LTC4244CGN [Linear]

Rugged, CompactPCI Bus Hot Swap Controllers; 坚固耐用, CompactPCI总线热插拔控制器
LTC4244CGN
型号: LTC4244CGN
厂家: Linear    Linear
描述:

Rugged, CompactPCI Bus Hot Swap Controllers
坚固耐用, CompactPCI总线热插拔控制器

电源电路 电源管理电路 光电二极管 控制器 PC
文件: 总28页 (文件大小:333K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4244/LTC4244-1  
Rugged, CompactPCI Bus  
Hot Swap Controllers  
U
FEATURES  
DESCRIPTIO  
TheLTC®4244/LTC4244-1areHotSwapTM controllersthat  
allow a board to be safely inserted into and removed from  
a CompactPCITM bus slot. External N-channel transistors  
control the 5V and 3.3V supplies while on-chip switches  
Controls –12V, 3.3V, 5V and 12V Supplies  
±14.4V Absolute Maximum Rating for 12VIN  
and –12VIN Input Pins  
Insensitive to Supply Voltage Transients  
Adjustable Foldback Current Limit with Circuit Breaker control the ±12V supplies. The 3.3V and 5V supplies can  
LOCAL_PCI_RST# Logic On-Chip  
PRECHARGE Output Biases I/O Pins During Card  
Insertion and Extraction  
LTC4244-1 Designed for Applications without –12V  
Available in 20-Lead Narrow SSOP Package  
be ramped up at an adjustable rate. Electronic circuit  
breakers protect all four supplies against overcurrent  
faults.Afterthepower-upcycleiscomplete,theTIMERpin  
capacitor serves as auxiliary VCC allowing the LTC4244/  
LTC4244-1 to function without interruption in the pres-  
ence of voltage spikes on the 12VIN supply. The PWRGD  
output indicates when all four supplies are within toler-  
ance. TheOFF/ONpinisusedtocycleboardpowerorreset  
the circuit breaker. The PRECHARGE output can be used  
to bias the bus I/O pins during card insertion and extrac-  
tion. PCI_RST# is combined on-chip with HEALTHY# in  
order to generate LOCAL_PCI_RST#.  
U
APPLICATIO S  
Hot Board Insertion into CompactPCI Bus  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Hot Swap is a trademark of Linear Technology Corporation.  
CompactPCI is a trademark of the PCI Industrial Computer Manufacturers Group.  
U
TYPICAL APPLICATIO  
C8  
C9  
0.01µF PER  
POWER PIN  
0.01µF PER  
POWER PIN  
R2  
Q2  
5V  
IN  
0.007IRF7457  
V
5V  
5A  
OUT  
5V  
+
+
R22  
C
C
R1  
0.005Ω  
Q1  
2.7Ω  
LOAD(5VOUT)  
LONG 5V  
3.3V  
IRF7457  
V
3.3V  
7A  
3.3V  
OUT  
IN  
R21  
1.8Ω  
Z3  
LOAD(3.3VOUT)  
C1  
LONG 3.3V  
R4  
10Ω  
R3  
10Ω  
Z4  
C6  
0.01µF  
C7  
0.01µF  
R5  
1k  
0.33µF  
Z1  
Z2  
3.3V  
3.3V  
SENSE  
GATE 3.3V  
5V  
5V  
5V  
12V  
IN  
OUT  
IN  
SENSE  
OUT  
V
OUT  
12V  
V
12V  
12V  
IN  
OUT  
+
500mA  
–12V  
EEIN  
C
C
LOAD(12VOUT)  
R19 1k  
V
OFF/ON  
FAULT  
BD_SEL#  
EEOUT  
V
–12V  
R20  
1.2k  
EEOUT  
R18 10k  
LTC4244  
100mA  
LOAD(VEEOUT)  
+
LONG V(I/O)  
R17  
10k  
TIMER  
C2  
0.082µF  
PWRGD  
HEALTHY#  
PCI_RST#  
R6  
RESETIN  
10k  
V
OUT  
3.3V  
GND PRECHARGE  
RESETOUT  
R8 1k  
DRIVE  
Q3  
R15  
R16  
1Ω  
C5  
0.01µF  
LOCAL_PCI_RST#  
R9 24Ω  
1Ω  
C3 4.7nF  
C4  
0.01µF  
V
IN  
3.3V  
GROUND  
R10 18Ω  
R7 12Ω  
R11  
10k  
R12  
10k  
R13  
10Ω  
MMBT2222A  
1V  
±10%  
RESET#  
I/O DATA LINE 1  
I/O #1  
I/O PIN 1  
PCI  
BRIDGE  
CHIP  
R14  
10Ω  
I/O #128  
I/O DATA LINE 128  
I/O PIN 128  
Z1, Z2: SMAJ12A Z3, Z4: SMAJ5.0A  
4244 F01  
Figure 1. Typical Compact PCI Application  
42441f  
1
LTC4244/LTC4244-1  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
(Notes 1, 2, 3)  
PACKAGE/ORDER I FOR ATIO  
Supply Voltages  
ORDER PART  
NUMBER  
TOP VIEW  
12VIN ................................................................ 14.4V  
12V  
V
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
12V  
V
IN  
OUT  
V
EEIN .............................................................. –14.4V  
EEIN  
EEOUT  
LTC4244CGN  
LTC4244CGN-1  
LTC4244IGN  
Input Voltages (OFF/ON, RESETIN) ........0.3V to 13.5V  
Output Voltages (FAULT, PWRGD, RESETOUT)  
...........................................................0.3V to 13.5V  
Analog Voltages and Currents  
5V  
OUT  
3.3V  
OUT  
IN  
TIMER  
3.3V  
3.3V  
OFF/ON  
FAULT  
SENSE  
LTC4244IGN-1  
GATE  
5V  
PWRGD  
GND  
SENSE  
5VOUT, DRIVE, 5VIN, 3.3VSENSE, 3.3VIN, 3.3VOUT, 5VSENSE  
...........................................................0.3V to 13.5V  
PRECHARGE, GATE ....................................... ±20mA  
VEEOUT ................................................14.4V to 0.3V  
TIMER, 12VOUT ........................................... 0.3V to 14.4V  
Operation Temperature Range  
5V  
IN  
RESETIN  
PRECHARGE  
DRIVE  
RESETOUT 10  
GN PACKAGE  
20-LEAD PLASTIC SSOP  
TJMAX = 140°C, θJA = 135°C/ W  
LTC4244C/LTC4244C-1........................... 0°C to 70°C  
LTC4244I/LTC4244I-1 ........................ 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V12VIN = 12V, VEEIN = –12V, V3.3VIN = 3.3V, V5VIN = 5V, unless  
otherwise noted.  
SYMBOL  
PARAMETER  
Supply Current  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
V
OFF/ON = 0V  
4
10  
mA  
DD  
12VIN  
V
LKO  
Undervoltage Lockout  
12V , Ramping Down  
8
4
9
4.25  
2.5  
–9.25  
9.25  
10  
4.5  
2.75  
–10.25  
10.25  
V
V
V
V
V
IN  
5V , Ramping Down  
IN  
3.3V , Ramping Down  
2.25  
–8.25  
8.25  
IN  
V
EEIN  
, Ramping Up (LTC4244 Only)  
TIMER, Ramping Down, V  
= 6V  
12VIN  
V
V
Foldback Current Limit Voltage  
Circuit Breaker Trip Voltage  
V
V
V
V
= (V  
= (V  
= (V  
= (V  
– V  
– V  
), V  
), V  
= 0V, TIMER = 0V  
= 3V, TIMER = 0V  
11  
46  
11  
46  
16  
51  
16  
51  
21  
56  
21  
56  
mV  
mV  
mV  
mV  
FB  
FB  
FB  
FB  
FB  
5VIN  
5VIN  
5VSENSE  
5VOUT  
5VOUT  
5VSENSE  
– V  
– V  
), V  
), V  
= 0V, TIMER = 0V  
3.3VIN  
3.3VIN  
3.3VSENSE  
3.3VSENSE  
3.3VOUT  
3.3VOUT  
= 2V, TIMER = 0V  
V
CB  
V
CB  
= (V  
= (V  
– V ), TIMER = FLOAT  
5VSENSE  
45  
45  
52  
52  
57  
57  
mV  
mV  
CB  
5VIN  
– V  
), TIMER = FLOAT  
3.3VSENSE  
3.3VIN  
t
Overcurrent Fault Response Time (V  
(V  
– V ) = 100mV, TIMER = FLOAT  
5VSENSE  
17  
17  
25  
25  
35  
35  
µs  
µs  
OC  
5VIN  
– V  
) = 100mV, TIMER = FLOAT  
= 2V, TIMER = 0V  
GATE  
3.3VIN  
3.3VSENSE  
I
I
GATE Pin Output Current  
OFF/ON = 0V, V  
–20  
20  
4
–67  
60  
–100  
100  
16  
µA  
µA  
mA  
V
GATE(UP)  
GATE(DN)  
V
GATE  
= 5V, OFF/ON = 4V  
I
OFF/ON = 0V, V  
= 2V, TIMER = FLOAT, FAULT = 0V  
8
GATE(FAULT)  
GATE  
V  
V  
V  
External Gate Voltage  
V  
V  
V  
= (V  
– V ), I = –1µA  
GATE GATE  
0.6  
225  
110  
1
GATE  
GATE  
12VIN  
Internal Switch Voltage Drop  
= (V  
– V ), I = 500mA  
12VOUT  
600  
250  
mV  
mV  
12V  
12V  
VEE  
12VIN  
= (V  
– V  
), I = 100mA  
EEIN EE  
VEE  
EEOUT  
42441f  
2
LTC4244/LTC4244-1  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V12VIN = 12V, VEEIN = –12V, V3.3VIN = 3.3V, V5VIN = 5V, unless  
SYMBOL PARAMETER  
CONDITIONS  
12V = 12V, 12V  
MIN  
TYP  
MAX  
UNITS  
I
Current Foldback  
= 0V, TIMER = 0V  
= 10V, TIMER = 0V  
= 0V, TIMER = 0V  
= –10V, TIMER = 0V  
–100  
–550  
50  
–360  
–850  
225  
–1000  
–1500  
350  
mA  
mA  
mA  
mA  
CL  
IN  
OUT  
OUT  
12V = 12V, 12V  
IN  
V
EEIN  
V
EEIN  
= –12V, V  
= –12V, V  
EEOUT  
EEOUT  
350  
610  
870  
T
Thermal Shutdown Temperature  
Power Good Threshold Voltage  
Junction Temperature, Ramping Up  
150  
°C  
TS  
V
12V , Ramping Down  
10.8  
4.50  
2.80  
11.1  
4.61  
2.90  
11.4  
4.75  
3.00  
V
V
V
V
TH  
OUT  
5V , Ramping Down  
OUT  
3.3V , Ramping Down  
OUT  
V , Ramping Up, LTC4244 Only  
EEOUT  
–10.8  
–11.1  
–11.4  
V
V
Logic Input Low Voltage  
OFF/ON, RESETIN, FAULT  
OFF/ON, RESETIN, FAULT  
0.8  
V
V
IL  
Logic Input High Voltage  
OFF/ON, RESETIN Input Current  
2
IH  
I
OFF/ON, RESETIN = 0V  
OFF/ON, RESETIN = 12V  
±10  
±10  
µA  
µA  
IN  
RESETOUT, FAULT Leakage  
Current  
RESETOUT, FAULT = 5V, OFF/ON = 0V, RESETIN = 3.3V  
±10  
µA  
PWRGD Output Current  
PWRGD = 5V, OFF/ON = 4V  
±10  
100  
100  
1.5  
µA  
µA  
5V  
SENSE  
Input Current  
5V  
SENSE  
= 5V, 5V = 0V  
OUT  
57  
56  
3.3V  
Input Current  
3.3V  
= 3.3V, 3.3V = 0V  
OUT  
µA  
SENSE  
SENSE  
5V Input Current  
IN  
5V = 5V, TIMER = 0V  
IN  
0.8  
mA  
3.3V Input Current  
3.3V = 3.3V, TIMER = FLOAT  
510  
400  
700  
550  
µA  
µA  
IN  
IN  
3.3V = 3.3V, TIMER = 0V  
IN  
5V  
Input Current  
5V  
= 5V, OFF/ON = 0V, TIMER = 0V  
107  
170  
0.1  
200  
300  
10  
µA  
µA  
µA  
OUT  
OUT  
3.3V  
Input Current  
3.3V  
= 3.3V, OFF/ON = 0V, TIMER = 0V  
OUT  
OUT  
PRECHARGE Input Current  
TIMER Pin Current  
V
= 1V  
PRECHARGE  
I
OFF/ON = 0V, V  
OFF/ON = 5V, V  
= 0V  
= 5V  
16  
25  
21  
45  
26  
70  
µA  
mA  
TIMER  
TIMER  
TIMER  
V
TIMER Threshold Voltage  
External Timer Voltage  
TIMER_HI, (V  
TIMER_LO, V  
– V ), FAULT = 0V, Ramping Up  
TIMER  
, Ramping Down  
– V ), I = –1µA  
TIMER TIMER  
1.3  
0.5  
1.6  
0.8  
1.9  
1.1  
V
V
TIMER  
12VIN  
TIMER  
V  
V = (V  
TIMER  
1
V
TIMER  
12VIN  
R
DIS  
12V  
Discharge Resistance  
OUT  
Discharge Resistance  
OFF/ON = 4V  
OFF/ON = 4V  
OFF/ON = 4V  
OFF/ON = 4V  
440  
200  
200  
390  
1000  
500  
500  
5V  
OUT  
3.3V  
Discharge Resistance  
OUT  
V
Discharge Resistance  
1000  
EEOUT  
V
V
Output Low Voltage  
PWRGD, RESETOUT, FAULT, I = 1mA  
= 2V  
0.4  
V
V
OL  
PRECHARGE Reference Voltage  
V
0.95  
1
1.05  
PXG  
DRIVE  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: The 12V and V  
±15V, respectively, upon hot insertion.  
pins will withstand transient surges up to  
IN  
