LTC3723-2_15 [Linear]

Synchronous Push-Pull PWM Controllers;
LTC3723-2_15
型号: LTC3723-2_15
厂家: Linear    Linear
描述:

Synchronous Push-Pull PWM Controllers

文件: 总20页 (文件大小:344K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3723-1/LTC3723-2  
Synchronous Push-Pull  
PWM Controllers  
U
DESCRIPTIO  
FEATURES  
TheLTC®3723-1/LTC3723-2synchronouspush-pullPWM  
controllers provide all of the control and protection func-  
tions necessary for compact and highly efficient, isolated  
power converters. High integration minimizes external  
component count, while preserving design flexibility.  
High Efficiency Synchronous Push-Pull PWM  
1.5A Sink, 1A Source Output Drivers  
Supports Push-Pull, Full-Bridge, Half-Bridge, and  
Forward Topologies  
Adjustable Push-Pull Dead-Time and Synchronous  
Timing  
The robust push-pull output stages switch at half the  
oscillator frequency. Dead-time is independently pro-  
grammed with an external resistor. Synchronous rectifier  
timing is adjustable to optimize efficiency. A UVLO pro-  
gram input provides precise system turn-on and turn off  
voltages. The LTC3723-1 features peak current mode  
controlwithprogrammableslopecompensationandlead-  
ing edge blanking, while the LTC3723-2 employs voltage  
mode control with voltage feedforward capability.  
Adjustable System Undervoltage Lockout and  
Hysteresis  
Adjustable Leading Edge Blanking  
Low Start-Up and Quiescent Currents  
Current Mode (LTC3723-1) or Voltage Mode  
(LTC3723-2) Operation  
Single Resistor Slope Compensation  
VCC UVLO and 25mA Shunt Regulator  
Programmable Fixed Frequency Operation to 1MHz  
50mA Synchronous Output Drivers  
The LTC3723-1/LTC3723-2 feature extremely low operat-  
ing and start-up currents. Both devices provide reliable  
short-circuit and overtemperature protection. The  
LTC3723-1/LTC3723-2 are offered in a 16-pin SSOP  
package.  
Soft-Start, Cycle-by-Cycle Current Limiting and  
Hiccup Mode Short-Circuit Protection  
5V, 15mA Low Dropout Regulator  
Available in 16-Pin SSOP Package  
U
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
APPLICATIO S  
Telecommunications, Infrastructure Power Systems  
Distributed Power Architectures  
U
TYPICAL APPLICATIO  
Isolated Push-Pull Converter  
V
OUT  
V
IN  
ME  
UVLO  
SPRG  
DRVA  
SYNC  
FROM  
AUXILIARY  
WINDING  
LTC3901  
DRVB  
CS  
V
CC  
MF  
V
REF  
DPRG  
C
SDRA  
SDRB  
T
V
V
REF  
OUT  
R
LEB  
V
REF  
+
V
LTC3723-1  
COMP  
FB GND  
COLL  
R
REF  
V
OUT  
LT1431  
SS  
GND-F GND-S  
372312 TA01  
372312f  
1
LTC3723-1/LTC3723-2  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
VCC to GND (Low Impedance Source) .......0.3V to 10V  
(Chip Self-Regulates at 10.3V)  
VREF Output Current ............................... Self-Regulated  
Operating Temperature (Notes 5,6)  
LTC3723E........................................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
Lead Temperature (Soldering, 10sec)................... 300°C  
UVLO to GND............................................. 0.3V to VCC  
All Other Pins to GND  
(Low Impedance Source) .........................0.3V to 5.5V  
V
CC (Current Fed) ................................................. 40mA  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
V
1
2
3
4
5
6
7
8
16 SPRG  
15 UVLO  
14 SS  
V
1
2
3
4
5
6
7
8
16 SPRG  
15 UVLO  
14 SS  
REF  
REF  
SDRB  
SDRA  
DRVB  
SDRB  
SDRA  
DRVB  
13 FB  
13 FB  
V
12  
R
LEB  
V
CC  
12 DPRG  
11 COMP  
10 CS  
CC  
DRVA  
GND  
11 COMP  
10 CS  
DRVA  
GND  
C
T
9
DPRG  
C
T
9
RAMP  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 100°C/W  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 100°C/W  
GN PART MARKING  
37231  
ORDER PART NUMBER  
LTC3723EGN-2  
GN PART MARKING  
37232  
ORDER PART NUMBER  
LTC3723EGN-1  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 9.5V unless otherwise noted.  
A
CC  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Supply  
V
V
V
V
Undervoltage Lockout  
UVLO Hysteresis  
Measured on V  
Measured on V  
10.25  
4.2  
145  
3
10.7  
V
V
CCUV  
CCHY  
CCST  
CCRN  
CC  
CC  
CC  
3.8  
CC  
I
I
Start-Up Current  
V
= V  
– 0.3V  
UVLO  
230  
8
µA  
mA  
V
CC  
Operating Current  
No Load on Outputs  
Current into V = 10mA  
V
Shunt Regulator Voltage  
Shunt Resistance  
10.3  
1.4  
5.0  
10  
10.8  
3.5  
5.2  
11.5  
SHUNT  
CC  
R
Current into V = 10mA to 17mA  
SHUNT  
CC  
SUVLO  
SHYST  
System UVLO Threshold  
System UVLO Hysteresis Current  
Measured on UVLO Pin, 10mA into V  
4.8  
8.5  
V
CC  
Current Flows Out of UVLO Pin, 10mA into V  
µA  
CC  
Pulse Width Modulator  
ROS Ramp Offset Voltage  
Ramp Discharge Current  
Measured on COMP, RAMP = 0V  
0.65  
50  
V
mA  
I
RAMP = 1V, COMP = 0V, C = 4V, 3723-1 Only  
T
RMP  
372312f  
2
LTC3723-1/LTC3723-2  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 9.5V unless otherwise noted.  
A
CC  
CONDITIONS  
Measured on CS, C = 1V, 3723-1 Only  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
I
Slope Compensation Current  
30  
68  
µA  
µA  
SLP  
T
C = 2.25V  
T
DCMAX  
DCMIN  
DTADJ  
Oscillator  
OSCI  
Maximum Duty Cycle  
Minimum Duty Cycle  
Dead-Time  
COMP = 4.5V  
COMP = 0V  
47  
48.2  
0
50  
%
%
ns  
130  
Initial Accuracy  
T = 25°C, C = 270pF  
220  
–3  
250  
2.35  
1.2  
280  
3
kHz  
%
A
T
OSCT  
V
Variation  
V
= 6.5V to 9.5V, Overtemperature  
CC  
CC  
OSCV  
C Ramp Amplitude  
T
Measured on C  
