LTC1690CMS8#TRPBF [Linear]

LTC1690 - Differential Driver and Receiver Pair with Fail-Safe Receiver Output; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C;
LTC1690CMS8#TRPBF
型号: LTC1690CMS8#TRPBF
厂家: Linear    Linear
描述:

LTC1690 - Differential Driver and Receiver Pair with Fail-Safe Receiver Output; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C

驱动 光电二极管 接口集成电路 驱动器
文件: 总12页 (文件大小:185K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1690  
Differential Driver and  
Receiver Pair with Fail-Safe  
Receiver Output  
U
DESCRIPTIO  
FEATURES  
The LTC®1690 is a low power receiver/driver pair that is  
compatible with the requirements of RS485 and RS422.  
The receiver offers a fail-safe feature that guarantees a  
high receiver output state when the inputs are left open,  
shorted together or terminated with no signal present. No  
external components are required to ensure the high  
receiver output state.  
No Damage or Latchup to  
Model), IEC1000-4-2 Level 4 (  
±
15kV ESD (Human Body  
8kV) Contact and  
±
Level 3 (±8kV) Air Discharge  
Guaranteed High Receiver Output State for  
Floating, Shorted or Terminated Inputs with No  
Signal Present  
Drives Low Cost Residential Telephone Wires  
ICC = 600µA Max with No Load  
Single 5V Supply  
–7V to 12V Common Mode Range Permits ±7V  
Ground Difference Between Devices on the Data Line  
Power-Up/Down Glitch-Free Driver Outputs Permit  
Live Insertion or Removal of Transceiver  
Driver Maintains High Impedance with the Power Off  
Up to 32 Transceivers on the Bus  
Separate driver output and receiver input pins allow full  
duplex operation. Excessive power dissipation caused by  
bus contention or faults is prevented by a thermal shut-  
down circuit which forces the driver outputs into a high  
impedance state.  
The LTC1690 is fully specified over the commercial and  
industrialtemperatureranges. TheLTC1690isavailablein  
8-Pin SO, MSOP and PDIP packages.  
Pin Compatible with the SN75179 and LTC490  
Available in SO, MSOP and PDIP Packages  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
APPLICATIO S  
Battery-Powered RS485/RS422 Applications  
Low Power RS485/RS422 Transceiver  
Level Translator  
Line Repeater  
U
TYPICAL APPLICATIO  
Driving a 1000 Foot STP Cable  
LTC1690  
LTC1690  
5
6
Y1  
A2  
120  
8
7
D1  
3
2
120Ω  
D1  
DRIVER  
RECEIVER  
R2  
D2  
B2  
Z1  
B2  
A2  
R2  
7
8
B1  
Z2  
6
5
2
3
120Ω  
120Ω  
Y2  
R1  
RECEIVER  
DRIVER  
A1  
1690 TA01a  
1690 TA01  
1
LTC1690  
W W  
U W  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Supply Voltage (VCC) .............................................. 6.5V  
Driver Input Voltage..................... –0.3V to (VCC + 0.3V)  
Driver Output Voltages ................................. –7V to 10V  
Receiver Input Voltages ......................................... ±14V  
Receiver Output Voltage .............. –0.3V to (VCC + 0.3V)  
Junction Temperature........................................... 125°C  
Operating Temperature Range  
LTC1690C ........................................ 0°C TA 70°C  
LTC1690I..................................... 40°C TA 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
V
1
2
3
4
A
B
Z
Y
8
7
6
5
CC  
R
LTC1690CN8  
LTC1690IN8  
LTC1690CS8  
LTC1690IS8  
R
V
1
2
3
4
8 A  
7 B  
CC  
R
D
LTC1690CMS8  
6
5
Z
Y
D
GND  
D
GND  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
