T1  
T2  
T3  
T3n  
T4  
T4n  
T5  
CK#  
CK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
Bank a,  
Col n  
CL = 3  
DQS  
DQ  
DO  
n
Transitioning Data  
Don’t Care  
Notes: 1. DO n = data-out from column n.  
2. BL = 4.  
3. Three subsequent elements of data-out appear in the programmed order following DO n.  
4. Shown with nominal tAC, tDQSCK, andtDQSQ.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
25  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 9 - co n s e c u t iv e re a D Bu r s t  
T0  
T1  
T2  
T2n  
T3  
T3n  
T4  
T4n  
T5  
T5n  
CK#  
CK  
Command  
Address  
READ  
NOP  
READ  
NOP  
NOP  
NOP  
Bank,  
Col n  
Bank,  
Col b  
CL = 2  
DQS  
DQ  
DO  
n
DO  
b
T0  
T1  
T2  
T2n  
T3  
T3n  
T4  
T4n  
T5  
T5n  
CK#  
CK  
Command  
Address  
READ  
NOP  
READ  
NOP  
NOP  
NOP  
Bank,  
Col n  
Bank,  
Col b  
CL = 2.5  
DQS  
DQ  
DO  
n
DO  
b
T0  
T1  
T2  
T3  
T3n  
T4  
T4n  
T5  
T5n  
CK#  
CK  
Command  
Address  
READ  
NOP  
READ  
NOP  
NOP  
NOP  
Bank,  
Col n  
Bank,  
Col b  
CL = 3  
DQS  
DQ  
DO  
n
DO  
b
Transitioning Data  
Don’t Care  
Notes: 1. DO n (or b) = data-out from column n (or column b).  
2. BL = 4 or BL = 8 (if BL = 4, the bursts are concatenated; if BL = 8, the second burst interrupts  
the first).  
3. Three subsequent elements of data-out appear in the programmed order following DO n.  
4. Three (or seven) subsequent elements of data-out appear in the programmed order follow-  
ing DO b.  
5. Shown with nominal tAC, tDQSCK, andtDQSQ.  
6. Example applies only when READ commands are issued to same device.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
26  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 10 - no n c o n s e c u t iv e re a D Bu r s t  
T0  
T1  
NOP  
T2  
T2n  
T3  
T3n  
T4  
T5  
T5n  
T6  
CK#  
CK  
Comman d  
READ  
NOP  
READ  
NOP  
NOP  
NOP  
Bank,  
Col n  
Bank,  
Col b  
Address  
CL = 2  
DQS  
DQ  
DO  
n
DO  
b
T0  
T1  
T2  
T2n  
T3  
T3n  
T4  
T5  
T5n  
T6  
CK#  
CK  
Comman d  
READ  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
Bank,  
Col n  
Bank,  
Col b  
Address  
CL = 2.5  
DQS  
DQ  
DO  
n
DO  
b
T4n  
T0  
T1  
T2  
T3  
T3n  
T4  
T5  
T6  
CK#  
CK  
Comman d  
READ  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
Bank,  
Col n  
Bank,  
Col b  
Address  
CL = 3  
DQS  
DQ  
DO  
n
DO  
b
Transitioning Data  
Don ’t Care  
Notes: 1. DO n (or b) = data-out from column n (or column b).  
2. BL = 4 or BL = 8 (if BL = 4, the bursts are concatenated; if BL = 8, the second burst interrupts  
the first).  
3. Three subsequent elements of data-out appear in the programmed order following DO n.  
4. Three (or seven) subsequent elements of data-out appear in the programmed order follow-  
ing DO b.  
5. Shown with nominal tAC, tDQSCK, andtDQSQ.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
27  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 11 - ra n D o m re a D ac c e s s e s  
T0  
T1  
T2  
T2n  
T3  
T3n  
T4  
T4n  
T5  
T5n  
CK#  
CK  
Comman d  
Address  
READ  
READ  
READ  
READ  
NOP  
NOP  
Bank,  
Col n  
Bank,  
Col x  
Bank,  
Col b  
Bank,  
Col g  
CL = 2  
DQS  
DQ  
DO  
n
DO  
n'  
DO  
x
DO  
x'  
DO  
b
DO  
b'  
DO  
g
T0  
T1  
T2  
T2n  
T3  
T3n  
T4  
T4n  
T5  
T5n  
CK#  
CK  
Command  
Address  
READ  
READ  
READ  
READ  
NOP  
NOP  
Bank,  
Col n  
Bank,  
Col x  