V
T
Error Amplifier  
V
FB Input Voltage  
FB Input Range  
Open-Loop Gain  
Input Bias Current  
Output High  
COMP = 2.5V, (Note 3)  
Measured on FB, (Note 4)  
COMP = 1V to 3V, (Note 3)  
COMP = 2.5V, (Note 3)  
Load on COMP = –100µA  
Load on COMP = 100µA  
COMP = 2.5V  
1.172  
0.3  
70  
1.22  
2.5  
V
V
FB  
FB  
I
AVOL  
90  
5
dB  
nA  
V
I
50  
IB  
V
V
4.7  
4.92  
0.27  
700  
5
OH  
Output Low  
0.5  
V
OL  
I
I
Output Source Current  
Output Sink Current  
400  
2
µA  
mA  
SOURCE  
SINK  
COMP = 2.5V  
Reference  
V
Initial Accuracy  
Load Regulation  
Line Regulation  
Total Variation  
T = 25°C, Measured on V  
REF  
4.925  
5.00  
2
5.075  
15  
V
mV  
mV  
V
REF  
A
REFLD  
REFLN  
REFTV  
REFSC  
Load on V = 100µA to 5mA  
REF  
V
= 6.5V to 9.5V  
1
10  
CC  
Line, Load and Temperature  
4.900  
18  
5.000  
30  
5.100  
45  
Short-Circuit Current  
V
Shorted to GND  
mA  
REF  
Push-Pull Outputs  
DRVH(x)  
DRVL(x)  
RDH(x)  
RDL(x)  
TDR(x)  
TDF(x)  
Output High Voltage  
I
I
I
I
= –100mA  
9.0  
9.0  
9.2  
0.17  
2.9  
1.7  
10  
V
V
OUT(x)  
OUT(x)  
OUT(x)  
OUT(x)  
Output Low Voltage  
Pull-Up Resistance  
Pull-Down Resistance  
Rise-Time  
= 100mA  
0.6  
4
= –10mA to –100mA  
= –10mA to –100mA  
= 1nF  
ns  
ns  
2.5  
C
C
OUT(x)  
OUT(x)  
Fall-Time  
= 1nF  
10  
Synchronous Outputs  
OUTH(x)  
OUTL(x)  
RHI(x)  
RLO(x)  
TR(x)  
Output High Voltage  
I
I
I
I
= –30mA  
9.2  
0.44  
11  
V
V
OUT(x)  
OUT(x)  
OUT(x)  
OUT(x)  
Output Low Voltage  
Pull-Up Resistance  
Pull-Down Resistance  
Rise-Time  
= 30mA  
0.6  
15  
20  
= –10mA to -30mA  
= –10mA to -30mA  
= 50pF  
ns  
ns  
15  
C
C
10  
OUT(x)  
OUT(x)  
TF(x)  
Fall-Time  
= 50pF  
10  
Current Limit and Shutdown  
CLPP  
CLSD  
CLDEL  
Pulse by Pulse Current Limit Threshold  
Measured on CS  
280  
475  
300  
600  
80  
320  
725  
mV  
mV  
ns  
Shutdown Current Limit Threshold  
Current Limit Delay to Output  
Measured on CS  
100mV Overdrive on CS, (Note 2)  
372312f  
3
LTC3723-1/LTC3723-2  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 9.5V unless otherwise noted.  
A
CC  
SYMBOL  
SSI  
PARAMETER  
CONDITIONS  
MIN  
10  
TYP  
13  
MAX  
16  
UNITS  
Soft-Start Current  
SS = 2.5V  
µA  
V
SSR  
Soft-Start Reset Threshold  
Fault Reset Threshold  
Measured on SS  
Measured on SS  
0.7  
4.5  
0.4  
4.2  
0.1  
3.5  
FLT  
V
Note 1: Absolute Maximum Ratings are those values beyond which the life  
performance specifications from 0°C to 70°C. Specifications over the  
–40°C to 85°C operating temperature range are assured by design,  
characterization and correlation with statistical process controls.  
Note 6: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
of a device may be impaired.  
Note 2: Includes leading edge blanking delay, R = 20k, not tested in  
LEB  
production.  
Note 3: FB is driven by a servo loop amplifier to control V  
for these  
COMP  
tests.  
Note 4: Set FB to –0.3V, 2.5V and insure that COMP does not phase invert.  
Note 5: The LTC3723E–1/LTC3723E-2 are guaranteed to meet  
U W  
(T = 25°C unless otherwise noted)  
A
TYPICAL PERFOR A CE CHARACTERISTICS  
Oscillator Frequency vs  
Temperature  
Start-Up I vs V  
V
vs I  
CC  
CC  
CC  
SHUNT  
10.50  
10.25  
10.00  
9.75  
200  
150  
100  
50  
260  
250  
240  
230  
220  
C
= 270pF  
T
9.50  
0
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
60 40 20  
0
20 40 60 80 100  
I
(mA)  
V
(V)  
TEMPERATURE (°C)  
SHUNT  
CC  
372312 G02  
372312 G01  
372312 G03  
Leading Edge Blanking Time  
vs R  
V
REF  
vs Temperature  
V
REF  
vs I  
REF  
LEB  
5.01  
5.00  
4.99  
4.98  
4.97  
350  
300  
250  
200  
150  
100  
50  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
T = 25°C  
J
T = 85°C  
J
T = –40°C  
J
0
60 40 20  
0
20 40 60 80 100  
20  
(mA)  
5
10 15  
25 30 35 40  
0
0
10 20 30 40 50  
70  
90 100  
80  
60  
TEMPERATURE (°C)  
R
(k)  
I
LEB  
REF  
372312 G06  
372312 G05  
372312 G04  
372312f  
4
LTC3723-1/LTC3723-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
LTC3723 Deadtime vs R  
DPRG  
With and Without 200k Prebias  
Compensation  
Error Amplifier Gain/Phase  
Start-Up I vs Temperature  
CC  
275  
250  
225  
200  
175  
150  
125  
100  
75  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
100  
80  
60  
40  
20  
0
200k PREBIAS  
NO 200k PREBIAS  
–180  
–270  
–360  
50  
10  
100  
1k  
10k  
100k 1M  
10M  
0
100 150 200 250 300 350 400 450 500  
50  
–55  
–25  
5
35  
65  
95  
125  
FREQUENCY (Hz)  
R
(k)  
TEMPERATURE (°C)  
DPRG  
372312 G07  
372312 G09  
372312 G08  
V
Shunt Voltage vs  
Synchronous Driver Turn-Off Delay  
CC  
Slope Current vs Temperature  
Temperature  
vs R  
Referenced to CT Peak  
SPRG  
10.5  
10.4  
10.3  
10.2  
10.1  
10.0  
9.9  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 10mA  
CC  
C
= 2.25V  
T
C
= 1V  
T
9.8  
–55  
–25  
5
35  
65  
95  
125  
0
150  
(k)  
200  
50  
100  
250  
300  
–55  
–25  
5
35  
65  
95  
125  
TEMPERATURE (°C)  
R
TEMPERATURE (°C)  
SPRG  
372312 G11  
372312 G12  
372312 G10  
Synchronous Driver Turn-Off  
Delay vs R Referenced to  
SPRG  
FB Input Voltage vs Temperature  
Push-Pull Driver Outputs  
1.205  
1.204  
1.203  
1.202  
1.201  
1.200  
1.199  
1.198  
1.197  
350  
300  
250  
200  
150  
100  
50  
R
= 150k  
DPRG  
0
–50  
0
50  
100  
150  
(k)  
200  
250  
300  
–55  
–25  
5
35  
65  
95  
125  
TEMPERATURE (°C)  