TJMAX = 125°C, θJA = 200°C/W  
MS8 PART MARKING  
LTDA  
S8 PART MARKING  
TJMAX = 125°C, θJA = 130°C/W (N)  
TJMAX = 125°C, θJA = 135°C/W (S)  
1690  
1690I  
Consult factory for Military Grade Parts  
The denotes the specifications which apply over the full operating  
DC ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V ±5% (Notes 2, 3)  
SYMBOL PARAMETER CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Differential Driver Output Voltage (Unloaded)  
Differential Driver Output Voltage (with Load)  
I = 0  
V
CC  
V
OD1  
OD2  
O
R = 50; (RS422)  
R = 22or 27; (RS485), Figure 1  
2
1.5  
V
V
5
5
V
Differential Driver Output Voltage (with Common Mode)  
V
= –7V to 12V, Figure 2  
TST  
1.5  
V
V
OD3  
V  
Change in Magnitude of Driver Differential Output  
Voltage for Complementary Output States  
R = 22, 27or 50, Figure 1  
= –7V to 12V, Figure 2  
0.2  
OD  
V
TST  
V
Driver Common Mode Output Voltage  
R = 22, 27or 50, Figure 1  
R = 22, 27or 50, Figure 1  
3
V
V
OC  
|V  
|
Change in Magnitude of Driver Common Mode  
Output Voltage for Complementary Output States  
0.2  
OC  
V
V
Input High Voltage  
Input Low Voltage  
Input Current  
Driver Input (D)  
Driver Input (D)  
Driver Input (D)  
2
V
V
IH  
IL  
0.8  
I
I
±2  
µA  
IN1  
IN2  
Input Current (A, B)  
V
V
= 0V or 5.25V, V = 12V  
= 0V or 5.25V, V = –7V  
1
–0.8  
mA  
mA  
CC  
CC  
IN  
IN  
V
Differential Input Threshold Voltage for Receiver  
Receiver Input Hysteresis  
–7V V 12V  
0.20  
0.01  
V
TH  
CM  
V  
V
= 0V  
CM  
±30  
mV  
TH  
2
LTC1690  
The denotes the specifications which apply over the full operating  
DC ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V ±5% (Notes 2, 3)  
SYMBOL PARAMETER CONDITIONS  
I = 4mA, V = 200mV  
MIN  
TYP  
MAX  
UNITS  
V
V
V
Receiver Output High Voltage  
Receiver Output Low Voltage  
Receiver Input Resistance  
Supply Current  
3.5  
OH  
OL  
O
ID  
I = 4mA, V = 200mV  
0.4  
V
O
ID  
R
–7V V 12V  
12  
22  
kΩ  
µA  
mA  
mA  
µA  
mA  
ns  
IN  
CM  
I
I
I
I
I
t
t
t
No Load  
260  
600  
250  
250  
200  
85  
CC  
Driver Short-Circuit Current, V  
Driver Short-Circuit Current, V  
= HIGH  
= LOW  
–7V V 10V  
35  
35  
OSD1  
OSD2  
OZ  
OUT  
O
–7V V 10V  
OUT  
O
Driver Three-State Current (Y, Z)  
Receiver Short-Circuit Current  
–7V V 10V, V = 0V  
5
O
CC  
0V V V  
CC  
7
OSR  
PLH  
PHL  
SKEW  
O
Driver Input to Output, Figure 3, Figure 4  
Driver Input to Output, Figure 3, Figure 4  
Driver Output to Output, Figure 3, Figure 4  
Driver Rise or Fall Time, Figure 3, Figure 4  
Receiver Input to Output, Figure 3, Figure 5  
Receiver Input to Output, Figure 3, Figure 5  
R
R
R
R
R
R
R
R
= 54, C = C = 100pF  
10  
10  
22.5  
25  
2.5  
13  
94  
89  
5
60  
DIFF  
DIFF  
DIFF  
DIFF  
DIFF  
DIFF  
DIFF  
DIFF  
L1  
L2  
= 54, C = C = 100pF  
60  
ns  
L1  
L2  
= 54, C = C = 100pF  
15  
ns  
L1  
L2  
t , t  
= 54, C = C = 100pF  
2
40  
ns  
r
f
PLH  
PHL  
SKD  
MAX  
L1  
L2  
t
t
t
f
= 54, C = C = 100pF  
30  
30  
160  
160  
ns  
L1  
L2  
= 54, C = C = 100pF  
ns  
L1  
L2  
|t  
PLH  
– t |, Differential Receiver Skew, Figure 3, Figure 5  
PHL  
= 54, C = C = 100pF  
ns  
L1  
L2  
Maximum Data Rate, Figure 3, Figure 5  
= 54, C = C = 100pF  
5
Mbps  
L1  
L2  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
Note 3: All typicals are given for V = 5V and T = 25°C.  