EEIN  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to ground unless otherwise  
specified.  
42441f  
3
LTC4244/LTC4244-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
3.3V and 5V Current Foldback  
Profile  
12VOUT Current vs 12VOUT  
Voltage  
VEEOUT Current vs VEEOUT Voltage  
60  
50  
40  
30  
20  
10  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.6  
–0.5  
–0.4  
–0.3  
–0.2  
–0.1  
0
3.3V  
5V  
0
1
2
3
4
5
0
2
4
6
8
10  
12  
0
–2  
–4  
–6  
–8  
–10  
–12  
VOLTAGE (V)  
VOLTAGE (V)  
VOLTAGE (V)  
4244 G01  
4244 G02  
4244 G03  
12V Foldback Current Limit vs  
Temperature  
12V Internal Switch Voltage Drop  
vs Temperature  
VEE Foldback Current Limit vs  
Temperature  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
I
= 550mA  
12VOUT  
V
= 10V  
EEOUT  
12V  
= 10V  
OUT  
12V  
= 0V  
OUT  
V
= 0V  
EEOUT  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4244 G04  
4244 G05  
4244 G06  
VEE Internal Switch Voltage Drop  
vs Temperature  
5VIN Foldback Current Limit  
Voltage vs Temperature  
3.3VIN Foldback Current Limit  
Voltage vs Temperature  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
I
= 100mA  
VEEIN  
5V  
OUT  
= 3V  
3.3V  
= 2V  
OUT  
5V  
= 0V  
3.3V  
= 0V  
OUT  
OUT  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4244 G07  
4244 G08  
4244 G09  
42441f  
4
LTC4244/LTC4244-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
3.3VIN and 5VIN Circuit Breaker  
Trip Voltage vs Temperature  
12VIN Supply Current vs  
3.3VIN and 5VIN Circuit Breaker  
Trip Filter Time vs Temperature  
Temperature  
52.0  
51.8  
51.6  
51.4  
51.2  
51.0  
50.8  
50.6  
50.4  
50.2  
50.0  
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
21.5  
3.94  
5V  
3.93  
3.92  
3.91  
3.90  
3.89  
3.88  
3.87  
IN  
3.3V  
IN  
–50  
–25  
0
25  
50  
75  
100  
100  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4244 G10  
4244 G11  
4244 G12  
12VIN Undervoltage Lockout vs  
Temperature  
5VIN Undervoltage Lockout vs  
Temperature  
VEEIN Undervoltage Lockout vs  
Temperature  
9.30  
9.25  
9.20  
9.15  
9.10  
9.05  
9.00  
8.95  
–9.22  
–9.24  
–9.26  
–9.28  
–9.30  
–9.32  
–9.34  
–9.36  
4.34  
4.32  
4.30  
4.28  
4.26  
4.24  
4.22  
4.20  
RAMPING-UP  
RAMPING-UP  
RAMPING-UP  
RAMPING-DOWN  
RAMPING-DOWN  
RAMPING-DOWN  
–50  
–25  
0
25  
50  
75  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4244 G13  
4244 G14  
4244 G15  
3.3VIN Undervoltage Lockout vs  
Temperature  
12VOUT Powergood Threshold  
Voltage vs Temperature  
VEEIN Powergood Threshold  
Voltage vs Temperature  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
11.090  
11.085  
11.080  
11.075  
11.070  
11.065  
11.060  
11.055  
–11.050  
–11.055  
–11.060  
–11.065  
–11.070  
–11.075  
–11.080  
RAMPING-UP  
RAMPING-DOWN  
–50  
–25  
0
25  
50  
75  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4244 G16  
4244 G17  
4244 G18  
42441f  
5
LTC4244/LTC4244-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
5VOUT Powergood Threshold  
Voltage vs Temperature  
3.3VOUT Powergood Threshold  
Voltage vs Temperature  
Gate Pin Current vs Temperature  
4.603  
4.602  
4.601  
4.600  
4.599  
4.598  
4.597  
4.596  
4.595  
4.594  
2.902  
2.901  
2.900  
2.899  
2.898  
2.897  
2.896  
2.895  
2.894  
80  
60  
OFF/ON = 0V  
40  
20  
0
–20  
–40  
–60  
–80  
OFF/ON = 4V  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
75  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4244 G19  
4244 G20  
4244 G21  
Gate Pin Fault Current vs  
Temperature  
Timer Pin Off Current vs  
Temperature  
Timer Pin On Current vs  
Temperature  
16  
14  
12  
10  
8
20.30  
20.25  
20.20  
20.15  
20.10  
20.05  
60  
50  
40  
30  
20  
10  
0
FAULT = 0V  
6
4
2
0
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4244 G22  
4244 G23  
4244 G24  
Timer Threshold Voltage vs  
Temperature  
Discharge Resistance vs  
Temperature  
VOL vs Temperature  
1.66  
1.64  
1.62  
1.60  
1.58  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
700  
600  
500  
400  
300  
200  
100  
0
250  
200  
150  
100  
50  
12V – V  
IN  
TIMER  
12V  
OUT  
V
RESETOUT  
EEOUT  
3.3V  
OUT  
PWRGD  
FAULT  
5V  
75  
OUT  
0
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
100  
–50  
–25  
0
25  
50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4244 G25  
4244 G26  
4244 G27  
42441f  
6
LTC4244/LTC4244-1  
U
U
U
PI FU CTIO S  
12VIN (Pin 1): 12V Supply Input. A 0.5switch is con-  
nected between 12VIN and 12VOUT with a foldback current  
limit.Anundervoltagelockoutcircuitpreventstheswitches  
fromturningonwhilethe12VIN pinvoltageislessthan9V.  
12VIN also provides power to the LTC4244’s internal VCC  
node.  
OFF/ON(Pin 5): Digital Input. Connect the CPCI BD_SEL#  
signal to the OFF/ON pin. When the OFF/ON pin is pulled  
low, the GATE pin is pulled high by a 67µA current source  
and the internal 12V and –12V switches are turned on.  
When the OFF/ON pin is pulled high, the GATE pin will be  
pulledtogroundbya60µAcurrentsourceandthe12Vand  
–12V switches turn off.  
VEEIN (Pin 2): –12V Supply Input. A 1switch is con-  
nected between VEEIN and VEEOUT with a foldback current  
limit.Anundervoltagelockoutcircuitpreventstheswitches  
from turning on while the VEEIN pin voltage is greater than  
–9.25V. The VEEIN undervoltage lockout function is dis-  
abled for the LTC4244-1.  
FAULT(Pin6):Open-DrainDigitalI/O.FAULTispulledlow  
when a current limit fault is detected. Current limit faults  
areignoreduntilthevoltageattheTIMERpiniswithin1.6V  
of 12VIN. Once the TIMER cycle is complete, FAULT will  
pull low and the LTC4244 latches off in the event of an  
overcurrent fault. The part will remain in the latched off  
state until the OFF/ON pin is cycled high then low. Forcing  
the FAULT pin low with an external pull-down will cause  
the part to latch into the off state after a 25µs deglitching  
time.  
5VOUT (Pin 3): 5V Output Sense. The PWRGD pin will not  
pulllowuntilthe5VOUT pinvoltageexceeds4.61V.A200Ω  
active pull-down discharges 5VOUT to ground when the  
power switches are turned off.  
TIMER (Pin 4): Current Fault Inhibit Timing Input and  
Auxiliary VCC. Connect a capacitor from TIMER to GND.  
When the LTC4244 is turned on, a 21µA pull-up current  
source is connected to TIMER. Current limit faults will be  
ignored until the voltage at the TIMER pin rises to within  
1.6V of 12VIN. After the TIMER pin has completed ramp-  
ing up, the TIMER capacitor serves as an auxiliary charge  
reservoir for VCC in the event the 12VIN pin voltage  
momentarilydropsbelowtheundervoltagelockoutthresh-  
old voltage. When the LTC4244 is turned off (OFF/ON >  
2V),theTIMERpinispulleddowntoGND.AftertheTIMER  
pin voltage drops to within 0.8V of GND, the TIMER latch  
is reset and the part is ready for another power cycle.  
PWRGD (Pin 7): Open-Drain Digital Power Good Output.  
Connect the CPCI HEALTHY# signal to the PWRGD pin.  
PWRGD remains low while V12VOUT 11.1V, V3.3VOUT  
2.9V, V5VOUT 4.61V, and VEEOUT –11.1V. When any of  
the supplies falls below its power good threshold voltage,  
PWRGD will go high after a 14µs deglitching time.  
GND (Pin 8): Device Ground.  
RESETIN(Pin9):DigitalInput.ConnecttheCPCIPCI_RST#  
signaltotheRESETINpin.PullingtheRESETINpinlowwill  
cause RESETOUT to pull low. RESETOUT will also pull low  
when PWRGD is high.  
42441f  
7
LTC4244/LTC4244-1  
U
U
U
PI FU CTIO S  
RESETOUT (Pin 10): Open-Drain Digital Output. Connect  
the CPCI_LOCAL_RST# signal to the RESETOUT pin.  
RESETOUT is the logical combination of the RESETIN and  
PWRGD.  
GATE (Pin 15): High Side Gate Drive for the External 3.3V  
and 5V N-Channel Pass Transistors. An external series RC  
network is required for current limit loop compensation  
andsettingtheminimumramp-uptime.Duringpower-up,  
the slope of the voltage rise at the GATE is set by the 67µA  
current source connected through a Schottky diode to  
12VIN and the external capacitor connected to GND (C1 in  
Figure 1) or by the 3.3V or 5V current limit and the bulk  
capacitance in the 3.3VOUT or 5VOUT supply lines. During  
powerdown, theslewrateoftheGATEvoltageissetbythe  
60µA current source connected to GND and the external  
GATE capacitor (C1 in Figure 1).  
DRIVE (Pin 11): Precharge Base Drive Output. Provides  
basedriveforanexternalNPNemitter-followerthatinturn  
biases the PRECHARGE node.  
PRECHARGE (Pin 12): Precharge Monitor Input. An inter-  
nalerroramplifierservostheDRIVEpinvoltagetokeepthe  
PRECHARGEnodeat1V. SeeApplicationsInformationfor  
generating voltages other than 1V. If not used, tie the  
PRECHARGE pin to ground.  
The voltage at the GATE pin will be modulated to maintain  
a constant current when either the 5V or 3.3V supplies go  
into current limit. In the event of an overcurrent fault, the  
GATE pin is immediately pulled to GND.  
5VIN (Pin 13): 5V Supply Sense Input. An undervoltage  
lockout circuit prevents the switches from turning on  
when the voltage at the 5VIN pin is less than 4.25V.  
5VSENSE (Pin 14): 5V Current Limit Sense. With a sense  
resistor placed in the supply path between 5VIN and  
5VSENSE, the GATE pin voltage will be adjusted to maintain  
a constant 51mV across the sense resistor and a constant  
current through the switch while the TIMER pin is low. A  
foldback feature makes the current limit decrease as the  