R
SPRG  
372312 G13  
372312 G14  
372312f  
5
LTC3723-1/LTC3723-2  
U
U
PI DESCRIPTIO S  
(LTC3723-1/LTC3723-2)  
VREF (Pin 1/Pin 1): Output of the 5.0V Reference. VREF is  
capableofsupplyingupto18mAtoexternalcircuitry.VREF  
should be decoupled to GND with a 0.47µF ceramic  
capacitor.  
mended. VIN and VREF bypass capacitors must be termi-  
natedwithastarconfigurationasclosetoGNDaspractical  
for best performance.  
CT (Pin 8/Pin 8): Timing Capacitor for the Oscillator. Use  
a ±5% or better low ESR ceramic capacitor for best  
results. CT ramp amplitude is 2.35V peak-to-peak  
(typical).  
SDRB (Pin 2/Pin 2): 50mA Driver for Synchronous Recti-  
fier associated with DRVB.  
SDRA (Pin 3/Pin 3): 50mA Driver for Synchronous Recti-  
fier associated with DRVA.  
DPRG (Pin 9/Pin 12): Programming Input for Push-Pull  
Dead-Time. Connect a resistor between DPRG and VREF  
to program the dead-time. The nominal voltage on DPRG  
is 2V.  
DRVB (Pin 4/Pin 4): High Speed 1.5A Sink, 1A Source  
Totem Pole MOSFET Driver. Connect to gate of external  
push-pull MOSFET with as short a PCB trace as practical  
to preserve drive signal integrity. A low value resistor  
connected between DRVA and the MOSFET gate is op-  
tional and will improve the gate drive signal quality if the  
PCB trace from the driver to the MOSFET cannot be made  
short.  
RAMP (N/A/Pin 9): Input to PWM Comparator for  
LTC3723-2 Only (Voltage Mode Controller). The voltage  
on RAMP is internally level shifted by 650mV.  
CS (Pin 10/Pin 10): Input to Pulse-by-Pulse and Overload  
Current Limit Comparators, Output of Slope Compensa-  
tionCircuitry. Thepulse-by-pulsecomparatorhasanomi-  
nal 300mV threshold, while the overload comparator has  
anominal600mVthreshold.Aninternalswitchdischarges  
CS to GND after every timing period. Slope compensation  
current flows out of CS during the PWM period.  
An external resistor connected from CS to the external  
current sense resistor programs the amount of slope  
compensation.  
V
CC (Pin 5/Pin 5):Supply Voltage Input to the LTC3723-1/  
LTC3723-2 and 10.25V Shunt Regulator. The chip is  
enabled after VCC has risen high enough to allow the VCC  
shunt regulator to conduct current and the UVLO com-  
parator threshold is exceeded. Once the VCC shunt regu-  
lator has turned on, VCC can drop to as low as 6V (typical)  
and maintain operation. Bypass VCC to GND with a high  
quality 1µF or larger ceramic capacitor to supply the  
transientcurrentscausedbythehighspeedswitchingand  
capacitive loads presented by the on chip totem pole  
drivers.  
COMP (Pin 11/Pin 11): Error Amplifier Output, Inverting  
Input to Phase Modulator.  
RLEB (Pin 12/N/A): Timing Resistor for Leading Edge  
Blanking. Use a 10k to 100k resistor connected between  
RLEB and GND to program from 40ns to 310ns of leading  
edge blanking of the current sense signal on CS for the  
LTC3723-1. A ±1% tolerance resistor is recommended.  
TheLTC3723-2hasafixedblankingtimeofapproximately  
80ns. The nominal voltage on RLEB is 2V. If leading edge  
blanking is not required, tie RLEB to VREF to disable.  
DRVA (Pin 6/Pin 6): High Speed 1.5A Sink, 1A Source  
Totem Pole MOSFET Driver. Connect to gate of external  
push-pull MOSFET with as short a PCB trace as practical  
to preserve drive signal integrity. A low value resistor  
connected between DRVA and the MOSFET gate is op-  
tional and will improve the gate drive signal quality if the  
PCB trace from the driver to the MOSFET cannot be made  
short.  
FB (Pin 13/Pin 13): Error Amplifier Inverting Input. This is  
the voltage feedback input for the LTC3723. The nominal  
regulation voltage at FB is 1.2V.  
GND (Pin 7/Pin 7): All circuits in the LTC3723 are refer-  
enced to GND. Use of a ground plane is highly recom-  
372312f  
6
LTC3723-1/LTC3723-2  
U
U
PI DESCRIPTIO S  
(LTC3723-1/LTC3723-2)  
SS (Pin 14/Pin 14): Soft-Start/Restart Delay Circuitry  
Timing Capacitor. A capacitor from SS to GND provides a  
controlled ramp of the current command (LTC3723-1) or  
dutycycle(LTC3723-2).Duringoverloadconditions,SSis  
discharged to ground initiating a soft-start cycle. SS  
chargingcurrentisapproximately13µA. SSwillchargeup  
to approximately 5V in normal operation. During a con-  
stant overload current fault, SS will oscillate at a low  
frequency between approximately 0.5V and 4V.  
threshold is exceeded, the LTC3723-1/LTC3723-2 com-  
mences a soft-start cycle and a 10µA (nominal) current is  
fed out of UVLO to program the desired amount of system  
hysteresis. The hysteresis level can be adjusted by chang-  
ing the resistance of the divider. UVLO can also be used to  
terminate all switching by pulling UVLO down to less than  
4V. An open drain or collector switch can perform this  
function without changing the system turn on or turn off  
voltages.  
UVLO (Pin 15/Pin 15): Input to Program System Turn-On  
andTurn-OffVoltages.ThenominalthresholdoftheUVLO  
comparator is 5.0V. UVLO is connected to the main DC  
system feed through a resistor divider. When the UVLO  
SPRG (Pin 16/Pin 16): A resistor is connected between  
SPRG and GND to set the turn off delay for the synchro-  
nous rectifier driver outputs. The nominal voltage on  
SPRG is 2V.  
W U  
TI I G DIAGRA  
W
PROGRAMMABLE  
SYNCHRONOUS  
TURN-OFF DELAY  
PROGRAMMABLE  
DEAD-TIME  
DRVA  
DRVB  
SDRA  
SDRB  
CURRENT  
SENSE  
OR C RAMP  
T
PWM  
