LTC1867AIGN#PBF [Linear]

LTC1867 - 16-Bit, 8-Channel 200ksps ADCs; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C;
LTC1867AIGN#PBF
型号: LTC1867AIGN#PBF
厂家: Linear    Linear
描述:

LTC1867 - 16-Bit, 8-Channel 200ksps ADCs; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C

光电二极管 转换器
文件: 总18页 (文件大小:352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1863/LTC1867  
12-/16-Bit, 8-Channel  
200ksps ADCs  
FEATURES  
DESCRIPTION  
The LTC®1863/LTC1867 are pin-compatible, 8-channel  
12-/16-bit A/D converters with serial I/O, and an internal  
reference. The ADCs typically draw only 1.3mA from a  
single 5V supply.  
n
Sample Rate: 200ksps  
n
16-Bit No Missing Codes and 2ꢀSB Maꢁ ꢂNꢀ  
n
8-Channel Multipleꢁer with:  
n
Single Ended or Differential ꢂnputs and  
n
Unipolar or Bipolar Conversion Modes  
The 8-channel input multiplexer can be configured for  
either single-ended or differential inputs and unipolar  
or bipolar conversions (or combinations thereof). The  
automatic nap and sleep modes benefit power sensitive  
applications.  
n
SPꢂ/MꢂCROWꢂRE Serial ꢂ/O  
n
Signal-to-Noise Ratio: 89dB  
n
Single 5V Operation  
n
On-Chip or Eꢁternal Reference  
n
Low Power: 1.3mA at 200ksps, 0.76mA at 100ksps  
n
n
n
The LTC1867’s DC performance is outstanding with a  
2LSB INL specification and no missing codes over tem-  
perature. The signal-to-noise ratio (SNR) for the LTC1867  
is typically 89dB, with the internal reference.  
Sleep Mode  
Automatic Nap Mode Between Conversions  
16-Pin Narrow SSOP Package  
Housed in a compact, narrow 16-pin SSOP package, the  
LTC1863/LTC1867 can be used in space-sensitive as well  
as low-power applications.  
APPLICATIONS  
n
Industrial Process Control  
n
High Speed Data Acquisition  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Battery Operated Systems  
Multiplexed Data Acquisition Systems  
n
n
Imaging Systems  
BLOCK DIAGRAM  
ꢂntegral Nonlinearity vs Output Code  
(ꢀTC1867)  
2.0  
1.5  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
LTC1863/LTC1867  
CH0  
CH1  
CH2  
CH3  
CH4  
V
DD  
GND  
SDI  
SDO  
SCK  
CS/CONV  
1.0  
12-/16-BIT  
200ksps  
ADC  
ANALOG  
INPUT  
MUX  
+
SERIAL  
PORT  
0.5  
0
CH5  
CH6  
V
REF  
INTERNAL  
2.5V REF  
–0.5  
–1.0  
–1.5  
–2.0  
CH7/COM  
9
REFCOMP  
18637 BD  
0
16384  
32768  
49152  
65536  
OUTPUT CODE  
18637 GO1  
18637fc  
1
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1, 2)  
Supply Voltage (V )................................... –0.3V to 6V  
DD  
TOP VIEW  
Analog Input Voltage  
CH0  
CH1  
1
2
3
4
5
6
7
8
16  
V
DD  
CH0-CH7/COM (Note 3) ...........0.3V to (V + 0.3V)  
DD  
DD  
15 GND  
V
, REFCOMP (Note 4) ......... –0.3V to (V + 0.3V)  
REF  
CH2  
14  
13  
12  
11  
10  
9
SDI  
Digital Input Voltage (SDI, SCK, CS/CONV)  
CH3  
SDO  
(Note 4) ................................................. –0.3V to 10V  
CH4  
SCK  
Digital Output Voltage (SDO) ....... –0.3V to (V + 0.3V)  
DD  
CH5  
CS/CONV  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
CH6  
V
REF  
CH7/COM  
REFCOMP  
LTC1863C/LTC1867C/LTC1867AC............ 0°C to 70°C  
LTC1863I/LTC1867I/LTC1867AI ...........–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
GN PACKAGE  
16-LEAD NARROW PLASTIC SSOP  
T
JMAX  
= 110°C, θ = 95°C/W  
JA  
ORDER INFORMATION  
ꢀEAD FREE FꢂNꢂSH  
LTC1863CGN#PBF  
LTC1863IGN#PBF  
LTC1867CGN#PBF  
LTC1867IGN#PBF  
LTC1867ACGN#PBF  
LTC1867AIGN #PBF  
TAPE AND REEꢀ  
PART MARKꢂNG*  
1863  
PACKAGE DESCRꢂPTꢂON  
TEMPERATURE RANGE  
0°C to 70°C  
LTC1863CGN#TRPBF  
LTC1863IGN#TRPBF  
LTC1867CGN#TRPBF  
LTC1867IGN#TRPBF  
LTC1867ACGN#TRPBF  
LTC1867AIGN#TRPBF  
16-Lead Narrow Plastic SSOP  
16-Lead Narrow Plastic SSOP  
16-Lead Narrow Plastic SSOP  
16-Lead Narrow Plastic SSOP  
16-Lead Narrow Plastic SSOP  
16-Lead Narrow Plastic SSOP  
1863  
–40°C to 85°C  
0°C to 70°C  
1867  
1867  
–40°C to 85°C  
0°C to 70°C  
1867  
1867  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the specifications which apply over the full operating  
CONVERTER CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. With eꢁternal reference (Notes 5, 6)  
ꢀTC1863  
TYP  
ꢀTC1867  
TYP  
ꢀTC1867A  
TYP  
PARAMETER  
CONDꢂTꢂONS  
MꢂN  
12  
MAX  
MꢂN  
16  
MAX  
MꢂN  
16  
MAX  
UNꢂTS  
Bits  
l
l
Resolution  
No Missing Codes  
Integral Linearity Error  
12  
15  
16  
Bits  
l
l
Unipolar (Note 7)  
Bipolar  
1
1
4
4
2
2.5  
LSB  
LSB  
l
Differential Linearity Error  
Transition Noise  
1
–2  
3
–1  
1.75  
LSB  
0.1  
0.74  
0.74  
LSB  
RMS  
l
l
Offset Error  
Unipolar (Note 8)  
Bipolar  
3
4
32  
64  
32  
64  
LSB  
LSB  
Offset Error Match  
Unipolar  
Bipolar  
1
1
2
2
2
2
LSB  
LSB  
18637fc  
2
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
The l denotes the specifications which apply over the full operating  