CC  
A
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Receiver Input Threshold Voltage  
(Output High) vs Temperature  
Receiver Input Threshold Voltage  
(Output Low) vs Temperature  
Receiver Hysteresis vs  
Temperature  
0
–20  
0
–20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
CC  
= 5V  
V
= 5V  
CC  
V
= 5V  
CC  
V
V
= 12V  
= 0V  
CM  
–40  
–40  
CM  
–60  
–60  
V
= 12V  
CM  
V
V
= 12V  
= –7V  
CM  
–80  
–80  
V
= 0V  
CM  
V
CM  
= –7V  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
V
CM  
= 0V  
V
= –7V  
CM  
CM  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1690 G01  
1690 G02  
1690 G03  
3
LTC1690  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Receiver Input Offset Voltage vs  
Temperature  
Receiver Input Threshold Voltage  
vs Supply Voltage  
Receiver Output High Voltage vs  
Output Current  
–40  
–60  
0
–20  
–25  
–20  
–15  
–10  
–5  
V
CC  
= 5V  
T
= 25°C  
T
= 25°C  
CC  
A
A
V
= 4.75V  
–40  
OUTPUT HIGH  
V
CM  
= 0V  
–60  
–80  
V
V
= –7V  
= 12V  
CM  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
OUTPUT LOW  
CM  
0
–55 –35 –15  
5
25 45 65 85 105 125  
4.5  
4.75  
5
5.25  
5.5  
4.5  
4
3
5
2.5  
2
3.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
RECEIVER OUTPUT HIGH VOLTAGE (V)  
1690 G04  
1690 G05  
1690 G06  
Receiver Output Low Voltage vs  
Output Current  
Receiver Output High Voltage vs  
Temperature  
Receiver Output Low Voltage vs  
Temperature  
40  
35  
30  
25  
20  
15  
10  
5
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I = 8mA  
CC  
T
= 25°C  
CC  
I = 8mA  
CC  
A
V
= 4.75V  
V
= 4.75V  
V
= 4.75V  
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
RECEIVER OUTPUT LOW VOLTAGE (V)  
TEMPERATURE (°C)  
1690 G07  
1690 G08  
1690 G09  
Receiver Propagation Delay vs  
Temperature  
Receiver Skew  
Temperature  
tPLH – tPHL vs  
Receiver Propagation Delay vs  
Supply Voltage  
10  
9
110  
100  
90  
120  
110  
100  
90  
V
= 5V  
V
= 5V  
CC  
CC  
t
t
PLH  
PHL  
8
t
t
PLH  
PHL  
7
6
80  
5
70  
80  
4
60  
70  
3
2
50  
60  
–55 –35 –15  
5
25 45 65 85 105 125  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
1690 G11  
1690 G12  
1690 G10  
4
LTC1690  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Receiver Short-Circuit Current vs  
Temperature  
Logic Input Threshold Voltage vs  
Temperature  
Supply Current vs Temperature  
70  
60  
50  
40  
30  
20  
10  
0
340  
320  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
V
= 5.25V  
CC  
V
V
= 5.25V  
= 5V  
CC  
CC  
OUTPUT LOW  
V
= 5.25V  
CC  
V
= 4.75V  
CC  
OUTPUT HIGH  
V
= 5V  
CC  
V
= 4.75V  
CC  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1690 G13  
1690 G14  
1690 G15  
Driver Differential Output Voltage  
vs Temperature  
Driver Differential Output Voltage  