Bank,  
Col b  
Bank,  
Col g  
CL = 2.5  
DQS  
DQ  
DO  
n
DO  
n'  
DO  
x
DO  
x'  
DO  
b
DO  
b'  
T0  
T1  
T2  
T3  
T3n  
T4  
T4n  
T5  
T5n  
CK#  
CK  
Command  
Address  
READ  
READ  
READ  
READ  
NOP  
NOP  
Bank,  
Col n  
Bank,  
Col x  
Bank,  
Col b  
Bank,  
Col g  
CL = 3  
DQS  
DQ  
DO  
n
DO  
n'  
DO  
x
DO  
x'  
DO  
b
DO  
b'  
Transitioning Data  
Don’t Care  
Notes: 1. DO n (or x or b or g) = data-out from column n (or column x (or column b or column g).  
2. BL = 2, BL = 4, or BL = 8 (if BL = 4 or BL= 8, the following burst interrupts the previous).  
3. n', x', b', or g' indicate the next data-out following DO n, DO x, DO b, or DOg, respectively.  
4. READs are to an active row in any bank .  
5. Shown with nominal tAC, tDQSCK, andtDQSQ.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
28  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 12 - te r m in a t in g a re a D Bu r s t  
T0  
T1  
T2  
T2n  
T3  
T4  
T5  
CK#  
CK  
1
Command  
READ  
BST  
NOP  
NOP  
NOP  
NOP  
a
Bank  
Col  
n
,
Address  
CL = 2  
DQS  
DQ  
DO  
n
T0  
T1  
T2  
T2n  
T3  
T4  
T5  
CK#  
CK  
1
BST  
READ  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
Bank a,  
Col n  
CL = 2.5  
DQS  
DQ  
DO  
n
T0  
T1  
T2  
T3  
T3n  
T4  
T5  
CK#  
CK  
1
BST  
Command  
Address  
READ  
NOP  
NOP  
NOP  
NOP  
Bank a,  
Col n  
CL = 3  
DQS  
DQ  
DO  
n
Transitioning Data  
Don’t Care  
Notes: 1. Page remains open.  
2. DO n = data-out from column n.  
3. BL = 4.  
4. Subseqent element of data-out appears in the programmed order following DO n.  
5. Shown with nominal tAC, tDQSCK, andtDQSQ.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
29  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 13 - re a D t o wr it e  
T0  
T1  
T2  
T2n  
T3  
T4  
T4n  
T5  
T5n  
CK#  
CK  
1
Command  
Address  
READ  
NOP  
WRITE  
NOP  
NOP  
BST  
Bank,  
Col n  
Bank,  
Col b  
t
DQSS  
(NOM)  
CL = 2  
DQS  
DO  
n
DI  
b
DQ  
DM  
T0  
T1  
T2  
T2n  
T3  
T3n  
T4  
T5  
T5n  
CK#  
CK  
1
Command  
Address  
READ  
NOP  
NOP  
WRITE  
NOP  
BST  
Bank,  
Col n  
Bank,  
Col b  
t
DQSS  
(NOM)  
CL = 2.5  
DQS  
DO  
n
DI  
b
DQ  
DM  
T0  
T1  
T2  
T3  
T3n  
T4  
T5  
T5n  
CK#  
CK  
1
READ  
BST  
NOP  
NOP  
WRITE  
NOP  
Command  
Address  
Bank a,  
Col n  
t
DQSS  
(NOM)  
CL = 3  
DQS  
DO  
n
DI  
b
DQ  
DM  
Transitioning Data  
Don’t Care  
Notes: 1. Page remains open.  
2. DO n = data-out from column n; DI b = data-in from column b .  
3. BL = 4 (applies for bursts of 8 as well; if BL = 2, the BURST command shown can be NOP).  
4. One subsequent element of data-out appears in the programmed order following DO n.  
5. Data-in elements are applied following DI b in the programmed order.  
6. Shown with nominal tAC, tDQSCK, andtDQSQ.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
30  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 14 - re a D t o Pr e c h a r g e  
T0  
T1  
T2  
T2n  
T3  
T3n  
T4  
T5  
CK#  
CK  
Command  
Address  
READ  
NOP  
PRE  
NOP  
NOP  
ACT  
Bank a,  
Col n  
Bank a,  
(a or all)  
Bank a,  
Row  
t
CL = 2  
RP  
DQS  
DQ  
DO  
n
T0  
T1  
T2  
T2n  
T3  
T3n  
T4  
T5  
CK#  
CK  
Command  
Address  
READ  
NOP  
PRE  
NOP  
NOP  
ACT  
Bank a,  
Col n  
Bank a,  
(a or all)  
Bank a,  
Row  
t
RP  
CL = 2.5  
DQS  
DQ  
DO  
n
T0  
T1  
T2  
T3  
T3n  
T4  
T4n  
T5  