CONVERTER CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. With eꢁternal reference (Notes 5, 6)  
ꢀTC1863  
TYP  
ꢀTC1867  
TYP  
ꢀTC1867A  
TYP  
PARAMETER  
Offset Error Drift  
Gain Error  
CONDꢂTꢂONS  
MꢂN  
MAX  
MꢂN  
MAX  
MꢂN  
MAX  
UNꢂTS  
0.5  
0.5  
0.5  
ppm/°C  
Unipolar  
Bipolar  
6
6
96  
96  
64  
64  
LSB  
LSB  
Gain Error Match  
Gain Error Tempco  
1
4
2
LSB  
Internal Reference  
External Reference  
15  
2.7  
15  
2.7  
15  
2.7  
ppm/°C  
ppm/°C  
Power Supply Sensitivity  
V
= 4.75V – 5.25V  
1
5
5
LSB  
DD  
(Note 5)  
DYNAMIC ACCURACY  
ꢀTC1863  
TYP  
ꢀTC1867/ꢀTC1867A  
SYMBOꢀ PARAMETER  
CONDꢂTꢂONS  
MꢂN  
MAX  
MꢂN  
TYP  
89  
MAX  
UNꢂTS  
dB  
SNR  
Signal-to-Noise Ratio  
1kHz Input Signal  
73.6  
S/(N+D) Signal-to-(Noise + Distortion) Ratio 1kHz Input Signal  
73.5  
88  
dB  
THD  
Total Harmonic Distortion  
Peak Harmonic or Spurious Noise  
Channel-to-Channel Isolation  
Full Power Bandwidth  
1kHz Input Signal, Up to 5th Harmonic  
1kHz Input Signal  
–94.5  
–94.5  
–100  
1.25  
–95  
–95  
–117  
1.25  
dB  
dB  
100kHz Input Signal  
–3dB Point  
dB  
MHz  
The l denotes the specifications which apply over the full operating temperature range, otherwise  
ANALOG INPUT  
specifications are at TA = 25°C. (Note 5)  
ꢀTC1863/ꢀTC1867/ꢀTC1867A  
SYMBOꢀ  
PARAMETER  
CONDꢂTꢂONS  
MꢂN  
TYP  
MAX  
UNꢂTS  
l
l
Analog Input Range  
Unipolar Mode (Note 9)  
Bipolar Mode  
0-4.096  
2.048  
V
V
C
Analog Input Capacitance for CH0 to  
CH7/COM  
Between Conversions (Sample Mode)  
During Conversions (Hold Mode)  
32  
4
pF  
pF  
IN  
l
l
t
Sample-and-Hold Acquisition Time  
Input Leakage Current  
1.5  
1.1  
µs  
ACQ  
On Channels, CHX = 0V or V  
1
µA  
DD  
(Note 5)  
INTERNAL REFERENCE CHARACTERISTICS  
ꢀTC1863/ꢀTC1867/ꢀTC1867A  
PARAMETER  
CONDꢂTꢂONS  
MꢂN  
TYP  
2.5  
MAX  
UNꢂTS  
V
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
I
I
= 0  
= 0  
2.48  
2.52  
REF  
REF  
REF  
REF  
OUT  
OUT  
15  
ppm/°C  
mV/V  
kΩ  
4.75V ≤ V ≤ 5.25V  
0.43  
6
DD  
I  
≤0.1mA  
OUT  
REFCOMP Output Voltage  
I
= 0  
4.096  
V
OUT  
18637fc  
3
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
The l denotes the specifications which apply over the  
DIGITAL INPUTS AND DIGITAL OUTPUTS  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
ꢀTC1863/ꢀTC1867/ꢀTC1867A  
SYMBOꢀ  
PARAMETER  
CONDꢂTꢂONS  
MꢂN  
TYP  
MAX  
UNꢂTS  
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 5.25V  
= 4.75V  
= 0V to V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.8  
10  
I
µA  
pF  
IN  
DD  
C
V
Digital Input Capacitance  
High Level Output Voltage (SDO)  
2
IN  
V
DD  
V
DD  
= 4.75V, I = –10µA  
= 4.75V, I = –200µA  
4.75  
4.74  
V
V
OH  
O
O
l
l
4
V
Low Level Output Voltage (SDO)  
V
DD  
V
DD  
= 4.75V, I = 160µA  
= 4.75V, I = 1.6mA  
0.05  
0.1  
V
V
OL  
O
O
0.4  
I
I
Output Source Current  
Output Sink Current  
SDO = 0V  
SDO = V  
–32  
19  
mA  
mA  
SOURCE  
SINK  
DD  
µA  
pF  
l
l
Hi-Z Output Leakage  
Hi-Z Output Capacitance  
CS/CONV = High, SDO = 0V or V  
CS/CONV = High (Note 10)  
10  
15  
DD  
Data Format  
Unipolar  
Bipolar  
Straight Binary  
Two’s Complement  
The l denotes the specifications which apply over the full operating temperature  
POWER REQUIREMENTS  
range, otherwise specifications are at TA = 25°C. (Note 5)  
ꢀTC1863/ꢀTC1867/ꢀTC1867A  
SYMBOꢀ  
PARAMETER  
CONDꢂTꢂONS  
MꢂN  
TYP  
MAX  
5.25  
1.8  
UNꢂTS  
V
Supply Voltage  
Supply Current  
(Note 9)  
4.75  
V
DD  
l
I
f
= 200ksps  
1.3  
150  
0.2  
mA  
µA  
µA  
DD  
SAMPLE  
NAP Mode  
l
l
SLEEP Mode  
3
9
P
Power Dissipation  
6.5  
mW  
DISS  
18637fc  
4
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
ꢀTC1863/ꢀTC1867/ꢀTC1867A  
SYMBOꢀ  
PARAMETER  
CONDꢂTꢂONS  
MꢂN  
TYP  
MAX  
3.5  
40  
UNꢂTS  
kHz  
µs  
l
l
l
f
t
t
f
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
200  
SAMPLE  
3
CONV  
Acquisition Time  
1.5  
40  
5
1.1  
µs  
ACQ  
SCK  
1
SCK Frequency  
MHz  
ns  
l
l
l
l
l
l
CS/CONV High Time  
Short CS/CONV Pulse Mode  
100  
13  
11  
10  
–6  
4
SDO Valid After SCK↓  
C = 25pF (Note 11)  
L
22  
ns  
2
SDO Valid Hold Time After SCK↓  
SDO Valid After CS/CONV↓  
SDI Setup Time Before SCK↑  
SDI Hold Time After SCK↑  
SLEEP Mode Wake-Up Time  
Bus Relinquish Time After CS/CONV↑  
C = 25pF  
L
ns  
3
C = 25pF  
L
30  
ns  
4
15  
10  
ns  
5
ns  
6
C
= 10µF, C = 2.2µF  
VREF  
60  
20  
ms  
ns  
7
REFCOMP  
l
C = 25pF  
L
40  
8
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime  
Note 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 8: Unipolar offset is the offset voltage measured from +1/2LSB  
when the output code flickers between 0000 0000 0000 0000 and  
0000 0000 0000 0001 for LTC1867 and between 0000 0000 0000 and  
0000 0000 0001 for LTC1863. Bipolar offset is the offset voltage measured  
from –1/2LSB when output code flickers between 0000 0000 0000 0000  