COMPARATOR  
(–)  
372312 TD01  
372312f  
7
LTC3723-1/LTC3723-2  
W
BLOCK DIAGRA S  
LTC3723-1 Block Diagram  
V
UVLO  
15  
V
REF  
1
C
T
DPRG  
9
SPRG  
16  
CC  
5
8
V
UVLO  
REF, LDO  
1.2V  
5V  
CC  
10µA  
10.25V “ON”  
6V “OFF”  
V
CC  
REF GOOD  
ERROR  
AMPLIFIER  
SYSTEM  
UVLO  
V
CC  
GOOD  
FB 13  
+
+
3
2
SDRA  
SDRB  
1.2V  
5V  
SYNC  
RECTIFIER  
DRIVE  
PULSE WIDTH  
MODULATOR  
LOGIC  
50k  
COMP 11  
+
14.9k  
+
OSCILLATOR  
650mV  
1A SOURCE  
Q
R
S
6
DRVA  
Q
Q
T
1.5A SINK  
+
R
Q
S
V
REF  
1A SOURCE  
1.5A SINK  
13µA  
SS 14  
4
DRVB  
SHUTDOWN  
CURRENT  
LIMIT  
FAULT  
LOGIC  
+
600mV  
SLOPE  
COMPENSATOR  
PULSE-BY-PULSE  
CURRENT LIMIT  
CS 10  
12  
BLANK  
+
R
7
LEB  
300mV  
372312 BD01  
GND  
372312f  
8
LTC3723-1/LTC3723-2  
W
BLOCK DIAGRA S  
LTC3723-2 Block Diagram  
V
UVLO  
15  
V
C
T
SPRG  
16  
CC  
REF  
1
5
8
V
UVLO  
REF, LDO  
1.2V  
5V  
CC  
10µA  
10.25V “ON”  
6V “OFF”  
V
CC  
REF GOOD  
ERROR  
AMPLIFIER  
SYSTEM  
UVLO  
V
CC  
GOOD  
FB 13  
+
+
3
2
SDRA  
SDRB  
1.2V  
5V  
SYNC  
RECTIFIER  
DRIVE  
PULSE WIDTH  
MODULATOR  
LOGIC  
50k  
COMP 11  
+
+
OSCILLATOR  
650mV  
RAMP  
9
1A SOURCE  
Q
R
S
6
4
DRVA  
DRVB  
Q
Q
T
1.5A SINK  
1A SOURCE  
1.5A SINK  
R
Q
+
OUTPUT  
DRIVE  
LOGIC  
S
V
REF  
13µA  
SS 14  
SHUTDOWN  
CURRENT  
LIMIT  
FAULT  
LOGIC  
+
600mV  
PULSE-BY-PULSE  
CURRENT LIMIT  
CS 10  
BLANK  
+
7
9
300mV  
372312 BD02  
GND  
DPRG  
372312f  
9
LTC3723-1/LTC3723-2  
U
OPERATIO  
PleaserefertothedetailedBlockDiagramsforthisdiscus- Programming Driver Dead-Time  
sion. The LTC3723-1 and LTC3723-2 are synchronous  
The LTC3723-1/LTC3723-2 controllers include a feature  
PWMpush-pullcontrollers. TheLTC3723-1operateswith  
peak pulse-by-pulse current mode control while the  
LTC3723-2 offers voltage mode control operation. They  
are best suited for moderate to high power isolated power  
systems where small size and high efficiency are required.  
The push-pull topology delivers excellent transformer  
utilization and requires only two low side power MOSFET  
switches. Both controllers generate 180° out of phase  
0% to <50% duty cycle drive signals on DRVA and DRVB.  
The external MOSFETs are driven directly by these power-  
ful on-chip drivers. The external MOSFETs typically con-  
trol opposite primary windings of a centertapped power  
transformer. The centertap primary winding is connected  
totheinputDCfeed. Thesecondaryofthetransformercan  
beconfiguredindifferentsynchronousornonsynchronous  
configurations depending on the application needs.  
to program the minimum time between the output signals  
on DRVA and DRVB commonly referred to as the driver  
dead-time. This function will come into play if the control-  
leriscommandedformaximumdutycycle. Thedead-time  
is set with an external resistor connected between DPRG  
and VREF (see Figure 1). The nominal regulated voltage on  
DPRG is 2V. The external resistor programs a current  
which flows into DPRG. The dead-time can be adjusted  
from 90ns to 300ns with this resistor. The dead-time can  
also be modulated based on an external current source  
that feeds current into DPRG. Care must be taken to limit  
the current fed into DPRG to 350µA or less. An internal  
10µA current source sets a maximum deadtime if DPRG is  
floated.Theinternalcurrentsourcecausestheprogrammed  
deadtime to vary non-linearly with increasing values of  
RDPRG (see typical performance characteristics). An ex-  
The duty ratio is controlled by the voltage on COMP. A ternal 200k resistor connected from DPRG to GND will  
switching cycle commences with the falling edge of the compensate for the internal 10µA current source and  
internal oscillator clock pulse. The LTC3723-1 attenuates linearize the deadtime delay vs RDPRG characteristic.  
the voltage on COMP and compares it to the current sense  
Powering the LTC3723-1/LTC3723-2  
signal to terminate the switching cycle. The LTC3723-2  
compares the voltage on COMP to a timing ramp to  
terminate the cycle. The LTC3723-2’s CT waveform can be  
used for this purpose or separate R-C components can be  
connected to RAMP to generate the timing ramp. If the  
voltage on CS exceeds 300mV, the present cycle is termi-  
nated. If the voltage on CS exceeds 600mV, all switching  
stops and a soft-start sequence is initiated.  
TheLTC3723-1/LTC3723-2utilizeanintegratedVCC shunt  
regulatortoservethedualpurposesoflimitingthevoltage  
applied to VCC as well as signaling that the chip’s bias  
voltage is sufficient to begin switching operation (under  
voltage lockout). With its typical 10.2V turn-on voltage  
and 4.2V UVLO hysteresis, the LTC3723-1/LTC3723-2 is  
tolerant of loosely regulated input sources such as an  
auxiliary transformer winding. The VCC shunt is capable of  
sinking up to 40mA of externally applied current. The  
UVLO turn-on and turn-off thresholds are derived from an  
internally trimmed reference making them extremely ac-  
curate. In addition, the LTC3723-1/LTC3723-2 exhibits  
The LTC3723-1 / LTC3723-2 also provide drive signals for  
secondarysidesynchronousrectifierMOSFETs.Synchro-  
nous rectification improves converter efficiency, espe-  
cially as the output voltages drop. Independent turn-off  
control of the synchronous rectifiers is provided via SPRG  
in order to optimize the benefit of the synchronous recti-  
fiers. A resistor from SPRG to GND sets the desired turn  