voltage at the 5VOUT pin approaches GND. When the  
TIMER pin is high, the circuit breaker function is enabled.  
If the voltage across the sense resistor exceeds 52mV, the  
circuit breaker is tripped after a 25µs time delay. In the  
event of a short-circuit or large overcurrent transient  
condition, the GATE pin voltage will be adjusted to main-  
tain a constant 150mV across the sense resistor and a  
constant current through the switch.  
3.3VSENSE (Pin 16): 3.3V Current Limit Sense. With a  
sense resistor placed in the supply path between 3.3VIN  
and 3.3VSENSE, the GATE pin voltage will be adjusted to  
maintain a constant 51mV across the sense resistor and a  
constant current through the switch while the TIMER pin  
is low. A foldback feature makes the current limit decrease  
as the voltage at the 3.3VOUT pin approaches GND. When  
the TIMER pin is high, the circuit breaker function is  
enabled. If the voltage across the sense resistor exceeds  
52mV,thecircuitbreakeristrippedaftera25µstimedelay.  
Intheeventofashort-circuitorlargeovercurrenttransient  
condition, the GATE pin voltage will be adjusted to main-  
tain a constant 150mV across the sense resistor and a  
constant current through the switch.  
Ifno3.3Vinputsupplyisavailable,shortthe3.3VSENSE pin  
to the 5VIN pin.  
42441f  
8
LTC4244/LTC4244-1  
U
U
U
PI FU CTIO S  
3.3VIN (Pin 17): 3.3V Supply Sense Input. An undervolt-  
age lockout circuit prevents the switches from turning on  
when the voltage at the 3.3VIN pin is less than 2.5V. If no  
3.3V input supply is available, short the 3.3VIN pin to the  
5VIN pin.  
VEEOUT (Pin 19): -12V Supply Output. A 1switch is  
connectedbetweenVEEIN andVEEOUT.VEEOUT mustbeless  
than –11.1V before the PWRGD pin pulls low. The VEEOUT  
power good comparator is disabled for the LTC4244-1. A  
390active pull-up discharges VEEOUT to ground when  
the power switches are turned off.  
3.3VOUT (Pin 18): Analog Input Used to Monitor the 3.3V  
Output Supply Voltage. The PWRGD pin cannot pull low  
untilthe3.3VOUT pinvoltageexceeds2.9V.Ifno3.3Vinput  
supply is available, tie the 3.3VOUT pin to the 5VOUT pin. A  
200active pull-down discharges 3.3VOUT to ground  
when the power switches are turned off.  
12VOUT (Pin 20): 12V Supply Output. A 0.5switch is  
connected between 12VIN and 12VOUT. 12VOUT must  
exceed 11.1V before the PWRGD pin can pull low. A 440Ω  
active pull-down discharges 12VOUT to ground when the  
power switches are turned off.  
42441f  
9
LTC4244/LTC4244-1  
W
BLOCK DIAGRA  
3.3V  
3.3V  
IN  
GND  
17  
16  
15  
14  
13  
8
SENSE  
GATE  
5V  
5V  
SENSE  
IN  
V
CC  
5V  
+
3.3V  
OUT  
OUT  
67µA  
60µA  
+
+
+
+
+
+
5V  
CURRENT  
FAULT  
3.3V  
CURRENT FAULT  
50mV  
50mV  
+
+
+
CP_OFF  
TIMER_LO 50mV  
TIMER_HI 150mV  
TIMER_LO 50mV  
TIMER_HI 150mV  
FAULT  
6
8µs  
RISING  
EDGE  
DELAY  
UVL  
MONITOR  
V
12V  
EEIN  
IN  
REF  
V
CC  
21µA  
THERMAL  
FAULT  
TIMER_HI  
TIMER  
4
25µs  
V
CC  
5V CURRENT FAULT  
3.3V CURRENT FAULT  
EE  
12V CURRENT FAULT  
RISING  
EDGE  
S
R
Q
V
CURRENT FAULT  
V
UVL  
DELAY  
CC  
CP_OFF  
Q
46µs  
TIMER_HI  
FALLING  
EDGE  
S
R
Q
Q
RESET  
DELAY  
TIMER_LO  
OFF/ON  
PWRGD  
5
7
V
CC  
5V  
IN  
14µs  
FALLING  
EDGE  
DELAY  
THERMAL  
SHUTDOWN  
THERMAL  
FAULT  
DRIVE  
4R  
11  
RESETOUT  
RESETIN  
CP_OFF  
10  
9
R
+
V
CC  
PRECHARGE  
12  
20  
REFERENCE  
REF  
12V CURRENT FAULT  
12V SWITCH  
CONTROL  
THERMAL FAULT  
12V  
OUT  
12V  
IN  
1
5V  
OUT  
OUT  
3
3.3V  
CHARGE  
PUMP  
CP_OFF  
18  
POWER GOOD  
MONITOR  
CP_OFF  
V
CC  
REF  
V
V
EEOUT  
EEIN  
2
19  
4244 BD  
CP_OFF  
THERMAL FAULT  
V
SWITCH  
EE  
CONTROL  
V
CURRENT FAULT  
EE  
42441f  
10  
LTC4244/LTC4244-1  
W U U  
APPLICATIO S I FOR ATIO  
U
Hot Circuit Insertion  
• Current limit during power up: the supplies are allowed  
to power up in current limit. This allows the LTC4244 to  
power up boards with widely varying capacitive loads  
without tripping the circuit breaker. The maximum  
allowable power-up time is adjustable using the TIMER  
pin capacitor.  
When a circuit board is inserted into a live CompactPCI  
(CPCI) bus, the supply bypass capacitors can draw huge  
inrush currents from the CPCI power bus as they charge  
up. These transient currents can create glitches on the  
power bus, causing other boards in the system to reset.  
• Internal 12V and –12V power switches.  
The LTC4244 is designed to turn a board’s back-end  
supply voltages on and off in a controlled manner, allow-  
ing the board to be safely inserted or removed from a live  
CPCI connector without glitching the system power sup-  
plies. It also protects the system supplies from shorts,  
prechargesthebusI/Oconnectorpinsduringhotinsertion  
and extraction, and monitors the supply voltages.  
• PWRGD output: monitors the voltage status of the four  
back-end supply voltages.  
• PCI_RST# combined on chip with HEALTHY# to create  
LOCAL_PCI_RST# output. Simply connect the  
PCI_RST# signal to the RESETIN pin and the  
LOCAL_PCI_RST# signal to the open-drain RESETOUT  
pin.  
The LTC4244 is specifically designed for CPCI applica-  
tions where the Hot Swap controller resides on the plug-  
in board.  
• Prechargeoutput:on-chipreferenceanderroramplifier  
provide 1V for biasing bus I/O connector pins during  
CPCI card insertion and extraction.  
LTC4244 Feature Summary  
• TIMER/AUX. VCC: After power-up, the TIMER pin ca-  
pacitor serves as auxiliary VCC, thus enabling the  
LTC4244 to ride out large voltage spikes on the 12VIN  
supply without interruption.  
• Allows safe insertion and removal from a CPCI back-  
plane.  
• ControlsallfourCPCIsupplies:-12V, 12V, 3.3Vand5V.  
• Adjustable foldback current limit for the 5V and 3.3V  
supplies: an adjustable analog current limit with a value  
that depends on the output voltage. If the output is  
shortedtogroundthecurrentlimitdropstokeeppower  
dissipation and supply glitches to a minimum.  
• Undervoltage lockout: All four input voltages are pro-  
tected by undervoltage lockouts.  
• Space saving 20-pin SSOP package.  
LTC4244 vs LTC1644  
• 12V and –12V circuit breakers: if either supply remains  
in analog foldback current limit for more than 25µs, the  
circuit breakers will trip, the supplies are turned off and  
the FAULT pin is pulled low.  
The LTC4244 is pin-for-pin compatible with the LTC1644.  
There are, however, some important differences between  
the two parts:  
• TIMER: The LTC4244’s TIMER pin threshold voltage is  
1.6V below V12VIN vs 1V for the LTC1644. After power-  
up, the LTC4244’s TIMER pin also doubles as auxiliary  
VCC.  
• Adjustable 5V and 3.3V circuit breakers: if either supply  
exceeds its current limit for more than 25µs, the circuit  
breaker will trip, the supplies will be turned off and the  
FAULT pin is asserted low. In the event of a short circuit  
on either supply, an analog current limit will prevent the  
supply current from exceeding three times the circuit  
breaker threshold current.  
• VEEIN UVL: The LTC4244 has a –9.5V UVL threshold  
protecting the VEEIN supply. The LTC1644 has no VEEIN  
UVL feature.  
42441f  
11  
LTC4244/LTC4244-1  
W U U  
U
APPLICATIO S I FOR ATIO  
• 5VIN UVL Threshold Voltage: The LTC4244’s 5VIN UVL  
threshold voltage is 4.25V vs. 2.5V for the LTC1644.  
The following is a typical hot insertion sequence:  
1. ESD clips make contact.  
• VEEOUT PWRGDThresholdVoltage:TheLTC4244VEEOUT  
power good threshold voltage is –11.1V vs –10.5V for  
the LTC1644.  
2. Long power and ground pins make contact and Early  
Power is established. The 1V precharge voltage be-  
comes valid at this stage of insertion. Power is also  
appliedtothepull-upresistorsconnectedtotheFAULT,  
PWRGD and OFF/ON pins. All power switches are held  
off at this stage of insertion.  
• Absolute Maximum Ratings: The LTC4244’s absolute  
maximum ratings for the 12VIN and VEEIN pins are  
±14.4V, respectively, vs ±13.2V for the LTC1644.  
• 5V/3.3V Circuit Breakers: If a short-circuit occurs after  
power-up, the LTC4244 actively limits the voltage  
dropped across the external 5V and 3.3V sense resis-  
tors to 150mV for 25µs before tripping the circuit  
breaker.Intheeventeitherthe5Vor3.3Vsenseresistor  
voltage exceeds 150mV, the LTC1644 trips the circuit  
breaker without delay.  
3. Medium length pins make contact. Both FAULT and  
PWRGDcontinuetobepulleduphighatthisstageinthe  
hotplugsequence, andthepowerswitchesarestillheld  
off. The 12V and –12V connector pins also make  
contactatthisstage.ZenerclampsZ1andZ2plusshunt  
RCsnubbersR16-C5andR15-C4helpprotecttheVEEIN  
and 12VIN pins, respectively, from large voltage tran-  
sients during hot insertion.  
• 5V/3.3VCircuitBreakerThresholdVoltage:TheLTC4244  
threshold voltage is 52mV ±5mV vs 55mV ±15mV for  
the LTC1644.  
Thesignalpinsalsoconnectatthispoint. Theseinclude  
theHEALTHY#signal(whichisconnectedtothePWRGD  
pin), the PCI_RST# signal (which is connected to the  
RESETIN pin) and the I/O connector pins (which are  
biased at 1V by the LTC4244’s precharge circuit).  
• External Gate Voltage: After power-up, the voltage drop  
from the 12VIN pin to the GATE pin is 0.6V for the  
LTC4244 vs 50mV for the LTC1644.  
4. Short pins make contact. The BD_SEL# signal is con-  
nected to the OFF/ON pin. If the BD_SEL# signal is  