and 1111 1111 1111 1111 for LTC1867, and between  
Note 2: All voltage values are with respect to GND (unless otherwise noted).  
Note 3: When these pin voltages are taken below GND or above V , they  
DD  
will be clamped by internal diodes. This product can handle input currents  
up to 100mA without latchup.  
Note 4: When these pin voltages are taken below GND, they will be  
0000 0000 0000 and 1111 1111 1111 for LTC1863.  
Note 9: Recommended operating conditions. The input range of 2.048V  
clamped by internal diodes. This product can handle input currents up to  
100mA below GND without latchup. These pins are not clamped to V  
.
DD  
for bipolar mode is measured with respect to V – = 2.5V.  
IN  
Note 5: V = 5V, f  
= 200ksps at 25°C, t = t = 5ns and  
DD  
SAMPLE  
r f  
Note 10: Guaranteed by design, not subject to test.  
V – = 2.5V for bipolar mode unless otherwise specified.  
IN  
Note 11: t of 25ns maximum allows f  
up to 20MHz for rising capture  
Note 6: Linearity, offset and gain error specifications apply for both  
unipolar and bipolar modes. The INL and DNL are tested in bipolar mode.  
2
SCK  
with 50% duty cycle and f  
up to 40MHz for falling capture (with 3ns  
SCK  
setup time for the receiving logic).  
18637fc  
5
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
TYPICAL PERFORMANCE CHARACTERISTICS  
(TC1867)  
ꢂntegral Nonlinearity vs  
Output Code  
Differential Nonlinearity vs  
Output Code  
Histogram for 4096 Conversions  
2.0  
1.5  
2500  
2000  
1500  
1000  
500  
2.0  
1.5  
2152  
1.0  
1.0  
0.5  
0.5  
0
0
935  
–0.5  
–1.0  
–1.5  
–2.0  
– 0.5  
– 1.0  
– 1.5  
– 2.0  
579  
276  
122  
26  
1
–4 –3 –2  
5
3
0
4
0
0
16384  
32768  
49152  
65536  
–1  
0
1
2
0
16384  
32768  
49152  
65536  
OUTPUT CODE  
CODE  
OUTPUT CODE  
18637 GO2  
18637 GO3  
18637 GO1  
4096 Points FFT Plot (fꢂN = 1kHz,  
REFCOMP = Eꢁternal 5V)  
4096 Points FFT Plot (fꢂN = 1kHz)  
Crosstalk vs ꢂnput Frequency  
0
–20  
0
–80  
–90  
SNR = 88.8dB  
SINAD = 87.9dB  
THD = 95dB  
SNR = 90dB  
SINAD = 88.5dB  
THD = 94dB  
–20  
–40  
f
= 200ksps  
f
= 200ksps  
SAMPLE  
SAMPLE  
–40  
INTERNAL REFERENCE  
V
= 0V  
REF  
–100  
–110  
–120  
–130  
–140  
REFCOMP = EXT 5V  
–60  
–60  
ADJACENT PAIR  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
NONADJACENT PAIR  
25  
50  
75  
100  
25  
50  
75  
100  
0
0
1
10  
100  
1000  
ACTIVE CHANNEL INPUT FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
18637 G04  
18637 G05  
18637 G06  
Signal-to-Noise Ratio vs  
Frequency  
Signal-to-(Noise + Distortion) vs  
ꢂnput Frequency  
Total Harmonic Distortion vs  
ꢂnput Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
10  
INPUT FREQUENCY (kHz)  
100  
1
10  
100  
1
10  
100  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
18637 G07  
18637 G08  
18637 G09  
18637fc  
6
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
TYPICAL PERFORMANCE CHARACTERISTICS  
(TC1863/TC1867)  
Supply Current vs fSAMPꢀE  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
2.0  
1.5  
1.0  
0.5  
0
1.5  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
V
= 5V  
V
f
= 5V  
SAMPLE  
V
f
= 5V  
SAMPLE  
DD  
DD  
DD  
= 200ksps  
= 200ksps  
1.4  
1.3  
1.2  
1.1  
1.0  
1
10  
100  
(ksps)  
1000  
–50  
0
25  
50  
75  
100  
–25  
4.75  
5.0  
5.25  
4.5  
5.5  
f
TEMPERATURE (°C)  
SAMPLE  
SUPPLY VOLTAGE (V)  
18637 G10  
18637 G12  
18637 G11  
ꢂntegral Nonlinearity vs Output  
Code (ꢀTC1863)  
Differential Nonlinearity vs  
Output Code (ꢀTC1863)  
1.0  
1.0  
0.8  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
2048  
3072 3584  
4096  
2560  
512 1024 1536  
0
2048  
3072 3584  
4096  
2560  
512 1024 1536  
OUTPUT CODE  
OUTPUT CODE  
18637 G14  
18637 G13  
18637fc  
7
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
PIN FUNCTIONS  
CHO-CH7/COM (Pins 1-8): Analog Input Pins. Analog  
inputs must be free of noise with respect to GND. CH7/  
COM can be either a separate channel or the common  
minus input for the other channels.  
SCK (Pin 12): Shift Clock. This clock synchronizes the  
serial data transfer.  
SDO (Pin 13): Digital Data Output. The A/D conversion  
result is shifted out of this output. Straight binary format  
for unipolar mode and two’s complement format for  
bipolar mode.  
REFCOMP (Pin 9): Reference Buffer Output Pin. Bypass  
to GND with 10µF tantalum capacitor in parallel with  
0.1µF ceramic capacitor (4.096V Nominal). To overdrive  
SDꢂ (Pin 14): Digital Data Input Pin. The A/D configuration  
word is shifted into this input.  
REFCOMP, tie V to GND.  
REF  
V
(Pin 10): 2.5V Reference Output. This pin can also  
REF  
GND (Pin 15): Analog and Digital GND.  
be used as an external reference buffer input for improved  
accuracy and drift. Bypass to GND with 2.2µF tantalum  
capacitor in parallel with 0.1µF ceramic capacitor.  