off delay.  
V
REF  
R
DPRG  
10µA  
DPRG  
+
A host of other features including an error amplifier,  
systemUVLOprogramming,adjustableleadingedgeblank-  
ing, slope compensation and programmable dead-time  
provide flexibility for a variety of applications.  
+
V
TURN-ON  
OUTPUT  
OPTIONAL 200k  
2V  
2.5V  
372312 F01  
Figure 1. Delay Timeout Circuitry  
372312f  
10  
LTC3723-1/LTC3723-2  
U
OPERATIO  
very low (145µA typ) start-up current that allows the use  
UVLO. The amount of DC feed hysteresis provided by this  
current is: 10µA • RTOP, (Figure 3). The system UVLO  
threshold is: 5V • {(RTOP + RBOTTOM)/RBOTTOM}. If the  
voltage applied to UVLO is present and greater than 5V  
prior to the VCC UVLO circuitry activation, then the internal  
UVLO logic will prevent output switching until the follow-  
ing three conditions are met: (1) VCC UVLO is enabled, (2)  
of 1/8W to 1/4W trickle charge start-up resistors.  
The trickle charge resistor should be selected as follows:  
RSTART(MAX) = VIN(MIN) – 10.7V/250µA  
Adding a small safety margin and choosing standard  
values yields:  
V
REF is in regulation and (3) UVLO pin is greater than 5V.  
APPLICATION  
DC/DC  
V
RANGE  
R
START  
IN  
36V to 72V  
85V to 270V  
100k  
430k  
1.4M  
UVLO can also be used to enable and disable the power  
converter. An open drain transistor connected to UVLO as  
shown in Figure 3 provides this capability.  
Off-Line  
RMS  
PFC Preregulator  
390V  
DC  
VCC should be bypassed with a 0.1µF to 1µF multilayer  
ceramic capacitor to decouple the fast transient currents  
demanded by the output drivers and a bulk tantalum or  
electrolytic capacitor to hold up the VCC supply before the  
bootstrap winding, or an auxiliary regulator circuit takes  
over.  
R
TOP  
UVLO  
ON OFF  
R
BOTTOM  
372312 F03  
CHOLDUP = (ICC + IDRIVE) • tDELAY/3.8V  
(minimum UVLO hysteresis)  
Figure 3. System UVLO Setup  
Regulated bias supplies as low as 7V can be utilized to  
provide bias to the LTC3723-1/LTC3723-2. Refer to  
Figure 2 for various bias supply configurations.  
Off-Line Bias Supply Generation  
If a regulated bias supply is not available to provide VCC  
voltage to the LTC3723-1/LTC3723-2 and supporting  
circuitry, onemustbegenerated. Sincethepowerrequire-  
ment is small, approximately 1W, and the regulation is not  
critical, a simple open-loop method is usually the easiest  
and lowest cost approach. One method that works well is  
to add a winding to the main power transformer, and post  
regulate the resultant square wave with an L-C filter (see  
Figure 4a). The advantage of this approach is that it  
maintains decent regulation as the supply voltage varies,  
and it does not require full safety isolation from the input  
winding of the transformer. Some manufacturers include  
a primary winding for this purpose in their standard  
V
IN  
V
BIAS  
< V  
UVLO  
12V ±10%  
1.5k  
1N5226  
3V  
1N914  
R
START  
+
1µF  
1µF  
C
HOLD  
V
CC  
V
CC  
372312 F02  
Figure 2. Bias Configurations  
Programming Undervoltage Lockout  
The LTC3723-1/LTC3723-2 provides undervoltage lock-  
out (UVLO) control for the input DC voltage feed to the  
power converter in addition to the VCC UVLO function  
described in the preceding section. Input DC feed UVLO is  
provided with the UVLO pin. A comparator on UVLO  
compares a divided down input DC feed voltage to the 5V  
precision reference. When the 5V level is exceeded on  
UVLO, the SS pin is released and output switching com-  
mences. At the same time a 10µA current is enabled which  
flows out of UVLO into the voltage divider connected to  
V
IN  
V
CC  
R
START  
2k  
+
15V*  
1µF  
C
HOLD  
372312 F04a  
*OPTIONAL  
Figure 4a. Auxiliary Winding Bias Supply  
372312f  
11  
LTC3723-1/LTC3723-2  
U
OPERATIO  
Figure 5, the leading edge of an external pulse is used to  
terminate the natural clock cycle. If the external frequency  
is higher than the oscillator frequency, the internal oscil-  
lator will synchronize with the external input frequency.  
product offerings as well. A different approach is to add a  
winding to the output inductor and peak detect and filter  
the square wave signal (see Figure 4b). The polarity of this  
winding is designed so that the positive voltage square  
wave is produced while the output inductor is freewheel-  
ing. An advantage of this technique over the previous is  
that it does not require a separate filter inductor and since  
the voltage is derived from the well-regulated output  
voltage, it is also well controlled. One disadvantage is that  
this winding will require the same safety isolation that is  
required for the main transformer. Another disadvantage  
is that a much larger VCC filter capacitor is needed, since  
it does not generate a voltage as the output is first starting  
up, or during short-circuit conditions.  
LTC3723  
f < f  
OSC EXT  
< 1.25 • f  
OSC  
C
T
C
T
EXTERNAL  
FREQUENCY  
SOURCE  
68pF  
390  
BAT54  
210µA  
2.56V • C  
f
= f /2  
SW OSC  
f
OSC  
T
372312 F05  
Figure 5. Synchronization from External Source  
V
IN  
V
OUT  
Single-Ended Operation  
L
OUT  
R
+
START  
ISO BARRIER  
In addition to push-pull and full-bridge topologies, single-  
ended topologies such as the forward and flyback con-  
verter can benefit from the many advanced features of the  
LTC3723. In Figure 6, the LTC3723 is used with the  