grounded on the backplane, the plug-in card power-up  
cycle begins immediately. System backplanes that do  
not ground the BD_SEL# signal will instead have cir-  
cuitry that detects when BD_SEL# makes contact with  
theplug-inboard. Thesystemlogiccanthencontrolthe  
power up process by pulling BD_SEL# low.  
Hot Plug Power-Up Sequence  
The LTC4244 is specifically designed for hot plugging  
CPCI boards. The typical application circuit is shown in  
Figure 1.  
CPCI Connector Pin Sequence  
The staggered lengths of the CPCI male connector pins  
ensure that all power supplies are physically connected to  
theLTC4244beforeback-endpowerisallowedtorampup  
(BD_SEL# assertedlow). The longpins, whichinclude5V,  
3.3.V, V(I/O) and GND, mate first. The short BD_SEL# pin  
mates last. At least one long 5V power pin must be  
connected to the LTC4244 in order for the PRECHARGE  
voltage to be available during the insertion sequence.  
Power-Up Sequence  
The back-end 3.3VOUT and 5VOUT power planes are iso-  
lated from the 3.3VIN and 5VIN power planes by external  
N-channel pass transistors Q1 and Q2, respectively. Inter-  
nal pass transistors isolate the back-end 12VOUT and  
VEEOUT power planes from the 12VIN and VEEIN power  
planes.  
42441f  
12  
LTC4244/LTC4244-1  
W U U  
APPLICATIO S I FOR ATIO  
U
Sense resistors R1 and R2 provide current fault detection  
and R5 and C1 provide current control loop compensation  
as well as ramp rate control for the GATE pin voltage.  
Resistors R3 and R4 prevent high frequency oscillations  
in MOSFET’s Q1 and Q2.  
Power-Down Sequence  
When the BD_SEL# signal is pulled high, a power-down  
sequence begins (Figure 3).  
Internal switches are connected to each of the output  
voltage supply pins to discharge the bypass capacitors to  
ground. The TIMER pin is immediately pulled low. The  
GATE pin is pulled down by a 60µA current source to  
preventtheloadcurrentsonthe3.3Vand5Vsuppliesfrom  
going to zero instantaneously and glitching the power  
supply voltages. When any of the output voltages dips  
below its threshold, the HEALTHY# signal pulls high and  
LOCAL_PCI_RST# will be asserted low.  
A power-up sequence begins when the OFF/ON pin is  
pulled low (Figure 2). This enables the pass transistors to  
turn on and an internal 21µA current source is connected  
to TIMER. Once the pass transistors begin to conduct  
current, the supplies will start to power up. Current limit  
faults are ignored while the TIMER pin voltage is ramping  
up and is less than (12VIN – 1.6V). When all four supply  
voltages are within tolerance, HEALTHY# will pull low and  
LOCAL_PCI_RST# is free to follow PCI_RST#.  
TIMER  
10V/DIV  
TIMER  
10V/DIV  
GATE  
10V/DIV  
GATE  
10V/DIV  
12V  
OUT  
12V  
10V/DIV  
5V  
OUT  
10V/DIV  
5V  
OUT  
OUT  
10V/DIV  
3.3V  
10V/DIV  
3.3V  
OUT  
OUT  
10V/DIV  
10V/DIV  
V
EEOUT  
V
EEOUT  
10V/DIV  
10V/DIV  
BD_SEL#  
10V/DIV  
BD_SEL#  
10V/DIV  
HEALTHY#  
10V/DIV  
HEALTHY#  
10V/DIV  
LCL_PCI_RST#  
10V/DIV  
LCL_PCI_RST#  
10V/DIV  
4244 F03  
4244 F02  
20ms/DIV  
10ms/DIV  
Figure 2. Normal Power-Up Sequence  
Figure 3. Normal Power-Down Sequence  
42441f  
13  
LTC4244/LTC4244-1  
W U U  
U
APPLICATIO S I FOR ATIO  
Once the power-down sequence is complete, the CPCI  
card may be removed from the slot. During extraction, the  
precharge circuit continues to bias the bus I/O connector  
pins at 1V until the long 5V and 3.3V connector pin  
connections are broken.  
The maximum power-up time for this condition can be  
approximated by:  
V
OUT + VTH,MOSFET(MAX) C1(MAX)  
(
<
)
tON  
(4)  
IGATE(MIN)  
GATE Pin Capacitor Selection  
where VTH,MOSFET(MAX) is the maximum threshold voltage  
of the external 5V or 3.3V MOSFET.  
Both the load capacitance and the LTC4244’s GATE pin  
capacitor (C1 in Figure 1) affect the ramp rate of the 5VOUT  
and 3.3VOUT voltages. The precise relationship can be  
expressed as:  
In general, the edge rate (dI/dt) at which the back-end 5V  
and 3.3V supply currents are turned on can be limited by  
increasing the size of C1. Applications that are sensitive to  
the edge rate should characterize how varying the size of  
C1 reduces dI/dt for the external MOSFET selected for a  
particular design.  
ILIMIT(5V) ILOAD(5V)  
dVOUT IGATE  
(1)  
=
or =  
or  
dt  
C1  
CLOAD(5VOUT)  
In the event of a short-circuit or overcurrent condition, the  
LTC4244’s GATE pin can be pulled down within 2µs since  
a 1k(R5 in Figure 1) decouples C1 from the gates of the  
external MOSFET’s (Q1 and Q2 in Figure 1).  
ILIMIT(3.3V) ILOAD(3.3V)  
=
CLOAD(3.3VOUT)  
whichever is slowest. The power-up time for any of the  
LTC4244’soutputswheretheinrushcurrentisconstrained  
by that supply’s foldback current limit can be approxi-  
mated as:  
TIMER Pin Capacitor Selection  
During a power-up sequence, a 21µA current source is  
connected to the TIMER pin and current limit faults are  
ignored until the voltage ramps to within 1.6V of 12VIN.  
This feature allows the part to power up large capacitive  
loads using its foldback current limit. The TIMER inhibit  
period can be expressed as:  
2 CLOAD nVOUT  
LIMIT(nVOUT) ILOAD(nVOUT)  
ton(nVOUT)  
<
(2)  
I
Where nVOUT = 5VOUT, 3.3VOUT, 12VOUT or VEEOUT. For  
example, if CLOAD=2000µF, ILIMIT(5VOUT) = 6A and  
ILOAD(5VOUT) = 5A, the 5VOUT turn-on time will be less than  
20ms.  
CTIMER • 12V – V  
(
)
IN  
TIMER  
tTIMER  
=
(5)  
ITIMER  
If the value of C1 is large enough that it alone determines  
the output voltage ramp rate, then the magnitude of the  
inrush current initially charging the load capacitance is:  
The timer period should be set longer than the duration of  
any inrush current that exceeds the LTC4244’s foldback  
current limit but yet be short enough not to exceed the  
maximum, safe operating area of the external 5V and 3.3V  
pass transistors in the event of a short circuit (see Design  
Example). As a design aid, the TIMER period as a function  
of the timing capacitor using standard values from 0.1µF  
to 0.82µF is shown in Table 1.  
CLOAD  
I
=
IGATE  
(3)  
INRUSH  
C1  
42441f  
14  
LTC4244/LTC4244-1  
W U U  
APPLICATIO S I FOR ATIO  
U
Table 1. tTIMER vs CTIMER  
(±10%)  
Short-Circuit Protection  
C
TIMER  
t
t
TIMER(MAX)  
TIMER(MIN)  
During a normal power-up sequence, if the TIMER pin is  
done ramping and any supply is still in current limit all of  
the pass transistors will be immediately turned off and  
FAULT will be pulled low as shown in Figure 4.  
0.1µF  
35ms  
74ms  
0.22µF  
0.33µF  
0.47µF  
0.68µF  
0.82µF  
77ms  
115ms  
164ms  
238ms  
287ms  
162ms  
243ms  
346ms  
500ms  
603ms  
Inordertopreventexcessivepowerdissipationinthepass  
transistors and prevent voltage spikes on the supplies  
during short-circuit conditions, the current limit on each  
supply is designed to be a function of the output voltage.  
As the output voltage drops, the current limit decreases.  
Unlike a traditional circuit breaker function where large  
currents can flow before the breaker trips, the current  
foldback feature guarantees that the supply current will be  
kept at a safe level.  
TheTIMERpinisimmediatelypulledlowwhentheBD_SEL#  
pin signal goes high.  
Thermal Shutdown  
The internal switches for the 12V and –12V supplies are  
protected by a thermal shutdown circuit. When the junc-  
tiontemperatureofthediereaches150°C, allswitcheswill  
be latched off and the FAULT pin will be pulled low.  
If either the 12V or –12V supply exceeds current limit  
after power-up, the shorted supply’s current will drop  
TIMER  
10V/DIV  
GATE  
10V/DIV  
12V  
OUT  
10V/DIV  
5V  
OUT  
10V/DIV  
3.3V  
OUT  
10V/DIV  
V
EEOUT  
10V/DIV  
BD_SEL#  
10V/DIV  
HEALTHY#  
10V/DIV  
LCL_PCI_RST#  
10V/DIV  
FAULT  
10V/DIV  
4244 F04  
20ms/DIV  
Figure 4. Power-Up Into a Short on a 3.3V Output  
42441f  
15  
LTC4244/LTC4244-1  
W U U  
U
APPLICATIO S I FOR ATIO  
immediately to its ILIMIT value. If that supply remains in  
currentlimitformorethan25µs, allofthesupplieswillbe  
latched off. The 25µs prevents quick current spikes—for  
example, fromafanturningon—fromcausingfalsetrips  
of the circuit breaker.  
resistor. As shown in Figure 1, a sense resistor is con-  
nected between 5VIN and 5VSENSE for the 5V supply. For  
the 3.3V supply, a sense resistor is connected between  
3.3VIN and 3.3VSENSE. The typical current limit and the  
foldback current levels are given by Equations 6 and 7:  
After power-up, the 5V and 3.3V supplies are protected  
from short circuits by dual-level circuit breakers. In the  
event that either supply’s current exceeds the nominal  
current limit, an internal timer is started. If the supply is  
still overcurrent after 25µs, the circuit breaker trips and all  
the supplies are turned off (Figure 5). An analog current  
limit loop prevents the supply current from exceeding 3×  
the nominal current limit in the event of a short circuit  
(Figure 6). The LTC4244 will stay in the latched off state  
until the OFF/ON pin is cycled high then low or the 12VIN  
power supply is cycled low then high.  
51mV  
RSENSE(nVOUT)  
ILIMIT(nVOUT)  
=
(6)  
(7)  
16mV  
RSENSE(nVOUT)  
IFOLDBACK(nVOUT)  
=
where nVOUT = 5VOUT or 3.3VOUT  
.
The current limit for the internal 12V switch is set at  
850mA folding back to 360mA and the –12V switch at  
610mA folding back to 225mA.  