V
(Pin 16): Analog and Digital Power Supply. Bypass to  
DD  
GND with 10µF tantalum capacitor in parallel with 0.1µF  
ceramic capacitor.  
CS/CONV (Pin 11): This input provides the dual function  
of initiating conversions on the ADC and also frames the  
serial data transfer.  
TYPICAL CONNECTION DIAGRAM  
+
5V  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
V
DD  
2.048Vꢀ  
DIFFERENTIAL  
INPUTS  
GND  
SDI  
LTC1863/  
LTC1867  
SDO  
SCK  
DIGITAL  
I/O  
4.096Vꢀ  
SINGLE-ENDED  
INPUT  
+
CS/CONV  
2.5V  
V
REF  
2.2µF  
CH7/COM REFCOMP  
4.096V  
10µF  
18637ꢀTCD  
TEST CIRCUITS  
ꢀoad Circuits for Access Timing  
ꢀoad Circuits for Output Float Delay  
5V  
5V  
3k  
3k  
DN  
DN  
DN  
DN  
3k  
C
C
L
3k  
C
C
L
L
L
(A) V TO Hi-Z  
OH  
(B) V TO Hi-Z  
OL  
(A) Hi-Z TO V AND V TO V  
OH OL  
(B) Hi-Z TO V AND V TO V  
OL OH  
OH  
OL  
18637 TC02  
18637 TC01  
18637fc  
8
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
TIMING DIAGRAMS  
t
(For Short Pulse Mode)  
t (SDO Valid Before SCK),  
2
1
t (SDO Valid Hold Time After SCK)  
3
t
1
t
2
50%  
50%  
CS/CONV  
SCK  
SDO  
0.4V  
t
3
2.4V  
0.4V  
t (SDI Setup Time Before SCK),  
5
t (SDO Valid After CONV)  
4
t (SDI Hold Time After SCK)  
6
t
4
t
6
t
5
2.4V  
CS/CONV  
SCK  
SDI  
0.4V  
Hi-Z  
2.4V  
0.4V  
2.4V  
0.4V  
2.4V  
0.4V  
SDO  
t (SLEEP Mode Wake-Up Time)  
7
t (BUS Relinquish Time)  
8
t
7
t
8
2.4V  
SCK  
50%  
CS/CONV  
SLEEP BIT (SLP = 0)  
READ-IN  
90%  
10%  
Hi-Z  
CS/CONV  
50%  
SDO  
1867 TD  
APPLICATIONS INFORMATION  
Overview  
The LTC1863/LTC1867 are complete, low power multi-  
plexedADCs.Theyconsistofa12-/16-bit,200kspscapaci-  
tive successive approximation A/D converter, a precision  
internal reference, a configurable 8-channel analog input  
multiplexer (MUX) and a serial port for data transfer.  
During the conversion, the internal differential 16-bit  
capacitive DAC output is sequenced by the SAR from  
the most significant bit (MSB) to the least significant bit  
(LSB). The input is successively compared with the binary  
weighted charges supplied by the differential capacitive  
DAC. Bit decisions are made by a low-power, differential  
comparator. At the end of a conversion, the DAC output  
balances the analog input. The SAR contents (a 12-/16-bit  
data word) that represent the analog input are loaded into  
the 12-/16-bit output latches.  
Conversions are started by a rising edge on the CS/CONV  
input. Once a conversion cycle has begun, it cannot be  
restarted.Betweenconversions,theADCsreceiveaninput  
word for channel selection and output the conversion  
result, and the analog input is acquired in preparation for  
thenextconversion.Intheacquirephase,aminimumtime  
of1.5µswillprovideenoughtimeforthesample-and-hold  
capacitors to acquire the analog signal.  
18637fc  
9
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
APPLICATIONS INFORMATION  
Analog ꢂnput Multipleꢁer  
Changing the MUX Assignment “On the Fly”  
1st Conversion  
2nd Conversion  
The analog input multiplexer is controlled by a 7-bit input  
data word. The input data word is defined as follows:  
+
+
CH2  
CH3  
+
CH2  
CH3  
{
{
{
{
SD OS S1 S0 COM UNI SLP  
SD = SINGLE/DIFFERENTIAL BIT  
OS = ODD/SIGN BIT  
CH4  
CH5  
+
+
CH4  
CH5  
CH7/COM  
(UNUSED)  
CH7/COM (  
)
S1 = ADDRESS SELECT BIT 1  
S0 = ADDRESS SELECT BIT 0  
COM = CH7/COM CONFIGURATION BIT  
UNI = UNIPOLAR/BIPOLAR BIT  
SLP = SLEEP MODE BIT  
18637 AI02  
Tables 1 and 2 show the configurations when COM = 0,  
and COM = 1.  
Table 1. Channel Configuration (When COM = 0, CH7/COM Pin  
ꢂs Used as CH7)  
Channel Configuration  
SD  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
OS  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
S1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
S0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
COM  
0
“+”  
CH0  
CH2  
CH4  
CH6  
CH1  
CH3  
CH5  
CH7  
CH0  
CH2  
CH4  
CH6  
CH1  
CH3  
CH5  
CH7  
“–”  
CH1  
CH3  
CH5  
CH7  
CH0  
CH2  
CH4  
CH6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Eꢁamples of Multipleꢁer Options  
0
4 Differential  
8 Single-Ended  
0
CH0  
CH1  
+
+
(
(
)
)
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7/COM  
+
+
+
+
+
+
+
+
0
{
{
{
{
+
0
(
(
)
)
CH2  
CH3  
0
+
0
+
+
(
(
)
)
CH4  
CH5  
+
0
0
CH6  
CH7/COM  
(
(
)
)
+
GND (  
)
0
0
7 Single-Ended  
to CH7/COM  
0
Combinations of Differential  
and Single-Ended  
0
CH0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
+
+
+
+
+
+
+
+
0
{
CH1  
0
CH2  
CH3  
{
0
+
+
+
+
+
CH4  
CH5  
CH6  
CH7/COM  
Table 2. Channel Configuration (When COM = 1, CH7/COM Pin  
ꢂs Used as COMMON)  
Channel Configuration  
CH7/COM (  
)
GND ( )  
18637 AI01  
SD  
1
OS  
0
S1  
0
S0  
0
COM  
“+”  
CH0  
CH2  
CH4  
CH6  
CH1  
CH3  
CH5  
“–”  
1
1
1
1
1
1
1
CH7/COM  
CH7/COM  