LTC4440, 100V high side driver to implement a two-  
transistor forward converter. DRVB is used which limits  
the converter’s maximum duty cycle to 50% (less pro-  
grammable driver dead time).  
1µF  
C
HOLD  
372312 F04b  
V
CC  
Figure 4b. Output Inductor Bias Supply  
Programming the LTC3723-1/LTC3723-2 Oscillator  
V
IN  
TG  
TS  
The high accuracy LTC3723-1/LTC3723-2 oscillator cir-  
cuit provides flexibility to program the switching fre-  
quency and slope compensation required for current  
mode control (LTC3723-1). The oscillator circuit pro-  
duces a 2.35V peak-to-peak amplitude ramp waveform on  
CT.Typicalmaximumdutycyclesof49%arepossible.The  
oscillator is capable of operation up to 1MHz by the  
following equation:  
LTC4440  
GND  
IN  
–V  
IN  
DRVB  
TO SYNCHRONOUS  
SECONDARY MOSFET  
SDRB  
GND  
LTC3723  
CT = 1/(14.8k • FOSC  
)
210µA  
2 • 2.56V • C  
f
C
T
SW  
T
Note that this is the frequency seen on CT. The output  
drivers switch at 1/2 of this frequency. Also note that  
higher switching frequency and added driver dead-time  
via DPRG will reduce the maximum duty cycle.  
C
T
372312 F06  
Figure 6. Two-Transistor Forward Converter (Duty Cycle < 50%)  
The LTC3723-1/LTC3723-2 can be synchronized to an  
external frequency source such as another PWM chip. In  
372312f  
12  
LTC3723-1/LTC3723-2  
U
OPERATIO  
The 50% duty-cycle limit is overcome with the circuit  
shown in Figure 7. Operation is similar to external syn-  
chronization, except DRVA output is used to terminate its  
ownclockcycleearly. Switchingperiodisnowequaltothe  
oscillator period plus programmable driver dead time.  
Maximum on time is equal to oscillator period minus  
driver dead time.  
Voltage Mode with LTC3723-2  
Figure 9 shows how basic connections differ between  
current mode LTC3723-1 and voltage mode LTC3723-2.  
Oscillator may be used as the ramp input or the LTC3723-  
2 includes an internal 10mA ramp discharge useful when  
implementing voltage feedforward. Open loop control in  
which the duty cycle varies inversely proportional to input  
voltage is shown in Figure 10.  
Although near 100% duty cycle operation may be of  
benefit with non-isolated converters, it is often desirable  
to limit the duty cycle of single-ended isolated converters.  
Instead of immediately ending the unused clock’s output,  
Figure 8 uses a transistor to switch in additional timing  
capacitor charge current. This allows one to preset the  
maximum duty.  
LTC3723-1  
C
DPRG  
9
V
RLEB  
12  
T
REF  
1
8
R
R
T
C
LEB  
DPRG  
TO INPUT  
VOLTAGE  
DRVA DRVB  
LTC3723-1  
1
fSW  
C
T
2.56V CT  
+ T  
LTC3723-2  
LTC3723-2  
DPRG  
210µA  
C
T
C
RAMP  
V
DPRG  
RAMP  
9
C
V
DPRG  
12  
T
REF  
1
T
REF  
1
2.56V CT  
210µA  
8
9
12  
8
DMAX fSW  
– T  
DPRG  
68pF  
390  
BAT54  
R
R
DPRG  
DPRG  
C
C
T
T
372312 F09  
372312 F07  
Figure 9. LTC3723-1 Current Mode and LTC3723-2 Voltage  
Mode Connections  
Figure 7. LTC3723-1 > 50% Duty Cycle  
V
TO INPUT  
VOLTAGE  
IN  
LTC3723-2  
13  
FB  
–V  
IN  
C
RAMP COMP  
11  
T
8
9
DRVB  
TO SYNCHRONOUS  
SECONDARY MOSFET  
DRVA  
SDRB  
C
T
LTC3723-1  
50k  
V
1
REF  
R
C
T
fSW  
372312 F10  
1
1
2.56V CT  
+
MMBT2369  
210µA 210µA + 3 /R  
(
)
Figure 10. LTC3723-2 Open Loop Control (Duty Cycle is  
Inversely Proportional to Input Voltage)  
C
T
2.56V CT  
210µA  
DMAX fSW  
– T  
DPRG  
372312 F08  
Figure 8. LTC3723-1 One-Switch Forward or Flyback Converter  
(Maximum Duty Cycle 50% to 100%)  
372312f  
13  
LTC3723-1/LTC3723-2  
U
OPERATIO  
The LTC3723-1 derives a compensating slope current  
from the oscillator ramp waveform and sources this  
current out of CS. This function is disabled in the  
LTC3723-2. The desired level of slope compensation is  
selected with an external resistor connected between CS  
and the external current sense resistor, (Figure 11).  
The pulse-by-pulse comparator has a 300mV nominal  
threshold. If the 300mV threshold is exceeded, the PWM  
cycle is terminated. The overcurrent comparator is set  
approximately 2x higher than the pulse-by-pulse level. If  
the current signal exceeds this level, the PWM cycle is  
terminated, the soft-start capacitor is quickly discharged  
and a soft-start cycle is initiated. If the overcurrent condi-  
tion persists, the LTC3723-1/LTC3723-2 halts PWM op-  
eration and waits for the soft-start capacitor to charge up  
to approximately 4V before a retry is allowed. The soft-  
start capacitor is charged by an internal 13µA current  
source. If the fault condition has not cleared when soft-  
start reaches 4V, the soft-start pin is again discharged and  
a new cycle is initiated. This is referred to as hiccup mode  
operation. In normal operation and under most abnormal  
conditions, the pulse-by-pulse comparator is fast enough  
to prevent hiccup mode operation. In severe cases, how-  
ever, with high input voltage, very low RDS(ON) MOSFETs  
and a shorted output, or with saturating magnetics, the  
overcurrent comparator provides a means of protecting  
the power converter.  
Current Sensing and Overcurrent Protection  
Current sensing provides feedback for the current mode  
control loop and protection from overload conditions. The  
LTC3723-1/LTC3723-2 are compatible with either resis-  
tive sensing or current transformer methods. Internally  
connected to the LTC3723-1/LTC3723-2 CS pin are two  
comparators that provide pulse-by-pulse and overcurrent  