vs Temperature  
Driver Differential Output Voltage  
vs Temperature  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
R
= 54Ω  
R
= 44Ω  
R = 100Ω  
L
L
L
V
= 5.25V  
CC  
V
= 5V  
V
= 5.25V  
CC  
CC  
V
= 5.25V  
CC  
V
V
= 5V  
CC  
V
V
V
= 5V  
CC  
CC  
CC  
= 4.75V  
= 4.5V  
V
= 4.5V  
CC  
V
= 4.75V  
CC  
V
= 4.5V  
CC  
= 4.75V  
CC  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1690 G17  
1690 G16  
1690 G18  
Driver Common Mode Output  
Voltage vs Temperature  
Driver Common Mode Output  
Voltage vs Temperature  
Driver Common Mode Output  
Voltage vs Temperature  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5.25V  
V
= 5.25V  
CC  
V
= 5.25V  
CC  
CC  
V
= 5V  
V
V
= 5V  
V
V
= 5V  
V
CC  
CC  
CC  
= 4.75V  
V
= 4.75V  
V
= 4.75V  
V
CC  
CC  
CC  
= 4.5V  
= 4.5V  
= 4.5V  
CC  
CC  
CC  
R
= 44Ω  
R
= 54Ω  
R
= 100Ω  
L
L
L
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1690 G19  
1690 G20  
1690 G21  
5
LTC1690  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Driver Differential Output Voltage  
vs Output Current  
Driver Output High Voltage vs  
Output Current  
Driver Output Low Voltage vs  
Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–100  
–80  
–60  
–40  
–20  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
CC  
T
= 25°C  
CC  
T
= 25°C  
A
A
A
V
= 5V  
V
= 5V  
0
0.5  
1
1.5  
2
2.5  
3
0
1
2
3
4
0
1
2
3
4
5
DRIVER OUTPUT LOW VOLTAGE (V)  
DRIVER OUTPUT HIGH VOLTAGE (V)  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE (V)  
1690 G24  
1690 G23  
1690 G22  
Driver Propagation Delay vs  
Temperature  
Driver Propagation Delay vs  
Supply Voltage  
Driver Skew vs Temperature  
30  
25  
20  
15  
10  
5
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
30  
25  
20  
15  
10  
5
V
= 5V  
V
= 5V  
CC  
CC  
t
t
PHL  
t
t
PHL  
PLH  
PLH  
0
0
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
SUPPLY VOLTAGE (V)  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1690 G27  
1690 G26  
1690 G25  
Driver Short-Circuit Current vs  
Temperature  
Receiver Input Resistance vs  
Temperature  
250  
200  
150  
100  
50  
25  
V
= 5.25V  
V
= 5V  
CC  
CC  
24  
23  
22  
21  
20  
OUTPUT HIGH  
SHORT TO –7V  
V
V
= 12V  
= –7V  
CM  
CM  
OUTPUT LOW  
SHORT TO 10V  
0
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1690 G29  
1690 G30  
6
LTC1690  
U
U
U
PIN FUNCTIONS  
VCC (Pin 1): Positive Supply. 4.75V < VCC < 5.25V.  
Y (Pin 5): Driver Output.  
Z (Pin 6): Driver Output.  
B (Pin 7): Receiver Input.  
A (Pin 8): Receiver Input.  
R (Pin 2): Receiver Output. R is high if (A – B) 10mV  
and low if (A – B) 200mV.  
D (Pin 3): Driver Input. If D is high, Y is taken high and Z  
is taken low. If D is low, Y is taken low and Z is taken high.  
GND (Pin 4): Ground.  