CH7/COM  
CH7/COM  
CH7/COM  
CH7/COM  
CH7/COM  
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
18637fc  
10  
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
APPLICATIONS INFORMATION  
Driving the Analog ꢂnputs  
LT1360-37MHzvoltagefeedbackamplifier.3.8mAsupply  
current. 5V to 15V supplies. Good AC/DC specs.  
The analog inputs of the LTC1863/LTC1867 are easy to  
drive. Each of the analog inputs can be used as a single-  
ended input relative to the GND pin (CH0-GND, CH1-GND,  
etc)orinpairs(CH0andCH1, CH2andCH3, CH4andCH5,  
CH6 and CH7) for differential inputs. In addition, CH7 can  
act as a COM pin for both single-ended and differential  
modes if the COM bit in the input word is high. Regard-  
less of the MUX configuration, the “+” and “–” inputs are  
sampled at the same instant. Any unwanted signal that is  
common mode to both inputs will be reduced by the com-  
mon mode rejection of the sample-and-hold circuit. The  
inputs draw only one small current spike while charging  
the sample-and-hold capacitors during the acquire mode.  
In conversion mode, the analog inputs draw only a small  
leakage current. If the source impedance of the driving  
circuit is low then the LTC1863/LTC1867 inputs can be  
driven directly. More acquisition time should be allowed  
for a higher impedance source.  
LT1363-50MHzvoltagefeedbackamplifier.6.3mAsupply  
current. Good AC/DC specs.  
LT1364/LT1365 - Dual and quad 50MHz voltage feedback  
amplifiers. 6.3mA supply current per amplifier. Good  
AC/DC specs.  
LT1468 - 90MHz, 22V/µs 16-bit accurate amplifier  
LT1469 - Dual LT1468  
ꢂnput Filtering  
The noise and the distortion of the input amplifier and  
other circuitry must be considered since they will add to  
the LTC1863/LTC1867 noise and distortion. Noisy input  
circuitry should be filtered prior to the analog inputs to  
minimize noise. A simple 1-pole RC filter is sufficient for  
many applications. For instance, Figure 1 shows a 50Ω  
source resistor and a 2000pF capacitor to ground on the  
input will limit the input bandwidth to 1.6MHz. The source  
impedance has to be kept low to avoid gain error and  
degradation in the AC performance. The capacitor also  
acts as a charge reservoir for the input sample-and-hold  
and isolates the ADC input from sampling glitch sensitive  
circuitry. High quality capacitors and resistors should be  
used since these components can add distortion. NPO  
and silver mica type dielectric capacitors have excellent  
linearity.Carbonsurfacemountresistorscanalsogenerate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
The following list is a summary of the op amps that are  
suitable for driving the LTC1863/LTC1867. More detailed  
informationisavailableintheLinearTechnologydatabooks  
or Linear Technology website.  
LT1007 - Low noise precision amplifier. 2.7mA supply  
current 5V to 15V supplies. Gain bandwidth product  
8MHz. DC applications.  
LT1097 - Low cost, low power precision amplifier. 300µA  
supply current. 5V to 15V supplies. Gain bandwidth  
product 0.7MHz. DC applications.  
LT1227-140MHzvideocurrentfeedbackamplifier. 10mA  
supply current. 5V to 15V supplies. Low noise and low  
distortion.  
18637fc  
11  
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
APPLICATIONS INFORMATION  
50Ω  
Dynamic Performance  
ANALOG  
INPUT  
CH0  
LTC1863/  
2000pF  
FFT (Fast Fourier Transform) test techniques are used to  
test the ADC’s frequency response, distortion and noise  
at the rated throughput. By applying a low distortion  
sine wave and analyzing the digital output using an FFT  
algorithm, the ADC’s spectral content can be examined  
for frequencies outside the fundamental.  
LTC1867  
GND  
REFCOMP  
10µF  
1867 F01a  
Figure 1a. Optional RC ꢂnput Filtering for Single-Ended ꢂnput  
Signal-to-Noise Ratio  
The Signal-to-Noise and Distortion Ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 3 shows a typical SINAD of 87.9dB  
with a 200kHz sampling rate and a 1kHz input. When an  
1000pF  
50Ω  
CH0  
DIFFERENTIAL  
LTC1863/  
ANALOG  
INPUTS  
1000pF  
1000pF  
LTC1867  
50Ω  
CH1  
REFCOMP  
10µF  
external 5V is applied to REFCOMP (tie V  
to GND), a  
REF  
1867 F01b  
signal-to-noise ratio of 90dB can be achieved.  
Figure 1b. Optional RC ꢂnput Filtering for Differential ꢂnputs  
0
SNR = 88.8dB  
SINAD = 87.9dB  
–20  
THD = 95dB  
DC Performance  
f
= 200ksps  
SAMPLE  
–40  
–60  
INTERNAL REFERENCE  
One way of measuring the transition noise associated  
with a high resolution ADC is to use a technique where  
a DC signal is applied to the input of the ADC and the  
resulting output codes are collected over a large number  
of conversions. For example, in Figure 2 the distribution  
of output codes is shown for a DC input that had been  
digitized 4096 times. The distribution is Gaussian and the  