The current limit and the foldback current level for the 5V  
and 3.3V outputs are both a function of the external sense  
GATE  
20V/DIV  
GATE  
20V/DIV  
5V  
OUT  
3.3V  
OUT  
10V/DIV  
5V/DIV  
FAULT  
5V/DIV  
FAULT  
5V/DIV  
TIMER  
20V/DIV  
TIMER  
20V/DIV  
3V – 3V  
IN  
SENSE  
5V – 5V  
IN SENSE  
500mV/DIV  
100mV/DIV  
4244 F05  
4244 F06  
10µs/DIV  
10µs/DIV  
Figure 5. Overcurrent Fault on 5V Output  
Figure 6. Short-Circuit Fault on 3.3V Output  
42441f  
16  
LTC4244/LTC4244-1  
W U U  
APPLICATIO S I FOR ATIO  
U
Calculating RSENSE  
pulled high and the LOCAL_PCI_RST# signal will be  
asserted low.  
Determining the most appropriate value for the sense  
resistorfirstrequiresknowingthemaximumcurrentneeded  
by the load under worst-case conditions. Two other pa-  
rameters affect the value of the sense resistor. First is the  
tolerance of the LTC4244’s circuit breaker threshold volt-  
age. The LTC4244’s nominal circuit breaker threshold  
voltage is VCB(NOM) = 52mV; however it exhibits ±5mV  
tolerance over process and temperature. Second is the  
tolerance(RTOL)ofthesenseresistor.Senseresistorsare  
available in RTOL’s of ±1%, ±2% and ±5% and exhibit  
temperature coefficients of resistance (TCR’s) between  
±75ppm/°C and ±100ppm/°C. How the sense resistor  
changes as a function of temperature depends on the  
I2 • R power being dissipated by it. The power rating of the  
sense resistor should accommodate steady-state fault  
current levels so that the component is not damaged  
before the circuit breaker trips.  
Table 3. LOCAL_PCI_RST# Truth Table  
PCI_RST#  
HEALTHY#  
LOCAL_PCI_RST#  
LO  
LO  
HI  
LO  
HI  
LO  
LO  
HI  
LO  
HI  
HI  
LO  
Precharge  
The PRECHARGE input and DRIVE output pins are in-  
tended for use in generating the 1V precharge voltage that  
is used to bias the bus I/O connector pins during board  
insertion and extraction. The LTC4244 is also capable of  
generating precharge voltages other than 1V. Figure 7  
shows a circuit that can be used in applications requiring  
a precharge voltage of less than 1V. The circuit in Figure 8  
can be used for applications that need precharge voltages  
greater than 1V.  
Table 2 lists ITRIP(MIN) and ITRIP(MAX) versus some sug-  
gested values of RSENSE. Table 7 lists manufacturers and  
part numbers for these resistor values.  
Precharge resistors are used to connect the 1V bias volt-  
age to the I/O lines with minimal disturbance. Figure 1  
shows the precharge application circuit for 5V signaling.  
The precharge resistor requirements are more stringent  
for 3.3V and Universal Hot Swap boards. If the total leak-  
age current on the I/O line is less 2µA, then a 50k resistor  
can be connected directly from the 1V bias voltage to the  
I/O line. However, many ICs connected to the I/O lines can  
have leakage currents up to 10µA. For these applications,  
a 10k resistor is used but must be disconnected when the  
board is seated as determined by the state of the BD_SEL#  
signal. Figure 9 shows a precharge circuit that uses a bus  
switchtoconnecttheindividual10kprechargeresistorsto  
theLTC4244’s1VPRECHARGEpin.Theelectricalconnec-  
tionismade(busswitchesclosed)whenthevoltageonthe  
BD_SEL# pin of the plug-in card is pulled-up to 5VIN,  
which occurs just after the long pins have made contact.  
The bus switches are electrically disconnected when the  
short, BD_SEL# connector pin makes contact and the  
Table 2. ITRIP vs RSENSE  
R
SENSE  
(1% RTOL)  
I
I
TRIP(MAX)  
TRIP(MIN)  
0.005Ω  
9.31A  
11.5A  
0.007Ω  
0.011Ω  
6.6A  
4.2A  
8.2A  
5.2A  
Output Voltage Monitor  
The status of all four output voltages is monitored by the  
power good function. In addition, the PCI_RST# signal is  
logically combined on-chip with the HEALTHY# signal to  
create LOCAL_PCI_RST# (see Table 3). As a result,  
LOCAL_PCI_RST#willbepulledlowwheneverHEALTHY#  
is pulled high independent of the state of the PCI_RST#  
signal.  
If any of the output voltages drop below the power good  
threshold for more than 14µs, the PWRGD pin will be  
42441f  
17  
LTC4244/LTC4244-1  
W U U  
U
APPLICATIO S I FOR ATIO  
LTC4244*  
GND PRECHARGE  
12  
LTC4244*  
DRIVE  
11  
GND  
8
PRECHARGE DRIVE  
8
12  
11  
18Ω  
4.7nF  
1k  
5%  
18Ω  
5%  
1k  
5%  
4.7nF  
5%  
12Ω  
5%  
12Ω  
5%  
R10A  
R10B  
R10A  
R10B  
3.3V  
IN  
3.3V  
IN  
Q3  
Q3  
PRECHARGE OUT MMBT2222A  
PRECHARGE OUT  
MMBT2222A  
R10A + R10B  
R10A  
R10A + R10B  
V
=
• 1V  
PRECHARGE  
V
=
• 1V  
PRECHARGE  
R10A  
4244 F08  
*ADDITIONAL DETAILS OMITTED FOR CLARITY  
4244 F07  
*ADDITIONAL DETAILS OMITTED FOR CLARITY  
Figure 8. Precharge Voltage >1V Application Circuit  
Figure 7. Precharge Voltage <1V Application Circuit  
C9  
PCB EDGE  
BACKPLANE  
CONNECTOR  
0.01µF PER  
BACKPLANE  
CONNECTOR  
POWER PIN  
5V  
IN  
13  
5
5V  
IN  
5V  
R22  
2.7Ω  
R20  
1.2k  
5%  
LTC4244*  
LONG 5V  
BD_SEL#  
R19  
1k 5%  
OFF/ON  
GND  
PRECHARGE  
12  
DRIVE  
11  
Z4  
C7  
0.01µF  
R8  
1k 5%  
8
R9  
24Ω  
R10  
185%  
C3 4.7nF  
3V  
IN  
GROUND  
Q3  
R7  
125%  
R23  
51.1k 5%  
MMBT2222A  
100Ω  
0.1µF  
Q2  
MMBT3906  
PRECHARGE OUT  
V
IN  
DD  
1V ±10%  
BUS SWITCH  
I
= ±55mA  
OE  
OUT  
R24  
75k  
5%  
OUT  
OUT  
R13  
10Ω  
5%  
R11  
10k  
5%  
R12  
10k  
5%  
I/O  
I/O  
I/O PIN 1  
R14  
10Ω  
5%  
PCI  
BRIDGE  
CHIP  
DATA BUS  
UP TO 128 I/O LINES  
I/O PIN 128  
Z4: SMAJ5.0A  
*ADDITIONAL DETAILS OMITTED FOR CLARITY  
4244 F09  
Figure 9. Precharge Bus Switch Application Circuit for 3.3V and Universal Hot Swap Boards  
42441f  
18  
LTC4244/LTC4244-1  
W U U  
APPLICATIO S I FOR ATIO  
U
BD_SEL# voltage drops below 4.4V thus causing the bus  
Other CompactPCI Applications  
switch OE to be pulled high by Q2.  
The LTC4244-1 is designed for CompactPCI designs  
where the –12V supply is not being used on the plug-in  
board. The VEEOUT power good comparator, VEEIN UVL,  
and VEE circuit breaker functions are disabled. The VEEIN  
pin should be connected to GND and the VEEOUT pin left  
floating if a –12V output is not needed.  
The CompactPCI specification assumes that there is a  
diodeto3.3VonthecircuitthatisdrivingtheBD_SEL#pin.  
The1.2kresistor pull-upto5VIN onthe plug-incard willbe  
clamped by the diode to 3.3V. If the BD_SEL# pin is being  
driven high, the actual voltage on the pin will be approxi-  
mately 3.9V. This is still above the high TTL threshold of  
theLTC4244OFF/ONpin, butlowenoughforQ2todisable  
the bus switches and thus disconnect the 10k precharge  
resistors from the I/O lines. Since the power to the bus  
switch is derived from a front-end power plane, a 100Ω  
resistor should be placed in series with the power supply  
of the bus switch.  
If no 3.3V supply input is required, Figure 10 illustrates  
how the LTC4244 should be configured: 3.3VSENSE and  
3.3VIN are connected to 5VIN and 3.3VOUT is connected to  
5VOUT  
.
For applications where the BD_SEL# connector pin is  
typicallyconnectedtogroundonthebackplane, thecircuit  
in Figure 11 allows the LTC4244 to be reset simply by  
pressing a pushbutton switch on the CPCI plug in board.  
This arrangement eliminates the requirement to extract  
andreinserttheCPCIboardinordertoresettheLTC4244’s  
circuit breaker.  
When the plug-in card is removed from the connector, the  
BD_SEL# connection is broken first, and the BD_SEL#  
voltage pulls up to 5VIN. This causes Q2 to turn off, which  
re-enables the bus switch, and the precharge resistors are  
again connected to the LTC4244 PRECHARGE pin for the  
remainder of the extraction process.  
V(I/O)  
PCB EDGE  
TIMER/Auxiliary VCC  
BACKPLANE BACKPLANE  
PUSHBUTTON  
CONNECTOR CONNECTOR  
1.2k  
SWITICH  
Once the TIMER pin voltage has ramped to within 1.6V of  
12VIN, the auxiliary VCC function is enabled. In the event  
the 12VIN supply voltage collapses, the LTC4244 will  
continue to draw power from the charge stored on the  
TIMER pin capacitor until the internal VCC node drops  
below its undervoltage lockout threshold or the 12VIN  
supply voltage recovers, whichever happens first.  
100Ω  
1k  
0.25W  
BD_SEL#  
GROUND  
5
8
OFF/ON  
LTC4244*  
GND  
4244 F11  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 11. BD_SEL# Pushbutton Toggle Switch  
PCB EDGE  
BACKPLANE BACKPLANE  
CONNECTOR CONNECTOR  
R2  
0.007Ω  
Q2  
IRF7457  
5V  
IN  
5V  
OUT  
5V  
LONG 5V  
C1  
0.33µF  
R4  
10Ω  
Z4  
R5  
1k  
17  
3.3V  
16  
13  
14  
15  
18  
3
3.3V  
5V  
5V  
GATE 3.3V  
5V  
IN  
SENSE  
IN  
SENSE  
OUT OUT  
LTC4244*  
8
GND  
GROUND  
4244 F10  
Z4: SMAJ5.0A  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 10. No 3.3V Supply Application Circuit  
42441f  
19  
LTC4244/LTC4244-1  
W U U  
U
APPLICATIO S I FOR ATIO  
5. The MOSFET package must be able to sustain the  
maximum pulse power that occurs in the event the  
LTC4244 attempts to power-up either the 5V or 3.3V  
back-end supply into a short circuit (see Design Ex-  
ample for a sample calculation).  
Power MOSFET Selection Criteria  
The LTC4244 uses external MOSFETs to limit the 5V and  
3.3V supply currents. The following criteria should be  
used when selecting these MOSFET’s:  
1. The on resistance should be low enough to prevent an  
excessive voltage drop across the sense resistor and  
the series MOSFET at rated load current given the  