TEST CIRCUITS  
+
+
Y
C
C
A
B
L1  
L2  
375Ω  
Y
Y
R
D
R
DIFF  
R
V
OD2  
+
Z
V
60Ω  
375Ω  
V
OD3  
TST  
R
15pF  
V
OC  
–7V TO 12V  
Z
Z
1690 F02  
1690 F01  
1690 F03  
Figure 1. Driver  
DC Test Load #1  
Figure 2. Driver  
DC Test Load #2  
Figure 3. Driver/Receiver  
Timing Test Load  
U
W
W
SWITCHI G TI E WAVEFOR S  
V
3V  
OD2  
f = 1MHz, t 10ns, t 10ns  
r
f
A – B  
–V  
0V  
0V  
D
1.5V  
1.5V  
f = 1MHz, t 10ns, t 10ns  
r
f
INPUT  
0V  
OD2  
t
t
t
t
PLH  
PLH  
PHL  
PHL  
5V  
V
O
90%  
90%  
50%  
10%  
50%  
10%  
R
V
1.5V  
– t  
1.5V  
V
O
= V(A) – V(B)  
OUTPUT  
–V  
O
Z
OL  
t
t
f
r
1690 F05  
NOTE: t  
= |t  
|
SKD  
PHL PLH  
V
O
Figure 5. Receiver Propagation Delays  
Y
t
t
SKEW  
1690 F04  
SKEW  
1/2 V  
O
Figure 4. Driver Propagation Delays  
U
U
FUNCTION TABLES  
Driver  
Receiver  
A – B  
D
1
0
Z
0
1
Y
1
0
R
0.01V  
0.20V  
1
0
1
1
Inputs Open  
Inputs Shorted  
Note: Table valid with or without termination resistors.  
7
LTC1690  
U
W U U  
APPLICATIONS INFORMATION  
A typical application is shown in Figure 6. Two twisted pair  
wires connect two driver/receiver pairs for full duplex data  
transmission. Notethatthedriverandreceiveroutputsare  
always enabled. If the outputs must be disabled, use the  
LTC491. There are no restrictions on where the chips are  
connected, and it isn’t necessary to have the chips con-  
nected to the ends of the wire. However, the wires must be  
terminated at the ends with a resistor equal to their  
characteristic impedance, typically 120. Because only  
one driver can be connected on the bus, the cable need  
only be terminated at the receiving end. The optional  
shields around the twisted pair are connected to GND at  
one end and help reduce unwanted noise.  
logic 1 state when the receiver inputs are left floating or  
shorted together. This is achieved without external com-  
ponents by designing the trip-point of the LTC1690 to be  
within 200mV to –10mV. If the receiver output must be  
a logic 0 instead of a logic 1, external components are  
required.  
The LTC1690 fail-safe receiver is designed to reject fast  
–7V to 12V common mode steps at its inputs. The slew  
rate that the receiver will reject is typically 400V/µs, but  
–7V to 12V steps in 10ns can be tolerated if the frequency  
of the common mode step is moderate (<600kHz).  
Driver-Receiver Crosstalk  
The LTC1690 can be used as a line repeater as shown in  
Figure 7. If the cable is longer that 4000 feet, the LTC1690  
is inserted in the middle of the cable with the receiver  
output connected back to the driver input.  
The driver outputs generate fast rise and fall times. If the  
LTC1690 receiver inputs are not terminated and floating,  
switching noise from the LTC1690 driver can couple into  
the receiver inputs and cause the receiver output to glitch.  
This can be prevented by ensuring that the receiver inputs  
are terminated with a 100or 120resistor, depending  
on the type of cable used. A cable capacitance that is  
greater than 10pF (1ft of cable) also prevents glitches if  
no termination is present. The receiver inputs should not  
be driven typically above 8MHz to prevent glitches.  