CK#  
CK  
Command  
Address  
READ  
NOP  
PRE  
NOP  
NOP  
ACT  
Bank a,  
Col n  
Bank a,  
(a or all)  
Bank a,  
Row  
t
RP  
CL = 3  
DQS  
DQ  
DO  
n
Transitioning Data  
Don’t Care  
Notes: 1. Provided tRAS (MIN) is met, a READ command with auto precharge enabled would cause a  
precharge to be performed at x number of clock cycles after the READ command, where  
x = BL/2.  
2. DO n = data-out from column n.  
3. BL = 4 or an interrupted burst of 8.  
4. Three subsequent elements of data-out appear in the programmed order following DOn.  
5. Shown with nominal tAC, tDQSCK, andtDQSQ.  
6. READ-to-PRECHARGE equals two clocks, which allows two data pairs of data-out; it is also  
assumed that tRAS (MIN) is met.  
7. An ACTIVE command to the same bank is only allowed if tRC (MIN) is met.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
31  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 15 - Ba n k re a D wit h o u t Pr e c h a r g e  
T1  
T0  
T2  
T3  
T4  
T5  
T5n  
T6  
T6n  
T7  
T8  
CK#  
CK  
t
t
t
t
t
CL  
IS IH  
CK  
CH  
CKE  
t
t
IS IH  
1
1
2
1
3
1
1
NOP  
Command  
NOP  
ACT  
NOP  
READ  
NOP  
PRE  
NOP  
ACT  
Row  
t
t
IS IH  
Col n  
Row  
Address  
A10  
t
t
IS IH  
All banks  
One bank  
4
Row  
Row  
t
t
IS IH  
5
BA0, BA1  
Bank x  
Bank x  
Bank x  
Bank x  
t
t
t
CL = 2  
RCD  
3
t
RP  
RAS  
RC  
DM  
t
t
Case 1: AC  
(
MIN) and DQSCK  
(
MIN)  
t
t
tRPRE  
DQSCK(MIN)  
RPST  
DQS  
t
LZ(MIN)  
DO  
n
DQ  
t
t
AC  
LZ  
(MIN)  
(MIN)  
t
t
MAX) and DQSCK(MAX)  
Case 2: AC  
(
t
t
t
RPST  
RPRE DQSCK (MAX)  
DQS  
DO  
n
DQ  
t
t
AC (MAX)  
HZ (MAX)  
Transitioning Data  
Don’t Care  
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these  
times.  
2. BL = 4.  
3. The PRECHARGE command can only be applied at T5 if tRAS (MIN) is met.  
4. Disable auto precharge.  
5. “Don’t Care” if A10 is HIGH at T5.  
6. DO n (or b) = data-out from column n (or column b); subsequent elements are provided in  
the programmed order.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
32  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
t
t
Fig u r e 16 - Da t a ou t P u t timing – DQsQ, Qh, a n D Da t a va l iD win D o w  
T1  
T2  
T2n  
T3  
T3n  
T4  
CK#  
CK  
1
1
1
1
1
1
HP  
t
t
t
t
t
t
HP  
HP  
HP  
HP  
HP  
2
2
t
t
DQSQ  
2
2
t
t
DQSQ  
DQSQ  
DQSQ  
3
LDQS  
4
DQ (last data valid)  
4
4
4
4
4
DQ  
DQ  
DQ  
DQ  
DQ  
4
DQ  
4
DQ (first data no longer valid)  
5
5
5
5
QH  
t
t
t
t
QH  
QH  
QH  
4
4
DQ (last data valid)  
T2  
T2  
T2n  
T2n  
T3  
T3n  
DQ (first data no longer vali d)  
T3  
T3  
T3n  
T3n  
6
DQ0–DQ7 and LDQS Collectively  
T2  
T2n  
Data valid  
window  
Data valid  
window  
Data valid  
window  
Data valid  
window  
2
2
2
DQSQ  
t
t
t
2
t
DQSQ  
DQSQ  
DQSQ  
3
7
UDQS  
DQ (last data valid)  
7
7
7
7
7
DQ  
DQ  
DQ  
DQ  
DQ  
7
7
DQ  
DQ (first data no longer vali d)  
5
5
5
5
QH  
t
t
t
t
QH  
QH  
QH  
7
7
6
DQ (last data valid)  
T2  
T2  
T2n  
T2n  
T3  
T3n  
T3n  
DQ (first data no longer vali d)  
T3  
DQ8–DQ15 and UDQS Collectively  
T2  
T2n  
T3  
T3n  
Data valid  
window  
Data valid  
window  
Data valid  
window  
Data valid  
window  
t
Notes: 1. tHP is the lesser of CL or tCH clock transition collectively when a bank is active.  
2. tDQSQ is derived at each DQS clock edge, is not cumulative over time, begins with DQS  
transition, and ends with the last valid DQ transition.  