amount of gate to source voltage provided by the  
LTC4244.  
Table 8 lists some power MOSFET’s that can be used with  
the LTC4244.  
Input Overvoltage Transient Protection  
Hot plugging a board into a backplane generates inrush  
currents from the backplane power supplies due to the  
charging of the plug-in board capacitance. To reduce this  
transient current to a safe level, the CPCI Hot Swap  
specification restricts the amount of unswitched capaci-  
tance used on the input side of the plug-in board. Each  
medium or long power pin connected to the CPCI female  
connector on the plug-in board is required to have a 10nF  
ceramic bypass capacitor to ground. Bulk capacitors are  
only allowed on the switched output side of the LTC4244  
(5VOUT, 3.3VOUT, 12VOUT, VEEOUT). Some bulk capaci-  
tance is allowed on the 5VIN and 3.3VIN Early Power  
planes, but only because a current limiting resistor is  
assumed to decouple the connector pin from the bulk  
capacitance. Circuits normally placed on the unswitched  
side Early Power plane (PCI Bridge, for example) need to  
to be decoupled by a current limiting resistor.  
2. The drain-to-source breakdown voltage should be high  
enough for the device to survive overvoltage transients  
that may occur during fault conditions (the 5V and 3.3V  
transientvoltagelimitersshowninFigure1willlimitthe  
maximumdrain-sourcevoltageseenbytheseMOSFET’s  
during fault conditions).  
3. The MOSFET package must be able to handle the  
maximum, steady state power dissipation for the ON  
state without exceeding the device’s rated maximum  
junction temperature. The MOSFET’s steady-state, dis-  
sipated power can be expressed as:  
P
ON = IMAX2 • RDS(ON)  
(8)  
The increase in steady-state junction-to-ambient tem-  
perature is given by:  
TJ – TA = PON • RθJA  
(9)  
Disallowing bulk capacitors on the input power pins miti-  
gatestheinrushcurrentduringHotSwap. However, italso  
tendstocreatearesonantcircuitformedbytheinductance  
of the backplane power supply trace in series with the  
inductance of the connector pin and the parasitic capaci-  
tance of the plug-in board (mainly due to the large power  
FET). Upon board insertion, the ringing of this circuit can  
exhibit a peak overshoot of 2.5 times the steady-state  
voltage (>30V for 12VIN).  
4. TheMOSFETpackagemustbeabletodissipatetheheat  
resulting from the power pulse during the transition  
from off to on. A worst-case approximation for the  
magnitude of the power pulse is:  
nVOUT • IINRUSH +ILOAD  
(
)
POFF-ON  
<
(10)  
2
where nVOUT = 5VOUT or 3.3VOUT, IINRUSH is the tran-  
sient current initially charging the load capacitance and  
ILOAD isthesteady-stateloadcurrent.Theduration,tON,  
of the power pulse can be expressed as:  
Therearetwomethodsforabatingtheeffectsofthesehigh  
voltage transients: using voltage limiters to clip the tran-  
sient to a safe level and snubber networks. Snubber  
networks are series RC networks whose time constants  
CLOAD VOUT  
tON  
=
(11)  
IINRUSH  
42441f  
20  
LTC4244/LTC4244-1  
W U U  
APPLICATIO S I FOR ATIO  
U
are experimentally determined based on the board’s para-  
sitic resonance circuits. As a starting point, the capacitors  
in these networks are chosen to be 10× to 100× the power  
MOSFET’s COSS under bias. The series resistor is a value  
determined experimentally that ranges from 1to 50,  
depending on the parasitic resonance circuit. Note that in  
all LTC4244 circuit schematics, both transient voltage  
limiters and snubber networks have been added to the  
12VIN and VEEIN supply rails and should always be used.  
Snubber networks are not necessary on the 3.3VIN or the  
5VIN supply lines since their absolute maximum voltage  
ratings are 13.5V. Transient voltage limiters, however, are  
recommended as these devices provide large-scale tran-  
sient protection for the LTC4244 in the event of abrupt  
changes in supply current. All protection networks should  
bemountedveryclosetotheLTC4244’ssupplypinsusing  
short lead lengths to minimize trace resistance and induc-  
tance. This is shown schematically in Figures 12 and 13  
and a recommended layout of the transient protection  
devices around the LTC4244 is shown in Figure 14.  
R2  
0.007Ω  
Q2  
IRF7457  
5V  
IN  
5V  
5V  
OUT  
5V  
R1  
0.005Ω  
Q1  
IRF7457  
3V  
3V  
IN  
OUT  
3.3V  
3.3V  
C1  
0.047µF  
R3  
10Ω  
R4  
10Ω  
R5  
1k  
17  
3.3V  
16  
15  
18  
13  
14  
3
3.3V  
GATE 3.3V  
5V  
IN  
5V  
5V  
OUT  
IN  
SENSE  
OUT  
SENSE  
Z3  
Z4  
LTC4244*  
GND  
4244 F12  
8
Z3, Z4: SMAJ5.0A  
*ADDITIONAL DETAILS OMITTED FOR CLARITY  
Figure 12. Place Transient Protection Devices Close to LTC4244’s 5VIN and 3.3VIN Pins  
12V  
–12V  
IN  
3.3V  
5V  
IN  
IN  
IN  
1
2
R13  
R14  
Z3  
12V  
V
IN  
EEIN  
10Ω  
10Ω  
Z1  
Z2  
Z4  
LTC4244*  
GND  
C4  
0.1µF  
C5  
0.1µF  
VIAS TO  
GND PLANE  
LTC4244*  
Z1  
C5  
R14  
4244 F16  
8
Z1, Z2: SMAJ12CA  
*ADDITIONAL DETAILS OMITTED FOR CLARITY  
C4  
4244 F14  
Z1  
R13  
Figure 13. Place Transient Protection Devices  
Close to LTC4244’s 12VIN and VEEIN Pins  
GND  
12V  
V
EEIN  
IN  
*ADDITIONAL DETAILS OMITTED FOR CLARITY  
DRAWING IS NOT TO SCALE!  
Figure 14. Recommended Layout for Transient Protection  
Components  
42441f  
21  
LTC4244/LTC4244-1  
W U U  
U
APPLICATIO S I FOR ATIO  
PCB Layout Considerations  
Swap applications where load currents can be 10A, nar-  
row PCB tracks exhibit more resistance than wider tracks  
and operate at more elevated temperatures. Since the  
sheet resistance of 1 ounce copper foil is approximately  
For proper operation of the LTC4244’s circuit breaker,  
4-wire Kelvin sense connections between the sense resis-  
tor and the LTC4244’s 5VIN and 5VSENSE pins and 3.3VIN  
and 3.3VSENSE pins are strongly recommended. The PCB  
layout should be balanced and symmetrical to minimize  
wiring errors. In addition, the PCB layout for the sense  
resistors and the power MOSFETs should include good  
thermalmanagementtechniquesforoptimaldevicepower  
dissipation. A recommended PCB layout for the sense  
resistor, the power MOSFET and the GATE drive compo-  
nentsaroundtheLTC4244isillustratedinFigure15.InHot  
0.45m/ , track resistance and voltage drops add up  
o
quickly in high current applications. Thus, to keep PCB  
track resistance, voltage drop and temperature to a mini-  
mum, the suggested trace width in these applications for  
1ouncecopperfoilis0.03foreachampereofDCcurrent.  
In the majority of applications, it will be necessary to use  
plated-through vias to make circuit connections from  
component layers to power and ground layers internal to  
CURRENT FLOW  
CURRENT FLOW  
TO LOAD  
TO LOAD  
SENSE  
RESISTOR  
SO-8  
D
D
D
D
G
S
S
S
3.3V  
3.3V  
3.3V  
IN  
OUT  
W
W
3.3V  
VIA/PATH  
TO GND  
R3  
R5  
TRACK WIDTH W:  
0.03" PER AMPERE  
ON 1 OZ Cu FOIL  
GATE  
C1  
LTC4244*  
CURRENT FLOW  
TO SOURCE  
VIA TO  
GND PLANE  
C
TIMER  
GND  
W
GND  
4244 F15  
*ADDITIONAL DETAILS OMITTED FOR CLARITY  
DRAWING IS NOT TO SCALE!  
Figure 15. Recommended Layout for Power MOSFET, Sense Resistor and GATE Components for the 3.3V Rail  
42441f  
22  
LTC4244/LTC4244-1  
W U U  
APPLICATIO S I FOR ATIO  
U
thePCboard.For1ouncecopperfoilplating,ageneralrule  
is 1 ampere of DC current per via making sure the via is  
properly dimensioned so that solder completely fills the  
void. For other plating thicknesses, check with your PCB  
fabrication facility.  
peraturecurve,thedevice’son-resistancecanbeexpected  
toincreasebyabout20%overitsroomtemperaturevalue.  
Recalculation of the steady-state values of RON and junc-  
tion temperature yields approximately 12.6mand 81°C,  
respectively. The I • R drop across the 3.3V sense resistor  
and series MOSFET at maximum load current under these  
conditions will be less than 124mV.  
Design Example  
As a design example, consider a CPCI Hot Swap applica-  
tion with the following power supply requirements:  
The next step is to select appropriate values for C1 and  
CTIMER. Assuming that the total current for the 5V supply  
is constrained to less than 6A during power-up (6 × 5V  
medium length connector pins at 1A per pin), then the  
inrush current shouldn’t exceed:  
Table 4. Design Example Power Supply Requirements  
VOLTAGE  
SUPPLY  
MAXIMUM DC  
SUPPLY CURRENT  
LOAD  
CAPACITANCE  
12V  
5V  
450mA  
5A  
100µF  
2200µF  
2200µF  
100µF  
IINRUSH < 6A – ILOAD(5VOUT) = 6A – 5A = 1A  
(12)  
This yields:  
3.3V  
–12V  
7A  
100mA  
I
GATE(MAX) • 2200µF  
C1>  
C1>  
(13)  
IINRUSH(MAX)  
The first step is to select the appropriate values of RSENSE  
for the 5V and 3.3V supplies. Calculating the value of  
RSENSE is based on ILOAD(MAX) and the lower limit for the  
circuit breaker threshold voltage (47mV for both the 5V  
and 3.3V circuit breakers). If a 1% tolerance is assumed  
for the sense resistors, then 5mand 7mresistor  
values yield the following minimum and maximum ITRIP  
values:  
100µA • 2200µF  
= 220nF  
1A  
Hence a C1 value of 330nF ±10% should suffice. The value  
of CTIMER for this design example will be constrained by  
the duration of the 12V supply inrush current, which  
according to Equation 2 is:  
Table 5. ITRIP vs RSENSE  
2 CLOAD 12V  
LIMIT(MIN) ILOAD(MAX)  
R (1% RTOL)  
SENSE  
5mΩ  
I
I
TRIP(MAX)  
TRIP(MIN)  
tON(12VOUT)  
tON(12VOUT)  
<
<
I
9.3A  