shutdown functions respectively, (Figure 12).  
LTC3723  
SWITCH  
CURRENT  
V(C )  
T
I =  
R
SLOPE  
C
33k  
T
CS  
ADDED  
SLOPE  
R
CS  
33k  
CURRENT SENSE  
WAVEFORM  
372312 F11  
Leading Edge Blanking  
Figure 11. Slope Compensation Circuitry  
TheLTC3723-1/LTC3723-2providesprogrammablelead-  
ing edge blanking to prevent nuisance tripping of the  
currentsensecircuitry. Leadingedgeblankingrelievesthe  
filteringrequirementsfortheCSpin,greatlyimprovingthe  
response to real overcurrent conditions. It also allows the  
use of a ground referenced current sense resistor or  
transformer(s), further simplifying the design. With a  
single 10k to 100k resistor from RLEB to GND, blanking  
times of approximately 40ns to 320ns are programmed. If  
not required, connecting RLEB to VREF can disable leading  
edge blanking. Keep in mind that the use of leading edge  
blankingwillslightlyreducethelinearcontrolrangeforthe  
pulse width modulator.  
H = SHUTDOWN  
OUTPUTS  
PWM  
UVLO  
ENABLE  
LATCH  
PULSE BY PULSE  
CURRENT LIMIT  
PWM  
LOGIC  
Q
Q
PWM  
S
R
Q
+
S
CS  
300mV  
OVERLOAD  
CURRENT LIMIT  
R
CS  
+
13µA  
SS  
4.1V  
0.4V  
S
R
Q
+
600mV  
UVLO  
ENABLE  
+
C
SS  
Q
372312 F12  
Figure 12. Current Sense/Fault Circuitry Detail  
372312f  
14  
LTC3723-1/LTC3723-2  
U
OPERATIO  
High Current Drivers  
new primary side power delivery pulse. This feature pro-  
vides optimized timing for the synchronous MOSFETs  
which improves efficiency. At higher load currents it  
becomes more advantageous to delay the turn-off of the  
synchronous rectifiers until the beginning of the new  
power pulse. This allows for secondary freewheeling  
currenttoflowthroughthesynchronousMOSFETchannel  
instead of its body diode.  
The LTC3723-1/LTC3723-2 high current, high speed driv-  
ers provide direct drive of external power N-channel  
MOSFET switches. The drivers swing from rail to rail. Due  
to the high pulsed current nature of these drivers (1.5A  
sink, 1A source), care must be taken with the board layout  
to obtain advertised performance. Bypass VCC with a 1µF  
minimum, low ESR, ESL ceramic capacitor. Connect this  
capacitor with minimal length PCB leads to both VCC and  
GND. A ground plane is highly recommended. The driver  
output pins (DRVA, DRVB) connect to the gates of the  
external MOSFET switches. The PCB traces making these  
connections should also be as short as possible to mini-  
mize overshoot and undershoot of the drive signal.  
The turn-off delay is programmed with a resistor from  
SPRG to GND, (Figure 13). The nominal regulated voltage  
on SPRG is 2V. The external resistor programs a current  
which flows out of SPRG. The delay can be adjusted from  
approximately 20ns to 200ns, with resistor values of 10k  
to 200k. Do not leave SPRG floating. The amount of delay  
can also be modulated based on an external current  
source that sinks current out of SPRG. Care must be taken  
to limit the current out of SPRG to 350µA or less.  
Synchronous Rectification  
The LTC3723-1/LTC3723-2 produces the precise timing  
signals necessary to control secondary side synchronous  
rectifier MOSFETs on SDRA and SDRB. Synchronous  
rectifiers are used in place of Schottky or silicon diodes on  
the secondary side to improve converter efficiency. As  
MOSFET RDS(ON) levels continue to drop, significant effi-  
ciency improvements can be realized with synchronous  
rectification, provided that the MOSFET switch timing is  
optimized. Synchronous rectification also provides bipo-  
lar output current capability, that is, the ability to sink as  
well as source current.  
SPRG  
+
+
V
TURN-OFF  
SYNC OUT  
R
SPRG  
2V  
372312 F13  
Figure 13. Synchronous Delay Circuitry  
Programming the Synchronous Rectifier  
Turn-Off Delay  
The LTC3723-1/LTC3723-2 controllers include a feature  
to program the turn-off edge of the secondary side syn-  
chronous rectifier MOSFETs relative to the beginning of a  
372312f  
15  
LTC3723-1/LTC3723-2  
U
TYPICAL APPLICATIO S  
372312f  
16  
LTC3723-1/LTC3723-2  
U
TYPICAL APPLICATIO S  
E F F I C I E N C Y ( % )  
372312f  
17  
LTC3723-1/LTC3723-2  
U
TYPICAL APPLICATIO S  
E F F I C I E N C Y ( % )  
372312f  
18  
LTC3723-1/LTC3723-2  
U
TYPICAL APPLICATIO S  
LTC3723-1 300W 42V to 56V to 12V/25A Isolated Bus Converter  
IN  
IN  
+V  
OUT  
ES1B  
L1  
V
V
IN  
F
0.56µH  
1.2k  
0.5W  
1nF  
V
IN  
100V  
1µF  
100V  
1µF  
100V  
×3  
12V  
1
12V  
1
10  
1W  
0.33µF  
BAS21  
6
BAS21  
6
ES1B  
100V  
T1  
29.46mm × 25.4mm × 10.2mm PLANAR  
–V  
IN  
V
E
V
E
–V  
OUT  
V
CC  
V
CC  
2
11  
9
+V  
OUT  
3
3
B
INP BOOST  
LTC4440ES6  
TG  
A
INP BOOST  
LTC4440ES6  
TG  
+V  
OUT  
4.7Ω  
4.7Ω  
5
V
F
L2  
5
4
3
7
0.44µH  
GND TS  
GND TS  
HAT2169  
×2  
HAT2169  
Si7370DP  
Si7370DP  
2
4
2
4
22µF  
25V  
×3  
0.1µF  
0.1µF  
×2  
2.2nF  
250V  
5
4.7µF  
25V  
2x  
Si7370DP  
Si7370DP  
A
5.1Ω  
1/4W  
–V  
OUT  
B
–V  
OUT  
V
F
V
E
+V  
1µF, 100V TDK C3225X7R2A105M  
OUT  
L3  
12V 1mH  
100Ω  
4.7µF, 25V TDK C4532X7R1E475M  
22µF, 25V TDK C4532X7R1E226M  
D1: MMBZ5240B  
4.53k  
4.53k  
BAS21  
I
SNS  
2.67k  
1.27k  
2.67k  
1.27k  
R1  
1
6
1k  
0.015Ω  
1.5W  
+
D2: MMBZ5242B  
L1: COILCRAFT DO1813P-561HC  
L2: PULSE PA0513.441  
L3: COILCRAFT DO1608C-105  
T1: PULSE PA0901.004 (4:4:4:4CT)  
T2: PULSE PA0785 (1:0.5T)  
68µF  
20V  
BAS21  
MMBT3904  
11  
+
12  
14 15  