RMS code transition noise is about 0.74LSB.  
–80  
–100  
–120  
–140  
25  
50  
75  
100  
0
FREQUENCY (kHz)  
18637 G04  
2500  
2152  
2000  
Figure 3. ꢀTC1867 Nonaveraged 4096 Point FFT Plot  
Total Harmonic Distortion  
1500  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD  
is expressed as:  
935  
1000  
500  
0
579  
1
276  
122  
2
26  
–4 –3 –2  
5
3
1
0
4
–1  
0
2
2
2
2
CODE  
V2 + V3 + V4 ...+ VN  
THD = 20log  
18637 GO3  
V1  
Figure 2. ꢀTC1867 Histogram for 4096 Conversions  
18637fc  
12  
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
APPLICATIONS INFORMATION  
Digital ꢂnterface  
where V is the RMS amplitude of the fundamental fre-  
1
quencyandV throughV aretheamplitudesofthesecond  
2
N
TheLTC1863/LTC1867haveaverysimpledigitalinterface  
thatisenabledbythecontrolinput,CS/CONV.Alogicrising  
edgeappliedtotheCS/CONVinputwillinitiateaconversion.  
After the conversion, taking CS/CONV low will enable the  
serial port and the ADC will present digital data in two’s  
complement format in bipolar mode or straight binary  
formatinunipolarmode,throughtheSCK/SDOserialport.  
through Nth harmonics.  
ꢂnternal Reference  
The LTC1863/LTC1867 has an on-chip, temperature  
compensated, curvature corrected, bandgap reference  
that is factory trimmed to 2.5V. It is internally connected  
to a reference amplifier and is available at V (Pin 10).  
REF  
ꢂnternal Clock  
A 6k resistor is in series with the output so that it can be  
easily overdriven by an external reference if better drift  
and/or accuracy are required as shown in Figure 4. The  
The internal clock is factory trimmed to achieve a typical  
conversion time of 3µs and a maximum conversion time,  
3.5µs, over the full operating temperature range. The typi-  
cal acquisition time is 1.1µs, and a throughput sampling  
rate of 200ksps is tested and guaranteed.  
reference amplifier gains the V  
voltage by 1.638V/V  
REF  
to 4.096V at REFCOMP (Pin 9). This reference amplifier  
compensation pin, REFCOMP, must be bypassed with a  
10µF ceramic or tantalum in parallel with a 0.1µF ceramic  
for best noise performance.  
Automatic Nap Mode  
TheLTC1863/LTC1867gointoautomaticnapmode when  
CS/CONV is held high after the conversion is complete  
(see Figure 6). With a typical operating current of 1.3mA  
andautomatic150µAnapmodebetweenconversions, the  
power dissipation drops with reduced sample rate. The  
R1  
6k  
V
10  
2.2µF  
9
REF  
BANDGAP  
REFERENCE  
2.5V  
REFCOMP  
REFERENCE  
AMP  
4.096V  
ADC only keeps the V  
and REFCOMP voltages active  
REF  
whenthepartisintheautomaticnapmode. Theslowerthe  
sample rate allows the power dissipation to be lower (see  
Figure 5).  
10µF  
15  
R2  
R3  
GND  
LTC1863/LTC1867  
1867 F04a  
2.0  
V
DD  
= 5V  
Figure 4a. ꢀTC1867 Reference Circuit  
5V  
1.5  
1.0  
0.5  
0
V
IN  
LT1019A-2.5  
V
10  
2.2µF  
9
V
OUT  
REF  
LTC1863/  
LTC1867  
REFCOMP  
+
10µF  
0.1µF  
15  
GND  
1
10  
100  
(ksps)  
1000  
f
SAMPLE  
1867 F04b  
18637 G10  
Figure 4b. Using the ꢀT1019-2.5 as an Eꢁternal Reference  
Figure 5. Supply Current vs fSAMPꢀE  
18637fc  
13  
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
APPLICATIONS INFORMATION  
If the CS/CONV returns low during a bit decision, it can  
create a small error. For best performance ensure that  
the CS/CONV returns low either within 100ns after the  
conversion starts (i.e. before the first bit decision) or  
after the conversion ends. If CS/CONV is low when the  
conversion ends, the MSB bit will appear on SDO at the  
end of the conversion and the ADC will remain powered  
up (see Figure 7).  
of the common return for these bypass capacitors is es-  
sential to the low noise operation of the ADC. The width  
for these tracks should be as wide as possible.  
Timing and Control  
Conversion start is controlled by the CS/CONV digital in-  
put. The rising edge transition of the CS/CONV will start a  
conversion. Once initiated, it cannot be restarted until the  
conversion is complete. Figures 6 and 7 show the timing  
diagrams for two types of CS/CONV pulses.  
Sleep Mode  
If the SLP = 1 is selected in the input word, the ADC  
will enter SLEEP mode and draw only leakage current  
Example1(Figure6)showstheLTC1863/LTC1867operat-  
ing in automatic nap mode with CS/CONV signal staying  
HIGH after the conversion. Automatic nap mode provides  
powerreductionatreducedsamplerate.TheADCscanalso  
operate with the CS/CONV signal returning LOW before  
the conversion ends. In this mode (Example 2, Figure 7),  
the ADCs remain powered up.  
(provided that all the digital inputs stay at GND or V ).  
DD  
After release from the SLEEP mode, the ADC need 60ms  
to wake up (2.2µF/10µF bypass capacitors on V  
REFCOMP pins).  
/
REF  
Board ꢀayout and Bypassing  
Forbestperformance,itisrecommendedtokeepSCK,SDI,  