11.5A  
7mΩ  
6.6A  
8.2A  
(14)  
2 100µF 12V  
550mA – 450mA  
= 24ms  
So sense resistor values of 7mand 5mshould suffice  
for the 5V and 3.3V supplies, respectively.  
In order to guarantee that the LTC4244’s TIMER fault  
inhibit period is greater than 24ms, the value of CTIMER  
should be:  
The second step is to select MOSFETs for the 5V and 3.3V  
supplies.TheIRF7457’sonresistanceislessthan10.5mΩ  
for VGS > 4.5V and a junction temperature of 25°C. Since  
the maximum load current requirement for the 3.3V sup-  
ply is 7A, the steady-state power the device may be  
required to dissipate is 514mW. The IRF7457 has a  
junction-to-ambient thermal resistance of 50°C/Watt. If a  
maximum ambient temperature of 50°C is assumed, this  
yields a junction temperature of 75.7°C. According to the  
IRF7457’s Normalized On-Resistance vs Junction Tem-  
24ms ITIMER(MAX)  
12V – VTIMER(MAX)  
CTIMER  
CTIMER  
>
>
(15)  
24ms • 26µA  
12V – 1.9V  
= 61.8nF  
So a value of 82nF (±10%) should suffice.  
42441f  
23  
LTC4244/LTC4244-1  
W U U  
U
APPLICATIO S I FOR ATIO  
The next step is to verify that the thermal ratings of the  
external 5V and 3.3V MOSFETs aren’t being exceeded  
during power-up cycles into the designed loads or into a  
short circuit.  
The duration and magnitude of the power pulse that  
results during a short-circuit condition on either the 5V or  
3.3VoutputsareafunctionoftheTIMERcapacitorandthe  
LTC4244’s foldback current limit. Figure 16 shows the  
worst-case power dissipated in the 5V and 3.3V external  
FETs vs V5VOUT and V3.3VOUT, respectively. In the case of  
the3.3VexternalMOSFET,themaximumdissipatedpower  
is24Watts(V3.3VOUT=0.9V).Forthe5VexternalMOSFET,  
Theamountofheatinginthe5Vand3.3VMOSFETsduring  
anormalpowercycledependsontheLTC4244’sGATEpin  
current (refer to Gate Current vs Temperature plot in the  
Typical Performance Characteristics section). The magni-  
tude of the off-on power pulse that results in maximum  
heating of the MOSFETs is given by Equation 10 as:  
the maximum dissipated power is 22 Watts (V5VOUT  
=
1.75V).Themaximumdurationoftheshort-circuitpower-  
pulse is given by Equation 19 as:  
nVOUT • IINRUSH(MIN) +ILOAD(nVOUT)  
(
)
12V – VTIMER(MIN)  
(16)  
POFF-ON  
where  
=
(19)  
t
PULSE < CTIMER(MAX) •  
2
ITIMER(MIN)  
82nF + 8.2nF • 12V – 1.3V  
(
<
) (  
)
tPULSE  
CLOAD  
C1(MAX)  
16µA  
I
=
IGATE(MIN)  
INRUSH(MIN)  
(17)  
t
PULSE < 60.3ms  
The duration of the power-pulse is given by Equation 11  
as:  
25  
20  
15  
CLOAD nVOUT  
IINRUSH(MIN)  
5V R  
= 0.007Ω  
SENSE  
SENSE  
tINRUSH  
<
3.3V R  
= 0.005Ω  
(18)  
5V MOSFET  
Solving these equations for the 5V and 3.3V supplies  
yields:  
Table 6  
10  
5
P
t
INRUSH(MAX)  
3.3V MOSFET  
OFF-ON  
5V MOSFET  
12.8W  
11.8W  
90ms  
3.3V MOSFET  
60ms  
0
0
1
2
3
4
5
Under these conditions, the IRF7457 datasheet’s Thermal  
Response vs Pulse Duration curve indicates that the  
junction-to-ambient temperature will increase by 60°C for  
the 5V MOSFET and 46°C for the 3.3V MOSFET.  
OUTPUT VOLTAGE (V)  
4244 F16  
Figure 16. Worst-Case 5V and 3.3V MOSFET  
Dissipated Power vs Output Voltage  
42441f  
24  
LTC4244/LTC4244-1  
W U U  
APPLICATIO S I FOR ATIO  
U
TheIRF7457’sThermalResponsevsPulseDurationcurve  
indicates that the worst-case increase in junction-to-  
ambient temperature during a power-cycle for the 3.3V  
MOSFET is less than 96°C while the worst-case increase  
in junction-to-ambient temperature for the 5V MOSFET is  
less than 88°C.  
Transient Voltage Suppressors SMAJ12A and SMAJ5.0A  
are supplied by:  
Diodes, Incorporated  
Westlake Village, CA 91362 USA  
Phone: 01 (805) 446-4800  
Web Site: http://www.vishay.com or  
http://www.diodes.com  
Power MOSFET and Sense Resistor Selection  
Transistors MMBT2222A and MMBT3906 are supplied  
by:  
Tables 7 and 8 list current sense resistors and power  
MOSFET transistors, respectively, that can be used with  
the LTC4244’s circuit breakers. Table 9 lists supplier web  
site addresses for discrete components mentioned  
throughout the LTC4244 data sheet.  
ON Semiconductor  
Phoenix, AZ 85008 USA  
Phone: 01 (602) 244-6600  
Web Site: http://www.onsemi.com  
Obtaining Information on Specific Parts  
For more information or to request a copy of the  
CompactPCIspecification,contactthePCIIndustrialCom-  
puter Manufacturers Group at:  
PCI Industrial Computer Manufacturers Group  
Wakefield, MA 01880 USA  
Phone: 01 (718) 224-1239  
Web Site: http://www.picmg.com  
42441f  
25  
LTC4244/LTC4244-1  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 7. Sense Resistor Selection Guide  
CURRENT LIMIT VALUE  
PART NUMBER  
DESCRIPTION  
MANUFACTURER  
1A  
LR120601R055F  
WSL1206R055  
0.055, 0.5W, 1% Resistor  
IRC-TT  
Vishay Dale  
2A  
5A  
LR120601R028F  
WSL1206R028  
0.028, 0.5W, 1% Resistor  
0.011, 0.5W, 1% Resistor  
IRC-TT  
Vishay Dale  
LR120601R011F  
WSL2010R011  
IRC-TT  
Vishay Dale  
7.6A  
10A  
WSL2512R007  
WSL2512R005  
0.007, 1W, 1% Resistor  
0.005, 1W, 1% Resistor  
Vishay Dale  
Vishay Dale  
Table 8. N-Channel Power MOSFET Selection Guide  
CURRENT LIMIT VALUE  
PART NUMBER  
MMDF3N02HD  
MMSF5N02HD  
MTB50N06V  
IRF7457  
DESCRIPTION  
Dual N-Channel SO-8, R  
MANUFACTURER  
ON Semiconductor  
ON Semiconductor  
ON Semiconductor  
International Rectifier  
0A to 2A  
= 0.1Ω  
DS(ON)  
2A to 5A  
Single N-Channel SO-8, R  
= 0.025Ω  
DS(ON)  
5A to 10A  
5A to 10A  
Single N-Channel DD-Pak, R  
= 0.028Ω  
DS(ON)  
Single N-Channel SO-8, R  
= 0.007Ω  
DS(ON)  
5A to 10A  
Si7880DP  
Single N-Channel PowerPAKTM, R  
= 0.003 Vishay Siliconix  
DS(ON)  
PowerPAK is a trademark of Vishay Siliconix  
Table 9. Manufacturers’ Web Site  
MANUFACTURER  
International Rectifier  
ON Semiconductor  
IRC-TT  
WEB SITE  
www.irf.com  
www.onsemi.com  
www.irctt.com  
Vishay Dale  
www.vishay.com  
www.vishay.com  
www.diodes.com  
Vishay Siliconix  
Diodes, Inc.  
42441f  
26  
LTC4244/LTC4244-1  
U
PACKAGE DESCRIPTIO  
GN Package  
20-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.337 – .344*  
(8.560 – 8.738)  
.058  
(1.473)  
REF  
.045 ±.005  
20 19 18 17 16 15 14 13 12 11  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 BSC  
1
2
3
4
5
6
7
8
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
.015 ± .004  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
× 45°  
(0.38 ± 0.10)  
0° – 8° TYP  
.0075 – .0098  
(0.19 – 0.25)  
.016 – .050  
(0.406 – 1.270)  
.008 – .012  
.0250  
(0.635)  
BSC  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
(MILLIMETERS)  
2. DIMENSIONS ARE IN  
GN20 (SSOP) 0204  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
42441f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
27  
LTC4244/LTC4244-1  
U
TYPICAL APPLICATIO  
C8  
C9  
0.01µF PER  
0.01µF PER  
POWER PIN  
R2  
0.007Ω  
Q2  
IRF7457  
5V  
IN  
POWER PIN  
V
OUT  
5V  
5V  
5A  
+
+
R22  
C
C
R1  
0.005Ω  
Q1  
2.7Ω  
LOAD(5VOUT)  
LONG 5V  
3.3V  
IRF7457  
V
OUT  
3.3V  
IN  
3.3V  
7A  
R21  
1.8Ω  
Z3  
LOAD(3.3VOUT)  
C1  
LONG 3.3V  
R4  
10Ω  
R3  
10Ω  
Z4  
C7  
0.01µF  
R5  
1k  
0.33µF  
Z2  
3.3V  
IN  
3.3V  
SENSE  
GATE 3.3V  
OUT  
5V  
5V  
5V  
12V  
IN  
SENSE  
OUT  
V
OUT  
12V  
IN  
12V  
12V  
OUT  
+
500mA  
V
EEIN  
C
LOAD(12VOUT)  
R19 1k  
OFF/ON  
FAULT  
BD_SEL#  
V
R20  
1.2k  
EEOUT  
R18 10k  
LTC4244-1  
LONG V(I/O)  
R17  
10k  
TIMER  
C2  
0.082µF  
PWRGD  
HEALTHY#  
PCI_RST#  
R6  
10k  
RESETIN  
V
OUT  
3.3V  
GND PRECHARGE  
RESETOUT  
R8 1k  
DRIVE  
Q3  
R15  
1Ω  
C4  
LOCAL_PCI_RST#  
R9 24Ω  
C3 4.7nF  
0.01µF  
V
IN  
3.3V  
GROUND  
R7 12Ω  
R10 18Ω  
R11  
10k  
R12  
10k  
R13  
MMBT2222A  
1V  
±10%  
RESET#  
10Ω  
I/O DATA LINE 1  
I/O #1  
I/O PIN 1  
PCI  
BRIDGE  
CHIP  
R14  
10Ω  
I/O #128  
I/O DATA LINE 128  
I/O PIN 128  
Z1, Z2: SMAJ12A Z3, Z4: SMAJ5.0A  
4244 F17  
Figure 17. Typical LTC4244-1 Application  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1421  
Hot Swap Controller  
Dual Supplies from 3V to 12V, Additional –12V  
Single Supply Hot Swap in SO-8 from 3V to 12V  
Negative High Voltage Supplies from –10V to –80V  
Supplies from 9V to 80V, Latch Off/Autoretry  
3V to 15V, Overvoltage Protection Up to 33V  
3.3V, 5V, 12V, –12V Supplies for PCI Bus  
LTC1422  
Hot Swap Controller  
LT1640AL/LT1640AH  
LT1641-1/LT1641-2  
LTC1642  
Negative Voltage Hot Swap Controllers in SO-8  
Positive Voltage Hot Swap Controllers in SO-8  
Fault Protected Hot Swap Controller  
LTC1643AL/LTC1643AL-1 PCI Bus Hot Swap Controllers  
LTC1643AH  
LTC1644  
LTC1645  
LTC1646  
LTC1647  
LTC4211  
LTC4240  
LT4250  
Compact PCI Bus Hot Swap Controller  
2-Channel Hot Swap Controller  
3.3V, 5V, ±12V, Local Reset Logic and Precharge  
Operates from 1.2V to 12V, Power Sequencing  
3.3V, 5V Supplies Only  
Dual CompactPCI Hot Swap Controller  
Dual Hot Swap Controller  
Dual ON Pins for Supplies from 3V to 15V  
Hot Swap Controller with Multifunction Current Control  
CompactPCI Hot Swap Controller  
Single Supply, 2.5V to 16.5V, MSOP  
2
I C Interface Allows Control and Readback of Device Functions  
–20V to –80V, Active Current Limiting  
–48V Hot Swap Controller in SO-8  
–48V Hot Swap Controller in SOT-23  
LTC4251  
Floating Supply, Active Current Limiting and Fast Circuit Breaker  
42441f  
LT/TP 0204 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC4244CGN#PBF

Rugged, CompactPCI Bus Hot Swap Controllers
ADI

LTC4244CGN#TR

LTC4244 - Rugged, CompactPCI Bus Hot Swap Controllers; Package: SSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
ADI

LTC4244CGN#TRPBF

LTC4244 - Rugged, CompactPCI Bus Hot Swap Controllers; Package: SSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
ADI

LTC4244CGN-1

Rugged, CompactPCI Bus Hot Swap Controllers
Linear

LTC4244CGN-1#PBF

LTC4244 - Rugged, CompactPCI Bus Hot Swap Controllers; Package: SSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC4244CGN-1#TR

暂无描述
Linear

LTC4244CGN-1#TRPBF

LTC4244 - Rugged, CompactPCI Bus Hot Swap Controllers; Package: SSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC4244IGN

Rugged, CompactPCI Bus Hot Swap Controllers
Linear

LTC4244IGN#PBF

LTC4244 - Rugged, CompactPCI Bus Hot Swap Controllers; Package: SSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4244IGN#TR

LTC4244 - Rugged, CompactPCI Bus Hot Swap Controllers; Package: SSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4244IGN#TRPBF

LTC4244 - Rugged, CompactPCI Bus Hot Swap Controllers; Package: SSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4244IGN-1

Rugged, CompactPCI Bus Hot Swap Controllers
Linear