6
5
2
3
16  
33.2k  
+
CSF  
CSF MF MF2 CSE  
CSE ME ME2  
V
CC  
T2  
1
1
8
4
5
9
LTC3901EGN  
PGND GND2  
SYNC  
PV  
CC  
PGND2 TIMER  
D1  
10V  
22Ω  
GND  
8
0.1µF  
100Ω  
220pF  
1µF  
4
10  
13  
7
4.7µF  
470pF  
V
IN  
12V  
MMBT3904  
–V  
OUT  
30k  
97  
13  
12  
11  
10  
9
A
B
1/4W  
I
48V  
IN  
SNS  
2
6
4
3
53V  
48V  
IN  
96  
95  
94  
93  
92  
91  
DRVA DRVB  
SDRB SDRA  
CS  
COMP  
100Ω  
1/4W  
42V  
IN  
5
10  
11  
IN  
V
LTC3723EGN-1  
464k  
CC  
53V  
IN  
15  
UVLO  
FB GND C  
SPRG RLEB SS DPRG  
V
42V  
T
REF  
1
IN  
13  
7
8
16  
12 14  
9
100pF  
150k  
66.5k  
33k  
24.9k  
330pF  
1µF  
270pF  
10k  
D2  
12V  
8
68nF  
0.47µF  
7
5
10  
15  
LOAD CURRENT (A)  
20  
25  
5
10  
15  
LOAD CURRENT (A)  
20  
25  
372312 TA05  
U
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.009  
.015 ± .004  
(0.38 ± 0.10)  
(0.229)  
REF  
.045 ±.005  
16 15 14 13 12 11 10 9  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
0° – 8°  
.007 – .0098  
(0.178 – 0.249)  
TYP  
.229 – .244  
(5.817 – 6.198)  
.150 – .157**  
(3.810 – 3.988)  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
.254 MIN  
.150 – .165  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
3. DRAWING NOT TO SCALE  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
1
2
3
4
5
6
7
8
.0165 ± .0015  
.0250 BSC  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
RECOMMENDED SOLDER PAD LAYOUT  
GN16 (SSOP) 0204  
372312f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC3723-1/LTC3723-2  
U
TYPICAL APPLICATIO  
LTC3723-1 100W, 36V to 72V to 3.3V/30A Isolated Forward Converter  
IN  
IN  
L1  
0.33µH  
L2  
0.85µH  
V
V
T1  
23.4mm × 20.1mm × 9.4mm PLANAR  
OUT  
IN  
V
V
OUT  
IN  
2
4
7
8
1µF  
1µF  
100V  
100V  
×2  
2.2nF  
V
X
100µF  
–V  
IN  
3
5
10  
11  
6.3V  
Si7336ADP  
Si7336ADP  
×2  
+
Si7450DP  
×2  
×2  
5.1  
1/2W  
470µF  
6.3V  
94  
93  
92  
91  
90  
89  
88  
87  
86  
2.2nF  
48V  
IN  
2.2nF  
630V  
5.1Ω  
1/2W  
–V  
OUT  
0.03Ω  
–V  
OUT  
1W  
L3  
1mH  
10V  
BAS21  
845Ω  
B0540W  
B0540W  
15Ω  
1/4W  
1
6
V
V
X
+
1.00k  
68µF  
20V  
BAS21  
820Ω  
562Ω  
V
B
REF  
5
10  
15  
20  
25  
30  
5
1
+
2
3
4
LOAD CURRENT (A)  
120K  
26.1k  
FG  
CS  
CS  
CG  
V
CC  
T2  
D1  
10V  
7
1
8
4
5
8
SYNC  
TIMER  
V
LTC3900ES8  
IN  
10V  
A
30k  
120pF  
220pF  
0.47µF  
25V  
GND  
6
1nF  
560Ω  
10  
CS  
6
4
150Ω  
2
DRVA  
DRVB  
1/4W  
SDRB  
COMP  
5
–V  
OUT  
V
CC  
383k  
LTC3723EGN-1  
15  
10nF  
UVLO  
11  
GND SS  
C
SPRG RLEB FB DPRG  
16 12 13  
V
T
REF  
4.7nF  
330Ω  
330Ω  
7
14  
8
9
150k  
1
100pF  
C
T
V
V
OUT  
REF  
820Ω  
V
REF  
4.7nF  
10k  
1
1µF  
68nF  
MOC207  
66.5k  
33k  
V
B
220pF  
0.47µF  
1k  
6
1
27.4k  
5
6
V
IN  
1µF, 100V TDK C3225X7R2A105M (1210)  
100µF, 6.3V TDK C3225X5R0J107M (1210)  
2.2nF, 630V TDK C3216JB2J222K  
470µF, 6.3V SANYO 6TPD470M  
D1: MMBZ5240B  
L1: COILCRAFT DO1813P-331HC  
L2: PULSE PA1292.910  
470pF  
COMP  
OPTO  
4
5
2
V
REF  
LT4430ES6  
FB  
OC  
A
50k  
GND  
2
MMBT2369  
8.66k  
2.2nF  
250V  
6.04k  
3
47nF  
L3: COILCRAFT DO1608C-105  
T1: PULSE PA810.007 (7:6:6:1:1:1T)  
T2: PULSE PA0184 (1:1T)  
V
IN  
C
T
V
OUT  
372312 TA06  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT®1952  
Single Switch Synchronous Forward Controller  
Isolated Power Supply DC/DC Converter Chipset  
High Efficiency, Adjustable Volt-Second Clamp, True PWM Soft-Start  
LTC3705/LTC3706/  
LTC3725/LTC3726/  
Simple as Buck Circuit, No Opto-Coupler, Fast Transient Response,  
PolyPhase® Operation Capability, Scalable for Higher Power  
LTC3722-1/LTC3722-2 Dual Mode Phase Modulated Full-Bridge Controllers  
ZVS Full-Bridge Controllers  
LT3804  
LTC3901  
LT4430  
LTC4440  
Secondary-Side Dual Output Controller with Opto Driver  
Regulates Two Secondary Outputs; Optocoupler Feedback Driver and  
Second Output Synchronous Driver Controller  
Secondary-Side Synchronous Driver for Push-Pull and  
Full Bridge Converters  
Drives N-Channel Synchronous MOSFETs, Programmable Timeout,  
Reverse Current Limit  
Secondary-Side Optocoupler Driver  
Overshoot Control on Start-Up and Short-Circuit Recovery,  
600mV Reference, ThinSOT™ Package  
High Speed High Voltage High Side Gate Driver  
80V Operation, 100V Tolerant, 1.5Pull-Down, 2.4A Pull-Up  
PolyPhase is a registered trademark of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation.  
372312f  
LT 1105 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LTC3723EGN-1

Synchronous Push-Pull PWM Controllers
Linear

LTC3723EGN-1#PBF

LTC3723 - Synchronous Push-Pull PWM Controllers; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3723EGN-1#TR

LTC3723 - Synchronous Push-Pull PWM Controllers; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3723EGN-2

Synchronous Push-Pull PWM Controllers
Linear

LTC3723EGN-2#PBF

暂无描述
Linear

LTC3723EGN-2#TR

LTC3723 - Synchronous Push-Pull PWM Controllers; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LTC3725

Single-Switch Forward Controller and Gate Driver
Linear

LTC3725EMSE

Single-Switch Forward Controller and Gate Driver
Linear

LTC3725EMSE#PBF

LTC3725 - Single-Switch Forward Controller and Gate Driver; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3725EMSE#TRPBF

LTC3725 - Single-Switch Forward Controller and Gate Driver; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3725EMSEPBF

Single-Switch Forward Controller and Gate Driver
Linear