and SDO at a constant logic high or low during acquisition  
andconversion,eventhoughthesesignalsmaybeignored  
by the serial interface (DON’T CARE). Communication  
with other devices on the bus should not coincide with  
To obtain the best performance, a printed circuit board  
with a ground plane is required. Layout for the printed  
circuit board should ensure digital and analog signal lines  
are separated as much as possible. In particular, care  
should be taken not to run any digital signal alongside  
an analog signal.  
the conversion period (t  
).  
CONV  
Figures 8 and 9 are the transfer characteristics for the  
bipolar and unipolar mode.  
All analog inputs should be screened by GND. V  
,
REF  
REFCOMP and V should be bypassed to this ground  
DD  
plane as close to the pin as possible; the low impedance  
t
ACQ  
1/f  
SCK  
CS/CONV  
t
NAP MODE  
CONV  
NOT NEEDED FOR LTC1863  
13 14 15 16  
SCK  
SDI  
1
2
3
4
5
6
7
8
9
10  
11  
12  
DON'T CARE  
DON'T CARE  
DON'T CARE  
DON'T CARE  
SD 0S  
MSB  
S1 S0 COM UNI SLP  
Hi-Z  
Hi-Z  
SDO  
(LTC1863)  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
SDO  
(LTC1867)  
1867 F06  
Figure 6. Eꢁample 1, CS/CONV Starts a Conversion and Remains HꢂGH Until Neꢁt Data Transfer. With CS/CONV Remaining HꢂGH After  
the Conversion, Automatic Nap Modes Provides Power Reduction at Reduced Sample Rate.  
18637fc  
14  
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
APPLICATIONS INFORMATION  
t
CS/CONV  
ACQ  
NOT NEEDED FOR LTC1863  
SCK  
DON'T CARE  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SDI  
SD 0S  
S1 S0 COM UNI SLP  
DON'T CARE  
CONV  
DON'T CARE  
t
SDO  
MSB = D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
(LTC1863)  
Hi-Z  
Hi-Z  
t
CONV  
SDO  
(LTC1867)  
MSB = D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
1867 F07  
Figure 7. Eꢁample 2, CS/CONV Starts a Conversion With Short Active HꢂGH Pulse.  
With CS/CONV Returning ꢀOW Before the Conversion, the ADC Remains Powered Up.  
111...111  
011...111  
011...110  
111...110  
BIPOLAR  
ZERO  
100...001  
100...000  
011...111  
011...110  
000...001  
000...000  
111...111  
111...110  
UNIPOLAR  
ZERO  
FS = 4.096  
FS = 4.096  
n
000...001  
000...000  
n
1LSB = FS/2  
100...001  
100...000  
1LSB = FS/2  
1LSB = (LTC1863) = 1mV  
1LSB = (LTC1867) = 62.5µV  
1LSB = (LTC1863) = 1mV  
1LSB = (LTC1867) = 62.5µV  
–1 0V  
LSB  
INPUT VOLTAGE (V)  
1
–FS/2  
FS/2 – 1LSB  
0V  
FS – 1LSB  
LSB  
INPUT VOLTAGE (V)  
1867 F09  
1867 F08  
Figure 8. ꢀTC1863/ꢀTC1867 Bipolar Transfer  
Characteristics (Two’s Complement)  
Figure 9. ꢀTC1863/ꢀTC1867 Unipolar Transfer  
Characteristics (Straight Binary)  
18637fc  
15  
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
GN Package  
16-ꢀead Plastic SSOP (Narrow .150 ꢂnch)  
(Reference LTC DWG # 05-08-1641 Rev B)  
.189 – .196*  
.045 .005  
(4.801 – 4.978)  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 .004  
(0.38 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 REV B 0212  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
18637fc  
16  
For more information www.linear.com/LTC1863  
LTC1863/LTC1867  
REVISION HISTORY  
REV  
DATE  
6/14  
5/15  
DESCRꢂPTꢂON  
PAGE NUMBER  
B
Fixed the Order Information.  
2
5
C
Adjusted Notes 3 and 4 to specify input currents up to 100mA.  
18637fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LTC1863/LTC1867  
RELATED PARTS  
PART NUMBER  
DESCRꢂPTꢂON  
COMMENTS  
LTC1417  
14-Bit, 400ksps Serial ADC  
20mW, Unipolar or Bipolar, Internal Reference, SSOP-16 Package  
Bandgap, 130µA Supply Current, 10ppm/°C, SOT-23 Package  
Low Input Offset: 75µV/125µV  
LT1460  
Micropower Precision Series Reference  
Single/Dual 90MHz, 22V/µs, 16-Bit Accurate Op Amps  
16-Bit, 200ksps Serial ADC  
LT1468/LT1469  
LTC1609  
65mW, Configurable Bipolar and Unipolar Input Ranges, 5V Supply  
60µA Supply Current, 10ppm/°C, SOT-23 Package  
LT1790  
Micropower Low Dropout Reference  
10-Bit/12-Bit, 8-Channel, 1.25Msps ADC  
10-Bit/12-Bit, 8-Channel, 400ksps ADC  
12-Bit, 1-/2-Channel 250ksps ADC in MSOP  
LTC1850/LTC1851  
LTC1852/LTC1853  
LTC1860/LTC1861  
Parallel Output, Programmable MUX and Sequencer, 5V Supply  
Parallel Output, Programmable MUX and Sequencer, 3V or 5V Supply  
850µA at 250ksps, 2µA at 1ksps, SO-8 and MSOP Packages  
450µA at 150ksps, 10µA at 1ksps, SO-8 and MSOP Packages  
850µA at 250ksps, 2µA at 1ksps, SO-8 and MSOP Packages  
450µA at 150ksps, 10µA at 1ksps, SO-8 and MSOP Packages  
LTC1860L/LTC1861L 3V, 12-Bit, 1-/2-Channel 150ksps ADC  
LTC1864/LTC1865 16-Bit, 1-/2-Channel 250ksps ADC in MSOP  
LTC1864L/LTC1865L 3V, 16-Bit, 1-/2-Channel 150ksps ADC in MSOP  
18637fc  
LT 0515 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
18  
LINEAR TECHNOLOGY CORPORATION 2008  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC1863  

相关型号:

LTC1867CGN

12-/16-Bit, 8-Channel 200ksps ADCs
Linear

LTC1867CGN#PBF

暂无描述
Linear

LTC1867CGN#TR

LTC1867 - 16-Bit, 8-Channel 200ksps ADCs; Package: SSOP; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC1867CGN#TRPBF

LTC1867 - 16-Bit, 8-Channel 200ksps ADCs; Package: SSOP; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC1867IGN

12-/16-Bit, 8-Channel 200ksps ADCs
Linear

LTC1867IGN#TRPBF

暂无描述
Linear

LTC1867L

Micropower, 3V, 12-/16-Bit, 8-Channel 175ksps ADCs
Linear

LTC1867LACGN

Micropower, 3V, 12-/16-Bit, 8-Channel 175ksps ADCs
Linear

LTC1867LACGN#TR

LTC1867L - Micropower, 3V, 16-Bit, 8-Channel 175ksps ADCs; Package: SSOP; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC1867LACGN#TRPBF

LTC1867L - Micropower, 3V, 16-Bit, 8-Channel 175ksps ADCs; Package: SSOP; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC1867LAIGN

Micropower, 3V, 12-/16-Bit, 8-Channel 175ksps ADCs
Linear

LTC1867LAIGN#TRPBF

LTC1867L - Micropower, 3V, 16-Bit, 8-Channel 175ksps ADCs; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C
Linear