Receiver Fail-Safe  
Some encoding schemes require that the output of the  
receiver maintains a known state (usually a logic 1) when  
data transmission ends and all drivers on the line are  
forced into three-state. The receiver of the LTC1690 has a  
fail-safe feature which guarantees the output to be in a  
5V  
5V  
1
1
LTC1690  
LTC1690  
SHIELD  
5
6
8
3
2
120  
D
DRIVER  
RECEIVER  
R
D
7
0.01µF  
0.01µF  
SHIELD  
7
8
6
5
2
4
3
4
120Ω  
R
RECEIVER  
DRIVER  
1690 F06  
Figure 6. Typical Application  
8
LTC1690  
U
W U U  
APPLICATIONS INFORMATION  
Fault Protection  
toVCC, thecurrentwillbelimitedtoamaximumof250mA.  
If the die temperature rises above 150°C, the thermal  
shutdown circuit three-states the driver outputs to open  
thecurrentpath. Whenthediecoolsdowntoabout130°C,  
the driver outputs are taken out of three-state. If the short  
persists, the part will heat again and the cycle will repeat.  
Thisthermaloscillationoccursatabout10Hzandprotects  
the part from excessive power dissipation. The average  
fault current drops as the driver cycles between active and  
three-state.Whentheshortisremoved,thepartwillreturn  
to normal operation.  
When shorted to –7V or 10V at room temperature, the  
short-circuit current in the driver outputs is limited by  
internal resistance or protection circuitry to 250mA maxi-  
mum. Over the industrial temperature range, the absolute  
maximum positive voltage at any driver output should be  
limited to 10V to avoid damage to the driver outputs. At  
higher ambient temperatures, the rise in die temperature  
due to the short-circuit current may trip the thermal  
shutdown circuit.  
The receiver inputs can withstand the entire –7V to 12V  
RS485 common mode range without damage.  
If the outputs of two or more LTC1690 drivers are shorted  
directly, the driver outputs cannot supply enough current  
to activate the thermal shutdown. Thus, the thermal shut-  
down circuit will not prevent contention faults when two  
drivers are active on the bus at the same time.  
The LTC1690 includes a thermal shutdown circuit that  
protects the part against prolonged shorts at the driver  
outputs. If a driver output is shorted to another output or  
LTC1690  
5
3
DATA  
OUT  
D
R
DRIVER  
6
8
7
2
120Ω  
DATA  
IN  
RECEIVER  
1690 F07  
Figure 7. Line Repeater  
9
LTC1690  
U
W U U  
APPLICATIONS INFORMATION  
Cables and Data Rate  
ESD PROTECTION  
The transmission line of choice for RS485 applications is  
a twisted pair. There are coaxial cables (twinaxial) made  
for this purpose that contain straight pairs, but these are  
less flexible, more bulky and more costly than twisted  
pairs. Many cable manufacturers offer a broad range of  
120cables designed for RS485 applications.  
TheESDperformanceoftheLTC1690driveroutputs(Z,Y)  
and the receiver inputs (A, B) is as follows:  
a) Meets ±15kV Human Body Model (100pF, 1.5k).  
b) MeetsIEC1000-4-2Level4(±8kV)contactmodespeci-  
fications.  
c) Meets IEC1000-4-2 Level 3 (±8kV) air discharge speci-  
Losses in a transmission line are a complex combination  
of DC conductor loss, AC losses (skin effect), leakage and  
AC losses in the dielectric. In good polyethylene cables  
such as Belden 9841, the conductor losses and dielectric  
losses are of the same order of magnitude, leading to  
relatively low overall loss (Figure 8).  
fications.  
ThislevelofESDperformancemeansthatexternalvoltage  
suppressors are not required in many applications, when  
compared with parts that are only protected to ±2kV. The  
LTC1690 driver input (D) and receiver output are pro-  
tected to ±2kV per the Human Body Model.  
When using low loss cable, Figure 9 can be used as a  
guideline for choosing the maximum length for a given  
datarate. WithlowerqualityPVCcables, thedielectricloss  
factor can be 1000 times worse. PVC twisted pairs have  
terrible losses at high data rates (>100kbits/s), reducing  
the maximum cable length. At low data rates, they are  
acceptable and are more economical. The LTC1690 is  
tested and guaranteed to drive CAT 5 cable and termina-  
tions as well as common low cost residential telephone  
wire.  