3. DQ transitioning after DQS transition define the tDQSQ window. LDQS defines the lower  
byte, and UDQS defines the upper byte.  
4. DQ0, DQ1, DQ2, DQ3, DQ4, DQ5, DQ6, or DQ7.  
5. tQH is derived from tHP:tQH = tHP -tQHS.  
6. The data valid window is derived for each DQS transition and is tQH - tDQSQ.  
7. DQ8, DQ9, DQ10, D11, DQ12, DQ13, DQ14, or DQ15.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
33  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 17 - Da t a ou t P u t timing - ac a n D tDQsck  
t
1
T1  
T2  
T3  
T3n  
T4  
T4n  
T5  
T5n  
T2n  
T6  
T0  
CK#  
CK  
t
HZ (MAX)  
t
t
2
t
2
DQSCK (MAX)  
DQSCK (MAX)  
2
t
2
t
DQSCK (MIN)  
DQSCK (MIN)  
LZ (MIN)  
t
t
RPST  
RPRE  
3
DQS or LDQS/UDQS  
DQ (last data valid)  
DQ (first data valid)  
T2  
T2  
T2  
T2n  
T2n  
T2n  
T3n  
T3n  
T4  
T4  
T4  
T4n  
T5  
T5  
T5n  
T5n  
T5n  
T3  
T3  
T3  
T4n  
T4n  
4
All DQ values collectively  
T5  
T3n  
t
t
5
t 5  
AC (MAX)  
LZ (MIN)  
AC (MIN)  
t
HZ (MAX)  
Notes: 1. READ command with CL = 2 issued at T0.  
2. tDQSCK is the DQS output window relative to CK and is the “long term” component of the  
DQS skew.  
t
3. DQ transitioning after DQS transition define the DQSQ window.  
4. All DQ must transition by tDQSQ after DQS transitions, regardless of tAC.  
5. tAC is the DQ output window relative to CK and is the “long term” component of DQ skew.  
6. tLZ (MIN) and tAC (MIN) are the first valid signal transitions.  
7. tHZ (MAX) and tAC (MAX) are the latest valid signal transitions.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
34  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 18 - wr it e Bu r s t  
T0  
T1  
T2  
T2n  
T3  
CK#  
CK  
Command  
WRITE  
NOP  
NOP  
NOP  
Bank a,  
Col b  
Address  
t
DQSS (NOM)  
DQS  
t
DQSS  
DI  
b
DQ  
DM  
t
DQSS (MIN)  
DQS  
t
DQSS  
DI  
b
DQ  
DM  
t
DQSS (MAX)  
DQS  
t
DQSS  
DI  
b
DQ  
DM  
Transitioning Data  
Don’t Care  
Notes: 1. DI b = data-in for column b.  
2. Three subsequent elements of data-in are applied in the programmed order following DI b.  
3. An uninterrupted burst of 4 is shown.  
4. A10 is LOW with the WRITE command (auto precharge is disabled).  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
35  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 19 - co n s e c u t iv e wr it e t o wr it e  
T0  
T1  
T1n  
T2  
T2n  
T3  
T3n  
T4  
T4n  
T5  
CK#  
CK  
WRITE  
NOP  
WRITE  
NOP  
NOP  
NOP  
Command  
Address  
Bank,  
Col b  
Bank,  
Col n  
t
DQSS (NOM)  
DQS  
t
DQSS  
DI  
b
DI  
n
DQ  
DM  
Transitioning Data  
Don’t Care  
Notes: 1. DI b (or n) = data-in from column b (or column n).  
2. Three subsequent elements of data-in are applied in the programmed order following DI b.  
3. Three subsequent elements of data-in are applied in the programmed order following DI n.  
4. An uninterrupted burst of 4 is shown.  
5. Each WRITE command may be to any bank.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
36  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 20 - no n c o n s e c u t iv e wr it e t o wr it e  
T0  
T1  
T1n  
T2  
T2n  
T3  
T4  
T4n  
T5  
T5n  
CK#  
CK  
WRITE  
NOP  
NOP  
WRITE  
NOP  
NOP  
Command  
Address  
Bank,  
Col b  
Bank,  
Col n  
t
t
DQSS  
DQSS (NOM)  
DQS  
DI  
b
DI  
n
DQ  
DM  
Transitioning Data  
Don’t Care  
Notes: 1. DI b (or n) = data-in from column b (or column n).  
2. Three subsequent elements of data-in are applied in the programmed order following DI b.  
3. Three subsequent elements of data-in are applied in the programmed order following DI n.  
4. An uninterrupted burst of 4 is shown.  
5. Each WRITE command may be to any bank.  
Fig u r e 21 - ra n D o m wr it e cy c l e s  
T0  
T1  
T1n  
T2  
T2n  
T3  
T3n  
T4  
T4n  
T5  
T5n  
CK#  
CK  
WRITE  
WRITE  
WRITE  
WRITE  
Command  
Address  
WRITE  
NOP  
Bank,  
Col b  
Bank,  
Col x  
Bank,  
Col n  
Bank,  
Col a  
Bank,  
Col g  
t
DQSS (NOM)  
DQS  
DI  
b
DI  
b'  
DI  
x
DI  
x'  
DI  
n
DI  
n'  
DI  
a
DI  
a'  
DI  
g
DI  
g'  
DQ  
DM  
Transitioning Data  
Don’t Care  
Notes: 1. DI b (or x or n or a or g) = data-in from column b (or column x, or column n, or column a, or  
column g).  
2. b', x', n', a' or g' indicate the next data-in following DO b, DO x, DOn, DO a, or DO g,  
respectively.  
3. Programmed BL = 2, BL = 4, or BL = 8 in cases shown.  
4. Each WRITE command may be to any bank.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
37  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 22 - wr it e t o re a D un in t e r r u P t e D  
T6  
T6n  
T0  
T1  
T1n  
T2  
T2n  
T3  
T4  
T5  
CK#  
CK  
Command  
WRITE  
NOP  
NOP  
NOP  
t
READ  
NOP  
NOP  
WTR  
Bank a,  
Col b  
Bank a,  
Col n  
Address  
t
t
DQSS (NOM)  
DQSS  
CL = 2  
DQS  
DI  
b
DO  
n
DQ  
DM  
t
t
DQSS  
DQSS (MIN)  
DQS  
CL = 2  
DI  
b
DO  
n
DQ  
DM  
t
t
DQSS  
DQSS (MAX)  
DQS  
CL = 2  
DI  
b
DO  
n
DQ  
DM  
Transitioning Data  
Don’t Care  
Notes: 1. DI b = data-in for column b; DO n = data-out for column n.  
2. Three subsequent elements of data-in are applied in the programmed order following DI b.  
3. An uninterrupted burst of 4 is shown.  
4. tWTR is referenced from the first positive CK edge after the last data-in pair.  
5. The READ and WRITE commands are to the same device. However, the READ and WRITE  
commands may be to different devices, in which case tWTR is not required, and the READ  
command could be applied earlier.  
6. A10 is LOW with the WRITE command (auto precharge is disabled).  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
38  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 23 - wr it e t o re a D in t e r r u P t in g  
T6  
T6n  
T0  
T1  
T1n  
T2  
T2n  
T3  
T3n  
T4  
T5  
T5n  
CK#  
CK  
Command  
WRITE  
NOP  
NOP  
t
READ  
NOP  
NOP  
NOP  
WTR  
Bank a,  
Col b  
Bank a,  
Col n  
Address  
t
t
DQSS (NOM)  
DQSS  
CL = 2  
DQS  
DI  
b
DO  
n
DQ  
DM  
t
t
DQSS  
DQSS (MIN)  
DQS  
CL = 2  
DI  
b
DO  
n
DQ  
DM  
t
t
DQSS  
DQSS (MAX)  
DQS  
CL = 2  
DI  
b
DO  
n
DQ  
DM  
Transitioning Data  
Don’t Care  
Notes: 1. DI b = data-in for column b; DO n = data-out for column n.  
2. An interrupted burst of 4 is shown; two data elements are written.  
3. One subsequent element of data-in is applied in the programmed order following DI b.  
4. tWTR is referenced from the first positive CK edge after the last data-in pair.  
5. A10 is LOW with the WRITE command (auto precharge is disabled).  
6. DQS is required at T2 and T2n (nominal case) to register DM.  
7. If the burst of 8 is used, DM and DQS are required at T3 and T3n because the READ  
command will not mask these two data elements.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
39  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 24 - wr it e t o re a D , oD D nu m B e r o F Da t a , in t e r r u P t in g  
T5n  
T6  
T6n  
T0  
T1  
T1n  
T2  
T2n  
T3  
T3n  
T4  
T5  
CK#  
CK  
Command  
WRITE  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
t
WTR  
Bank a,  
Col b  
Bank a,  
Col n  
Address  
t
t
t
t
t
t
DQSS (NOM)  
DQS  
DQSS  
DQSS  
DQSS  
CL = 2  
CL = 2  
CL = 2  
DI  
b
DO  
n
DQ  
DM  
DQSS (MIN)  
DQS  
DI  
b
DO  
n
DQ  
DM  
DQSS (MAX)  
DQS  
DI  
b
DO  
n
DQ  
DM  
Transitioning Data  
Don’t Care  
Notes: 1. DI b = data-in for column b; DO n = data-out for column n.  
2. An interrupted burst of 4 is shown; one data element is written.  
3. tWTR is referenced from the first positive CK edge after the last desired data-in pair (not  
the last two data elements).  
4. A10 is LOW with the WRITE command (auto precharge is disabled).  
5. DQS is required at T1n, T2, and T2n (nominal case) to register DM.  
6. If the burst of 8 is used, DM and DQS are required at T3–T3n because the READ command  
will not mask these data elements.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
40  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 25 - wr it e t o Pr e c h a r g e - un in t e r r u P t e D  
T6  
T0  
T1  
T1n  
T2  
T2n  
T3  
T4  
T5  
CK#  
CK  
Command  
PRE  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
t
t
RP  
WR  
Bank a,  
Col b  
Bank,  
Address  
(a or all)  
t
t
t
t
t
t
DQSS (NOM)  
DQS  
DQSS  
DQSS  
DQSS  
DI  
b
DQ  
DM  
DQSS (MIN)  
DQS  
DI  
b
DQ  
DM  
DQSS (MAX)  
DQS  
DI  
b
DQ  
DM  
Transitioning Data  
Don’t Care  
Notes: 1. DI b = data-in for column b.  
2. Three subsequent elements of data-in are applied in the programmed order following DI b.  
3. An uninterrupted burst of 4 is shown.  
4. tWR is referenced from the first positive CK edge after the last data-in pair.  
5. The PRECHARGE and WRITE commands are to the same device. However, the PRECHARGE  
and WRITE commands may be to different devices, in which case t  
WR is not required and  
the PRECHARGE command could be applied earlier.  
6. A10 is LOW with the WRITE command (auto precharge is disabled).  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
41  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 26 - wr it e t o Pr e c h a r g e - in t e r r u P t in g  
T0  
T1  
T1n  
T2  
T2n  
T3  
T3n  
T4  
T4n  
T5  
T6  
CK#  
CK  
Command  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
PRE  
t
t
RP  
WR  
Bank a,  
Col b  
Bank,  
Address  
(a or all)  
t
t
t
t
t
t
DQSS (NOM)  
DQSS  
DQSS  
DQSS  
DQS  
DI  
b
DQ  
DM  
DQSS (MIN)  
DQS  
DI  
b
DQ  
DM  
DQSS (MAX)  
DQS  
DI  
b
DQ  
DM  
Transitioning Data  
Don’t Care  
Notes: 1. DI b = data-in for column b.  
2. Subsequent element of data-in is applied in the programmed order following DI b.  
3. An interrupted burst of 8 is shown; two data elements are written.  
4. tWR is referenced from the first positive CK edge after the last data-in pair.  
5. A10 is LOW with the WRITE command (auto precharge is disabled).  
6. DQS is required at T4 and T4n (nominal case) to register DM.  
7. If the burst of 4 is used, DQS and DM are not required at T3, T3n, T4, and T4n.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
42  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
AC SWITCHING DIAGRAMS  
Fig u r e 27 - Da t a in P u t timing  
1
T0  
T1  
T1n  
T2  
T2n  
T3  
CK#  
CK  
t
2
3
2
3
DQSS  
t
t
t
t
DSS  
DSH  
DSS  
DSH  
DQS  
t
t
t
t t  
DQSH WPST  
WPRES WPRE  
DQSL  
DI  
b
DQ  
DM  
t
t
DH  
DS  
Transitioning Data  
Don’t Care  
Notes: 1. WRITE command issued at T0.  
t
2. tDSH (MIN) generally occurs during DQSS (MIN).  
3. tDSS (MIN) generally occurs during tDQSS (MAX).  
4. For x16, LDQS controls the lower byte and UDQS controls the upper byte.  
5. DI b = data-in from column b.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
43  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
me c h a n ic a l Dr a w in g  
25 ± ± 0.1  
2.35 ± ± 0.1  
0.60 ± ± 0 ꢀ  
19.05 ± ± 0.  
SQ  
25 ± ± 0.1  
1.27  
± ± 0.  
1.75 ± ± 0..  
1.27 ± ± 0.  
219 X 0.76 ± ± 0 1  
8.89 ± ± 0.  
SQ  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
44  
Feb 2, 2009 LDS-L9D125G80BG4-C  
PreLIMINArY INforMAtIoN L9D125G80BG4  
2.5 Gb, DDR - SDRAM Integrated Module (IMOD)  
or D e r in g in F o r m a t io n  
Part Number  
L9D125G80BG4I6  
L9D125G80BG4E6  
L9D125G80BG4M6  
Core FREQ.  
166 MHz  
Data Transfer Rate  
333 Mbps  
Package  
Grade  
INDUSTRIAL  
EXTENDED  
MIL-TEMP  
25mm2-219 PBGA  
25mm2-219 PBGA  
25mm2-219 PBGA  
333 Mbps  
166 MHz  
333 Mbps  
166 MHz  
266 Mbps  
266 Mbps  
266 Mbps  
L9D125G80BG4I75  
L9D125G80BG4E75  
L9D125G80BG4M75  
25mm2-219 PBGA  
25mm2-219 PBGA  
25mm2-219 PBGA  
133 MHz  
133 MHz  
133 MHz  
INDUSTRIAL  
EXTENDED  
MIL-TEMP  
250 Mbps  
250 Mbps  
250 Mbps  
L9D125G80BG4I8  
L9D125G80BG4E8  
L9D125G80BG4M8  
25mm2-219 PBGA  
25mm2-219 PBGA  
25mm2-219 PBGA  
125 MHz  
125 MHz  
125 MHz  
INDUSTRIAL  
EXTENDED  
MIL-TEMP  
200 MHz  
200 MHz  
200 MHz  
L9D125G80BG4I10  
L9D125G80BG4E10  
L9D125G80BG4M10  
25mm2-219 PBGA  
25mm2-219 PBGA  
25mm2-219 PBGA  
100 MHz  
100 MHz  
100 MHz  
INDUSTRIAL  
EXTENDED  
MIL-TEMP  
re v is io n his t o r y  
Revision  
Engineer  
Issue Date Description Of Change  
INITIATE  
DH/JM  
11/12/2008  
01/21/2009  
A
Pgs 1, 45: Change all incidences of “LBGA” to “PBGA”, revise wording to Plastic Ball Grid Array  
Pgs 4,5: Revision to include ball E12, Vref in Pin/Ball Locations/Definitions Section  
Pg 8 : Changes to allowable frequency parameters (CAS =2) in CAS latency table (speed -10  
changes from ≤75 to ≤ 83, -75 changes from ≤100 to ≤125, -6 changes from ≤133 to NA)  
Pg 19: Revise CL parameter (333 Mbps: change CL from 2 to 2.5)  
DH/JM  
B
Pg 20, 21: AC chart specs changes for 167 MHz, correct tLZ min. from -.0.07 to -0.70  
Pg 44: Correction to mechanical drawing  
CM/JM  
02/02/2009  
C
LOGIC Devices Incorporated reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its  
products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant informa-  
tion before placing orders and should verify that such information is current and complete. LOGIC Devices does not assume any liability arising out  
of the application or use of any product or circuit described herein. In no event shall any liability exceed the product purchase price. Products of  
LOGIC Devices are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursu-  
ant to an express written agreement with LOGIC Devices. Furthermore, LOGIC Devices does not authorize its products for use as critical compo-  
nents in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user.  
LOGIC Devices Incorporated  
www.logicdevices.com  
High Performance, Integrated Memory Module Product  
45  
Feb 2, 2009 LDS-L9D125G80BG4-C  

相关型号:

L9D125G80BG4M10

2.5 Gb, DDR - SDRAM Integrated Module
LOGIC

L9D125G80BG4M6

2.5 Gb, DDR - SDRAM Integrated Module
LOGIC

L9D125G80BG4M75

2.5 Gb, DDR - SDRAM Integrated Module
LOGIC

L9D125G80BG4M8

2.5 Gb, DDR - SDRAM Integrated Module
LOGIC

L9D232M64SBG5

2 - 5.0 Gb, DDR2, 32 M [64 M] x 64/72/80 Integrated Memory Module
LOGIC

L9D232M72SBG5

2 - 5.0 Gb, DDR2, 32 M [64 M] x 64/72/80 Integrated Memory Module
LOGIC

L9D232M80SBG5

2 - 5.0 Gb, DDR2, 32 M [64 M] x 64/72/80 Integrated Memory Module
LOGIC

L9D264M64SBG5

2 - 5.0 Gb, DDR2, 32 M [64 M] x 64/72/80 Integrated Memory Module
LOGIC

L9D264M72SBG5

2 - 5.0 Gb, DDR2, 32 M [64 M] x 64/72/80 Integrated Memory Module
LOGIC

L9D264M80SBG5

2 - 5.0 Gb, DDR2, 32 M [64 M] x 64/72/80 Integrated Memory Module
LOGIC

L9D320G32BG6

2.0 Gb, DDR3, 64 M x 32 Integrated Module (IMOD)
LOGIC

L9D320G32BG6E25

2.0 Gb, DDR3, 64 M x 32 Integrated Module (IMOD)
LOGIC