When powered up, the LTC1690 does not latch up or  
sustain damage when the Z, Y, A or B pins are subjected  
to any of the conditions listed above. The data during the  
ESD event may be corrupted, but after the event the  
LTC1690 continues to operate normally.  
The additional ESD protection at the LTC1690 Z, Y, A and  
B pins is important in applications where these pins are  
exposed to the external world via socket connections.  
10  
10k  
1k  
1.0  
100  
10  
0.1  
0.1  
1.0  
10  
100  
10k  
100k  
1M 2.5M  
10M  
FREQUENCY (MHz)  
DATA RATE (bps)  
1690 F08  
1690 F09  
Figure 8. Attenuation vs Frequency for Belden 9841  
Figure 9. RS485 Cable Length Recommended. Applies  
for 24 Gauge, Polyethylene Dielectric Twisted Pair  
10  
LTC1690  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.040 ± 0.006  
(1.02 ± 0.15)  
0.034 ± 0.004  
(0.86 ± 0.102)  
0.007  
(0.18)  
0° – 6° TYP  
0.118 ± 0.004**  
(3.00 ± 0.102)  
SEATING  
PLANE  
0.193 ± 0.006  
(4.90 ± 0.15)  
0.012  
(0.30)  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
0.0256  
(0.65)  
BSC  
MSOP (MS8) 1098  
1
2
3
4
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
7
6
5
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
(3.175)  
MIN  
0.020  
(0.508)  
MIN  
+0.035  
–0.015  
1
2
4
3
0.325  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1098  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
3
4
2
SO8 1298  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1690  
U
TYPICAL APPLICATIONS  
Receiver with Low Fail-Safe Output  
RS232 Receiver  
5V  
1.2k  
2.7k  
RS232 IN  
120Ω  
RX  
2.7k  
RX  
RECEIVER  
RECEIVER  
1.2k  
1690 TA02  
1690 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Low Power  
LTC485  
5V Low Power RS485 Interface Transceiver  
LTC1480  
3.3V Ultralow Power RS485 Transceiver with Shutdown  
5V Ultralow Power RS485 Transceiver with Shutdown  
5V Low Power RS485 Transceiver with Carrier Detect Output  
Lower Supply Voltage  
Lowest Power  
LTC1481  
LTC1482  
Low Power, High Output State when Inputs are Open,  
Shorted or Terminated, ±15kV ESD Protection  
LTC1483  
LTC1484  
5V Ultralow Power RS485 Low EMI Transceiver with Shutdown  
5V Low Power RS485 Transceiver with Fail-Safe Receiver Circuit  
Low EMI, Lowest Power  
Low Power, High Output State when Inputs are Open,  
Shorted or Terminated, ±15kV ESD Protection  
LTC1485  
LTC1487  
5V RS485 Transceiver  
High Speed, 10Mbps  
5V Ultralow Power RS485 with Low EMI, Shutdown and  
High Input Impedance  
Highest Input Impedance, Low EMI, Lowest Power  
LTC490  
5V Differential Driver and Receiver Pair  
5V Low Power RS485 Full-Duplex Transceiver  
Isolated RS485 Transceiver  
Low Power, Pin Compatible with LTC1690  
Low Power  
LTC491  
LTC1535  
2500V  
Isolation, Full Duplex  
RMS  
LTC1685  
52Mbps, RS485 Fail-Safe Transceiver  
Pin Compatible with LTC485  
Pin Compatible with LTC490/LTC491  
±15kV ESD Protection  
LTC1686/LTC1687  
LT1785/LT1791  
52Mbps, RS485 Fail-Safe Driver/Receiver  
±60V Fault Protected RS485 Half-/Full-Duplex Transceiver  
1690f LT/TP 0400 4K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
LINEAR TECHNOLOGY CORPORATION 1998  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY