LTC1563-3CGN#TRPBF [Linear]

暂无描述;
LTC1563-3CGN#TRPBF
型号: LTC1563-3CGN#TRPBF
厂家: Linear    Linear
描述:

暂无描述

文件: 总20页 (文件大小:303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1563-2/LTC1563-3  
Active RC, 4th Order  
Lowpass Filter Family  
U
DESCRIPTIO  
FEATURES  
The LTC®1563-2/LTC1563-3 are a family of extremely  
easy-to-use, active RC lowpass filters with rail-to-rail  
inputs and outputs and low DC offset suitable for systems  
with a resolution of up to 16 bits. The LTC1563-2, with a  
single resistor value, gives a unity-gain Butterworth  
response. The LTC1563-3, with a single resistor value,  
gives a unity-gain Bessel response. The proprietary  
architecture of these parts allows for a simple resistor  
calculation:  
Extremely Easy to Use—A Single Resistor Value  
Sets the Cutoff Frequency (256Hz < fC < 256kHz)  
Extremely Flexible—Different Resistor Values  
Allow Arbitrary Transfer Functions with or without  
Gain (256Hz < fC < 256kHz)  
Supports Cutoff Frequencies Up to 360kHz Using  
FilterCADTM  
LTC1563-2: Unity-Gain Butterworth Response Uses a  
Single Resistor Value, Different Resistor Values  
Allow Other Responses with or without Gain  
LTC1563-3: Unity-Gain Bessel Response Uses a  
R = 10k (256kHz/fC); fC = Cutoff Frequency  
where fC is the desired cutoff frequency. For many appli-  
cations, this formula is all that is needed to design a filter.  
By simply utilizing different valued resistors, gain and  
other responses are achieved.  
Single Resistor Value, Different Resistor Values  
Allow Other Responses with or without Gain  
Rail-to-Rail Input and Output Voltages  
Operates from a Single 3V (2.7V Min) to ±5V Supply  
Low Noise: 36µVRMS for fC = 25.6kHz, 60µVRMS for  
fC = 256kHz  
fC Accuracy < ±2% (Typ)  
DC Offset < 1mV  
Cascadable to Form 8th Order Lowpass Filters  
Available in Narrow SSOP-16 Package  
The LTC1563-X features a low power mode, for the lower  
frequency applications, where the supply current is re-  
duced by an order of magnitude and a near zero power  
shutdown mode.  
The LTC1563-Xs are available in the narrow SSOP-16  
package (Same footprint as an SO-8 package).  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
FilterCAD is trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
APPLICATIO S  
Discrete RC Active Filter Replacement  
Antialiasing Filters  
Smoothing or Reconstruction Filters  
Linear Phase Filtering for Data Communication  
Phase Locked Loops  
U
TYPICAL APPLICATIO  
Frequency Response  
10  
0
Single 3.3V, 256Hz to 256kHz Butterworth Lowpass Filter  
3.3V  
LTC1563-2  
–10  
0.1µF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
OUT  
+
LP  
V
R = 10k  
= 256kHz  
R
R
–20  
f
C
SA  
LPB  
NC  
–30  
–40  
–50  
–60  
–70  
–80  
NC  
R
R
R = 10M  
= 256Hz  
INVA  
NC  
INVB  
NC  
f
C
LPA  
AGND  
SB  
R
NC  
R
V
EN  
V
IN  
0.1µF  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
10k  
R
f
= 256kHz  
C
1563 TA01  
(
)
1563 TA02  
156323fa  
1
LTC1563-2/LTC1563-3  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
Total Supply Voltage (V+ to V)............................... 11V  
Maximum Input Voltage at  
+
LP  
SA  
1
2
3
4
5
6
7
8
16  
V
15 LPB  
Any Pin ....................... (V– 0.3V) VPIN (V+ + 0.3V)  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC1563-2CGN  
LTC1563-3CGN  
LTC1563-2IGN  
LTC1563-3IGN  
NC  
14  
13  
12  
11  
10  
9
NC  
INVA  
NC  
INVB  
NC  
LTC1563C ............................................... 0°C to 70°C  
LTC1563I............................................ 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
LPA  
AGND  
SB  
NC  
GN PART  
MARKING  
V
EN  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
15632  
15633  
15632I  
15633I  
TJMAX = 150°C, θJA = 135°C/ W  
NOTE: PINS LABELED NC ARE NOT CONNECTED  
INTERNALLY AND SHOULD BE CONNECTED TO THE  
SYSTEM GROUND  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
The  
S
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
A
V = Single 4.75V, EN pin to logic “low,” Gain = 1, R = R11 = R21 = R31 = R12 = R22 = R32, specifications apply to both the high  
FIL  
speed (HS) and low power (LP) modes unless otherwise noted.  
PARAMETER CONDITIONS  
Specifications for Both LTC1563-2 and LTC1563-3  
Total Supply Voltage (V ), HS Mode  
MIN  
TYP  
MAX  
UNITS  
3
11  
11  
V
V
S
Total Supply Voltage (V ), LP Mode  
2.7  
S
Output Voltage Swing High (LPB Pin)  
HS Mode  
V = 3V, f = 25.6kHz, R = 100k, R = 10k to GND  
2.9  
4.55  
4.8  
2.95  
4.7  
4.9  
V
V
V
S
C
FIL  
L
V = 4.75V, f = 25.6kHz, R = 100k, R = 10k to GND  
S
C
FIL  
L
V = ±5V, f = 25.6kHz, R = 100k, R = 10k to GND  
S
C
FIL  
L
Output Voltage Swing Low (LPB Pin)  
HS Mode  
V = 3V, f = 25.6kHz, R = 100k, R = 10k to GND  
0.015  
0.02  
4.95  
0.05  
0.05  
4.9  
V
V
V
S
C
FIL  
L
V = 4.75V, f = 25.6kHz, R = 100k, R = 10k to GND  
S
C
FIL  
L
V = ±5V, f = 25.6kHz, R = 100k, R = 10k to GND  
S
C
FIL  
L
Output Swing High (LPB Pin)  
LP Mode  
V = 2.7V, f = 25.6kHz, R = 100k, R = 10k to GND  
2.6  
4.55  
4.8  
2.65  
4.65  
4.9  
V
V
V
S
C
FIL  
L
V = 4.75V, f = 25.6kHz, R = 100k, R = 10k to GND  
S
C
FIL  
L
V = ±5V, f = 25.6kHz, R = 100k, R = 10k to GND  
S
C
FIL  
L
Output Swing Low (LPB Pin)  
LP Mode  
V = 2.7V, f = 25.6kHz, R = 100k, R = 10k to GND  
0.01  
0.015  
4.95  
0.05  
0.05  
4.9  
V
V
V
S
C
FIL  
L
V = 4.75V, f = 25.6kHz, R = 100k, R = 10k to GND  
S
C
FIL  
L
V = ±5V, f = 25.6kHz, R = 100k, R = 10k to GND  
S
C
FIL  
L
DC Offset Voltage, HS Mode  
(Section A Only)  
V = 3V, f = 25.6kHz, R = 100k  
±1.5  
±1.0  
±1.5  
±3  
±3  
±3  
mV  
mV  
mV  
S
C
FIL  
V = 4.75V, f = 25.6kHz, R = 100k  
S
C
FIL  
V = ±5V, f = 25.6kHz, R = 100k  
S
C
FIL  
DC Offset Voltage, LP Mode  
(Section A Only)  
V = 2.7V, f = 25.6kHz, R = 100k  
±2  
±2  
±2  
±6  
±6  
±7  
mV  
mV  
mV  
S
C
FIL  
V = 4.75V, f = 25.6kHz, R = 100k  
S
C
FIL  
V = ±5V, f = 25.6kHz, R = 100k  
S
C
FIL  
DC Offset Voltage, HS Mode  
(Input to Output, Sections A, B Cascaded)  
V = 3V, f = 25.6kHz, R = 100k  
±1.5  
±1.0  
±1.5  
±3  
±3  
±3  
mV  
mV  
mV  
S
C
FIL  
V = 4.75V, f = 25.6kHz, R = 100k  
S C FIL  
V = ±5V, f = 25.6kHz, R = 100k  
S
C
FIL  
156323fa  
2
LTC1563-2/LTC1563-3  
ELECTRICAL CHARACTERISTICS  
The  
S
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
A
V = Single 4.75V, EN pin to logic “low,” Gain = 1, R = R11 = R21 = R31 = R12 = R22 = R32, specifications apply to both the high  
FIL  
speed (HS) and low power (LP) modes unless otherwise noted.  
PARAMETER  
CONDITIONS  
V = 2.7V, f = 25.6kHz, R = 100k  
MIN  
TYP  
MAX  
UNITS  
DC Offset Voltage, LP Mode  
(Input to Output, Sections A, B Cascaded)  
±2  
±2  
±2  
±7  
±7  
±8  
mV  
mV  
mV  
S
C
FIL  
V = 4.75V, f = 25.6kHz, R = 100k  
S C FIL  
V = ±5V, f = 25.6kHz, R = 100k  
S
C
FIL  
DC Offset Voltage Drift, HS Mode  
(Input to Output, Sections A, B Cascaded)  
V = 3V, f = 25.6kHz, R = 100k  
10  
10  
10  
µV/°C  
µV/°C  
µV/°C  
S
C
FIL  
V = 4.75V, f = 25.6kHz, R = 100k  
S C FIL  
V = ±5V, f = 25.6kHz, R = 100k  
S
C
FIL  
DC Offset Voltage Drift, LP Mode  
(Input to Output, Sections A, B Cascaded)  
V = 2.7V, f = 25.6kHz, R = 100k  
10  
10  
10  
µV/°C  
µV/°C  
µV/°C  
S
C
FIL  
V = 4.75V, f = 25.6kHz, R = 100k  
S C FIL  
V = ±5V, f = 25.6kHz, R = 100k  
S
C
FIL  
AGND Voltage  
V = 4.75V, f = 25.6kHz, R = 100k  
2.35  
2.375  
2.40  
V
S
C
FIL  
Power Supply Current, HS Mode  
V = 3V, f = 25.6kHz, R = 100k  
8.0  
10.5  
15  
14  
17  
23  
mA  
mA  
mA  
S
C
FIL  
V = 4.75V, f = 25.6kHz, R = 100k  
S
C
FIL  
V = ±5V, f = 25.6kHz, R = 100k  
S
C
FIL  
Power Supply Current, LP Mode  
Shutdown Mode Supply Current  
V = 2.7V, f = 25.6kHz, R = 100k  
1.0  
1.4  
2.3  
1.8  
2.5  
3.5  
mA  
mA  
mA  
S
C
FIL  
V = 4.75V, f = 25.6kHz, R = 100k  
S
C
FIL  
V = ±5V, f = 25.6kHz, R = 100k  
S
C
FIL  
V = 4.75V, f = 25.6kHz, R = 100k  
1
20  
µA  
S
C
FIL  
EN Input  
Logic Low Level  
V = 3V  
0.8  
1
1
V
V
V
S
V = 4.75V  
S
V = ±5V  
S
EN Input  
Logic High Level  
V = 3V  
2.5  
4.3  
4.4  
V
V
V
S
V = 4.75V  
S
V = ±5V  
S
LP  
V = 3V  
0.8  
1
1
V
V
V
S
Logic Low Level  
V = 4.75V  
S
V = ±5V  
S
LP  
V = 3V  
2.5  
4.3  
4.4  
V
V
V
S
Logic High Level  
V = 4.75V  
S
V = ±5V  
S
LTC1563-2 Transfer Function Characteristics  
Cutoff Frequency Range, f  
HS Mode  
(Note 2)  
V = 3V  
0.256  
0.256  
0.256  
256  
256  
256  
kHz  
kHz  
kHz  
C
S
V = 4.75V  
S
V = ±5V  
S
Cutoff Frequency Range, f  
LP Mode  
(Note 2)  
V = 2.7V  
0.256  
0.256  
0.256  
25.6  
25.6  
25.6  
kHz  
kHz  
kHz  
C
S
V = 4.75V  
S
V = ±5V  
S
Cutoff Frequency Accuracy, HS Mode  
f = 25.6kHz  
C
V = 3V, R = 100k  
–2.0  
–2.0  
–2.0  
±1.5  
±1.5  
±1.5  
3.5  
3.5  
3.5  
%
%
%
S
FIL  
V = 4.75V, R = 100k  
S FIL  
V = ±5V, R = 100k  
S
FIL  
Cutoff Frequency Accuracy, HS Mode  
f = 256kHz  
C
V = 3V, R = 10k  
–5  
–5  
–5  
±1.5  
±1.5  
±1.5  
2.5  
2.5  
2.5  
%
%
%
S
FIL  
V = 4.75V, R = 10k  
S FIL  
V = ±5V, R = 10k  
S
FIL  
Cutoff Frequency Accuracy, LP Mode  
f = 25.6kHz  
C
V = 2.7V, R = 100k  
–3  
–3  
–3  
±1.5  
±1.5  
±1.5  
3
3
3
%
%
%
S
FIL  
V = 4.75V, R = 100k  
S FIL  
V = ±5V, R = 100k  
S
FIL  
Cutoff Frequency Temperature Coefficient  
(Note 3)  
±1  
ppm/°C  
156323fa  
3
LTC1563-2/LTC1563-3  
ELECTRICAL CHARACTERISTICS  
The  
S
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
A
V = Single 4.75V, EN pin to logic “low,” Gain = 1, R = R11 = R21 = R31 = R12 = R22 = R32, specifications apply to both the high  
FIL  
speed (HS) and low power (LP) modes unless otherwise noted.  
PARAMETER CONDITIONS  
Passband Gain, HS Mode, f = 25.6kHz Test Frequency = 2.56kHz (0.1 • f )  
MIN  
TYP  
MAX  
UNITS  
0.2  
0.3  
0
0
0.2  
0.3  
dB  
dB  
C
C
V = 4.75V, R = 100k  
Test Frequency = 12.8kHz (0.5 • f )  
S
FIL  
C
Stopband Gain, HS Mode, f = 25.6kHz  
Test Frequency = 51.2kHz (2 • f )  
24  
48  
21.5  
46  
d B  
dB  
C
C
V = 4.75V, R = 100k  
Test Frequency = 102.4kHz (4 • f )  
S
FIL  
C
Passband Gain, HS Mode, f = 256kHz  
Test Frequency = 25.6kHz (0.1 • f )  
0.2  
0.5  
0
0
0.2  
0.5  
dB  
dB  
C
C
V = 4.75V, R = 10k  
Test Frequency = 128kHz (0.5 • f )  
S
FIL  
C
Stopband Gain, HS Mode, f = 256kHz  
Test Frequency = 400kHz (1.56 • f )  
15.7  
23.3  
–13.5  
21.5  
dB  
dB  
C
C
V = 4.75V, R = 10k  
Test Frequency = 500kHz (1.95 • f )  
S
FIL  
C
Passband Gain, LP Mode, f = 25.6kHz  
Test Frequency = 2.56kHz (0.1 • f )  
0.25  
0.6  
0
0.25  
0.6  
dB  
dB  
C
C
V = 4.75V, R = 100k  
Test Frequency = 12.8kHz (0.5 • f )  
0.02  
S
FIL  
C
Stopband Gain, LP Mode, f = 25.6kHz  
Test Frequency = 51.2kHz (2 • f )  
24  
48  
22  
46.5  
dB  
dB  
C
C
V = 4.75V, R = 100k  
Test Frequency = 102.4kHz (4 • f )  
S
FIL  
C
LTC1563-3 Transfer Function Characteristics  
Cutoff Frequency Range, f  
HS Mode  
(Note 2)  
V = 3V  
0.256  
0.256  
0.256  
256  
256  
256  
kHz  
kHz  
kHz  
C
S
V = 4.75V  
S
V = ±5V  
S
Cutoff Frequency Range, f  
LP Mode  
(Note 2)  
V = 2.7V  
0.256  
0.256  
0.256  
25.6  
25.6  
25.6  
kHz  
kHz  
kHz  
C
S
V = 4.75V  
S
V = ±5V  
S
Cutoff Frequency Accuracy, HS Mode  
f = 25.6kHz  
C
V = 3V, R = 100k  
–3  
–3  
–3  
±2  
±2  
±2  
5.5  
5.5  
5.5  
%
%
%
S
FIL  
V = 4.75V, R = 100k  
S FIL  
V = ±5V, R = 100k  
S
FIL  
Cutoff Frequency Accuracy, HS Mode  
f = 256kHz  
C
V = 3V, R = 10k  
–3  
–3  
–3  
±2  
±2  
±2  
6
6
6
%
%
%
S
FIL  
V = 4.75V, R = 10k  
S FIL  
V = ±5V, R = 10k  
S
FIL  
Cutoff Frequency Accuracy, LP Mode  
f = 25.6kHz  
C
V = 2.7V, R = 100k  
–4  
–4  
–4  
±3  
±3  
±3  
7
7
7
%
%
%
S
FIL  
V = 4.75V, R = 100k  
S FIL  
V = ±5V, R = 100k  
S
FIL  
Cutoff Frequency Temperature Coefficient  
(Note 3)  
±1  
ppm/°C  
Passband Gain, HS Mode, f = 25.6kHz  
Test Frequency = 2.56kHz (0.1 • f )  
0.2  
–1.0  
0.03  
0.72  
0.2  
0.25  
dB  
dB  
C
C
V = 4.75V, R = 100k  
Test Frequency = 12.8kHz (0.5 • f )  
S
FIL  
C
Stopband Gain, HS Mode, f = 25.6kHz  
Test Frequency = 51.2kHz (2 • f )  
–13.6  
34.7  
–10  
31  
dB  
dB  
C
C
V = 4.75V, R = 100k  
Test Frequency = 102.4kHz (4 • f )  
S
FIL  
C
Passband Gain, HS Mode, f = 256kHz  
Test Frequency = 25.6kHz (0.1 • f )  
0.2  
–1.1  
0.03  
0.72  
0.2  
0.5  
dB  
dB  
C
C
V = 4.75V, R = 10k  
Test Frequency = 128kHz (0.5 • f )  
S
FIL  
C
Stopband Gain, HS Mode, f = 256kHz  
Test Frequency = 400kHz (1.56 • f )  
8.3  
13  
–6  
–10.5  
dB  
dB  
C
C
V = 4.75V, R = 10k  
Test Frequency = 500kHz (1.95 • f )  
S
FIL  
C
Passband Gain, LP Mode, f = 25.6kHz  
Test Frequency = 2.56kHz (0.1 • f )  
0.2  
–1.0  
0.03  
0.72  
0.2  
0.25  
dB  
dB  
C
C
V = 4.75V, R = 100k  
Test Frequency = 12.8kHz (0.5 • f )  
S
FIL  
C
Stopband Gain, LP Mode, f = 25.6kHz  
Test Frequency = 51.2kHz (2 • f )  
13.6  
34.7  
–11  
32  
dB  
dB  
C
C
V = 4.75V, R = 100k  
Test Frequency = 102.4kHz (4 • f )  
S
FIL  
C
Note 1: Absolute Maximum Ratings are those value beyond which the life  
of a device may be impaired.  
assembly practices are required. There may also be greater DC offset at  
high temperatures when using such large valued resistors.  
Note 2: The minimum cutoff frequency of the LTC1563 is arbitrarily listed  
as 256Hz. The limit is arrived at by setting the maximum resistor value  
limit at 10M. The LTC1563 can be used with even larger valued resistors.  
When using very large values of resistance careful layout and thorough  
Note 3: The cutoff frequency temperature drift at low frequencies is as  
listed. At higher cutoff frequencies (approaching 25.6kHz in low power  
mode and approaching 256kHz in high speed mode) the internal  
amplifier’s bandwidth can effect the cutoff frequency. At these limits the  
cutoff frequency temperature drift is ±15ppm/°C.  
156323fa  
4
LTC1563-2/LTC1563-3  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Voltage Swing High vs  
Load Resistance  
Output Voltage Swing High vs  
Load Resistance  
Output Voltage Swing High vs  
Load Resistance  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
5.5  
V
= SINGLE 3.3V  
V
= SINGLE 5V  
V = ±5V  
S
S
S
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
HS MODE  
LP MODE  
HS MODE  
LP MODE  
HS MODE  
LP MODE  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
LOAD RESISTANCE—LOAD TO GROUND ()  
LOAD RESISTANCE—LOAD TO GROUND ()  
LOAD RESISTANCE—LOAD TO GROUND ()  
1563 G01  
1563 G02  
1563 G03  
Output Voltage Swing Low vs  
Load Resistance  
Output Voltage Swing Low vs  
Load Resistance  
Output Voltage Swing Low vs  
Load Resistance  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.025  
0.020  
0.015  
0.010  
0.005  
0
–4.3  
–4.4  
–4.5  
–4.6  
–4.7  
–4.8  
–4.9  
–5.0  
V
= SINGLE 3.3V  
V
= SINGLE 5V  
V = ± 5V  
S
S
S
HS MODE  
HS MODE  
LP MODE  
LP MODE  
HS MODE  
LP MODE  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
LOAD RESISTANCE—LOAD TO GROUND ()  
LOAD RESISTANCE—LOAD TO GROUND ()  
LOAD RESISTANCE—LOAD TO GROUND ()  
1563 G04  
1563 G05  
1563 G06  
THD + Noise vs Input Voltage  
THD + Noise vs Input Voltage  
THD + Noise vs Input Voltage  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
3.3V SUPPLY  
5V SUPPLY  
±5V SUPPLY  
3.3V SUPPLY  
5V SUPPLY  
±5V SUPPLY  
3.3V SUPPLY  
5V SUPPLY  
±5V SUPPLY  
f
= 25.6kHz  
f
= 25.6kHz  
f = 256kHz  
C
C
C
LOW POWER MODE  
= 5kHz  
HIGH SPEED MODE  
= 5kHz  
HIGH SPEED MODE  
f = 50kHz  
IN  
f
IN  
f
IN  
0.1  
1
10  
0.1  
1
10  
0.1  
1
10  
INPUT VOLTAGE (V  
)
INPUT VOLTAGE (V  
)
INPUT VOLTAGE (V  
)
P-P  
P-P  
P-P  
1563 G07  
1563 G08  
1563 G09  
156323fa  
5
LTC1563-2/LTC1563-3  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
THD + Noise vs Input Frequency  
THD + Noise vs Input Frequency  
THD + Noise vs Input Frequency  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–60  
–70  
–60  
–70  
V
= SINGLE 3.3V  
V
= SINGLE 3.3V  
V = SINGLE 3V  
S
S
S
LOW POWER MODE  
= 25.6kHz  
HIGH SPEED MODE  
= 25.6kHz  
HIGH SPEED MODE  
f
C
f
C
f
C
= 256kHz  
1V  
2V  
P-P  
P-P  
1V  
2V  
P-P  
P-P  
–80  
–80  
1V  
2V  
P-P  
–90  
–90  
P-P  
–100  
–100  
1
10  
INPUT FREQUENCY (kHz)  
20  
20  
20  
1
10  
INPUT FREQUENCY (kHz)  
20  
20  
20  
1
10  
INPUT FREQUENCY (kHz)  
100 200  
1563 G10  
1563 G11  
1563 G12  
THD + Noise vs Input Frequency  
THD + Noise vs Input Frequency  
THD + Noise vs Input Frequency  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–60  
–70  
–60  
–70  
V
= SINGLE 5V  
V = SINGLE 5V  
S
HIGH SPEED MODE  
f = 25.6kHz  
C
V
= SINGLE 5V  
S
S
LOW POWER MODE  
= 25.6kHz  
HIGH SPEED MODE  
f
C
f
C
= 256kHz  
1V  
2V  
P-P  
P-P  
1V  
2V  
P-P  
P-P  
1V  
P-P  
2V  
–80  
–80  
P-P  
–90  
–90  
3V  
P-P  
3V  
P-P  
3V  
P-P  
–100  
–100  
1
10  
INPUT FREQUENCY (kHz)  
1
10  
INPUT FREQUENCY (kHz)  
1
10  
INPUT FREQUENCY (kHz)  
100 200  
1563 G13  
1563 G14  
1563 G15  
THD + Noise vs Input Frequency  
THD + Noise vs Input Frequency  
THD + Noise vs Input Frequency  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–60  
–70  
–60  
–70  
V
= ± 5V  
V = ± 5V  
S
HIGH SPEED MODE  
f = 25.6kHz  
C
V
= ± 5V  
S
S
LOW POWER MODE  
= 25.6kHz  
HIGH SPEED MODE  
f
f
= 256kHz  
C
C
1V  
2V  
5V  
P-P  
P-P  
P-P  
1V  
2V  
5V  
P-P  
P-P  
P-P  
1V  
5V  
–80  
–80  
P-P  
2V  
P-P  
–90  
–90  
P-P  
–100  
–100  
1
10  
INPUT FREQUENCY (kHz)  
1
10  
INPUT FREQUENCY (kHz)  
1
10  
INPUT FREQUENCY (kHz)  
100 200  
1563 G16  
1563 G17  
1563 G18  
156323fa  
6
LTC1563-2/LTC1563-3  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Voltage Noise vs Cutoff  
Frequency  
THD + Noise vs Output Load  
THD + Noise vs Output Load  
60  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
V
= SINGLE 5V  
= 25.6kHz  
= 5kHz  
S
T
= 25°C  
A
LP MODE,  
P-P  
f
f
C
IN  
3V SIGNAL  
50  
40  
30  
20  
10  
0k  
2V , 50kHz  
P-P  
2V , 20kHz  
P-P  
LP MODE  
LP MODE,  
2V SIGNAL  
P-P  
HS MODE  
3V , 50kHz  
P-P  
3V , 20kHz  
P-P  
HS MODE,  
3V SIGNAL  
HS MODE,  
2V SIGNAL  
V
= SINGLE 5V  
S
P-P  
HIGH SPEED MODE  
P-P  
f
f
= 256kHz  
C
IN  
= 20kHz, 50kHz  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0.1  
1
10  
100  
1000  
f
(Hz)  
OUTPUT LOAD RESISTANCE—LOAD TO GROUND (k)  
OUTPUT LOAD RESISTANCE—LOAD TO GROUND (k)  
C
1563 G21  
1563 G19  
1563 G20  
THD + Noise vs Output Load  
Stopband Gain vs Input Frequency  
THD + Noise vs Output Load  
10  
0
–70  
–70  
V
= ± 5V  
S
f
= 256kHz  
C
f
f
= 25.6kHz  
= 5kHz  
C
IN  
LP MODE,  
5V SIGNAL  
–75  
–80  
–75  
P-P  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
2V , 50kHz  
P-P  
–80  
–85  
LP MODE,  
2V SIGNAL  
P-P  
5V , 50kHz  
P-P  
LTC1563-2  
LTC1563-3  
2V , 20kHz  
P-P  
–85  
HS MODE,  
2V SIGNAL  
–90  
–90  
P-P  
2V , 20kHz  
P-P  
V
= ± 5V  
S
HIGH SPEED MODE  
–95  
–95  
HS MODE,  
5V SIGNAL  
f
f
= 256kHz  
C
IN  
P-P  
= 20kHz, 50kHz  
–100  
–100  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
OUTPUT LOAD RESISTANCE—LOAD TO GROUND (k)  
OUTPUT LOAD RESISTANCE—LOAD TO GROUND (k)  
1563 G24  
1563 G22  
1563 G23  
Crosstalk Rejection vs Frequency  
Crosstalk Rejection vs Frequency  
–60  
–70  
–60  
–70  
DUAL SECOND ORDER  
BUTTERWORTH  
DUAL SECOND ORDER  
BUTTERWORTH  
f
= 25.6kHz  
f
= 256kHz  
C
C
HS OR LP MODE  
HIGH SPEED MODE  
–80  
–80  
–90  
–90  
–100  
–110  
–100  
–110  
1
10  
FREQUENCY (kHz)  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
1563 G26  
1563 G25  
156323fa  
7
LTC1563-2/LTC1563-3  
U
U
U
PIN FUNCTIONS  
LP (Pin 1): Low Power. The LTC1563-X has two operating  
modes:LowPowerandHighSpeed.Mostapplicationswill  
use the High Speed operating mode. Some lower fre-  
quency, lower gain applications can take advantage of the  
Low Power mode. When placed in the Low Power mode,  
the supply current is nearly an order of magnitude lower  
than the High Speed mode. Refer to the Applications  
Information section for more information on the Low  
Power mode.  
LPA, LPB (Pins 6, 15): Lowpass Output. These pins are  
the rail-to-rail outputs of an op amp. Each output is  
designed to drive a nominal net load of 5kand 20pF.  
Refer to the Applications Information section for more  
details on output loading effects.  
AGND (Pin 7): Analog Ground. The AGND pin is the  
midpointofaninternalresistivevoltagedividerdeveloping  
a potential halfway between the V+ and Vpins. The  
equivalentseriesresistanceisnominally10k.Thisserves  
as an internal ground reference. Filter performance will  
reflect the quality of the analog signal ground. An analog  
ground plane surrounding the package is recommended.  
The analog ground plane should be connected to any  
digital ground at a single point. Figures 1 and 2 show the  
proper connections for dual and single supply operation.  
The LTC1563-X is in the High Speed mode when the  
LPinputisatalogichighlevelorisopen-circuited. Asmall  
pull-up current source at the LP input defaults the  
LTC1563-X to the High Speed mode if the pin is left open.  
The part is in the Low Power mode when the pin is pulled  
to a logic low level or connected to V.  
SA, SB (Pins 2, 11): Summing Pins. These pins are a  
summing point for signals fed forward and backward.  
Capacitance on the SA or SB pin will cause excess peaking  
of the frequency response near the cutoff frequency. The  
three external resistors for each section should be located  
as close as possible to the summing pin to minimize this  
effect. Refer to the Applications Information section for  
more details.  
V, V+ (Pins 8, 16): The Vand V+ pins should be  
bypassed with 0.1µF capacitors to an adequate analog  
ground or ground plane. These capacitors should be  
connected as closely as possible to the supply pins. Low  
noise linear supplies are recommended. Switching sup-  
plies are not recommended as they will decrease the  
filter’s dynamic range. Refer to Figures 1 and 2 for the  
proper connections for dual and single supply operation.  
NC (Pins 3, 5, 10, 12, 14): These pins are not connected  
internally. For best performance, they should be con-  
nected to ground.  
EN (Pin 9): ENABLE. When the EN input goes high or is  
open-circuited, the LTC1563-X enters a shutdown state  
andonlyjunctionleakagecurrentsflow.TheAGNDpin,the  
LPA output and the LPB output assume high impedance  
states. If an input signal is applied to a complete filter  
circuit while the LTC1563-X is in shutdown, some signal  
will normally flow to the output through passive compo-  
nents around the inactive part.  
INVA, INVB (Pins 4, 13): Inverting Input. Each of the INV  
pins is an inverting input of an op amp. Note that the INV  
pins are high impedance, sensitive nodes of the filter and  
very susceptible to coupling of unintended signals.  
Capacitance on the INV nodes will also affect the fre-  
quency response of the filter sections. For these reasons,  
printed circuit connections to the INV pins must be kept as  
short as possible.  
A small internal pull-up current source at the EN input  
defaults the LTC1563 to the shutdown state if the EN pin  
isleftfloating. Therefore, theusermustconnecttheENpin  
to V(or a logic low) to enable the part for normal  
operation.  
156323fa  
8
LTC1563-2/LTC1563-3  
U
U
U
PIN FUNCTIONS  
Dual Supply Power and Ground Connections  
Single Supply Power and Ground Connections  
LTC1563-X  
ANALOG  
LTC1563-X  
ANALOG  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
+
+
+
+
LP  
LP  
V
V
V
V
GROUND  
PLANE  
GROUND  
PLANE  
0.1µF  
0.1µF  
SA  
SA  
LPB  
NC  
LPB  
NC  
NC  
NC  
INVA  
NC  
INVA  
NC  
INVB  
NC  
INVB  
NC  
LPA  
AGND  
LPA  
AGND  
SB  
SB  
NC  
NC  
+
0.1µF  
V
V
EN  
V
EN  
0.1µF  
SINGLE POINT  
SYSTEM GROUND  
SINGLE POINT  
SYSTEM GROUND  
DIGITAL  
GROUND PLANE  
(IF ANY)  
DIGITAL  
GROUND PLANE  
(IF ANY)  
1563 PF02  
1563 PF01  
W
BLOCK DIAGRA  
R21  
R22  
V
OUT  
R11  
R31  
R32  
R12  
V
IN  
+
V
16  
C1B  
C1A  
SHUTDOWN  
SWITCH  
+
+
11  
SB  
C2B  
13  
2
SA  
C2A  
4
20k  
20k  
LPA  
6
15 LPB  
INVB  
INVA  
AGND  
7
AGND  
AGND  
AGND  
SHUTDOWN  
SWITCH  
9
1
EN  
LP  
8
V
LTC1563-X  
1563 BD  
PATENT PENDING  
156323fa  
9
LTC1563-2/LTC1563-3  
U
W U U  
APPLICATIONS INFORMATION  
Functional Description  
resistance in parallel, yields a net effective resistance of  
9.52M and an error of 5%. Note that the gain is also  
limited to unity at the minimum fC.  
The LTC1563-2/LTC1563-3 are a family of easy-to-use,  
4th order lowpass filters with rail-to-rail operation. The  
LTC1563-2, with a single resistor value, gives a unity-gain  
filter approximating a Butterworth response. The  
LTC1563-3, with a single resistor value, gives a unity-gain  
filter approximating a Bessel (linear phase) response. The  
proprietary architecture of these parts allows for a simple  
unity-gain resistor calculation:  
At intermediate fC, the gain is limited by one of the two  
reasons discussed above. For best results, design filters  
with gain using FilterCAD Version 3 (or newer) or contact  
the Linear Technology Filter Applications Group for  
assistance.  
Whilethesimpleformulaandthetablesintheapplications  
section deliver good approximations of the transfer func-  
tions,amoreaccurateresponseisachievedusingFilterCAD.  
FilterCAD calculates the resistor values using an accurate  
and complex algorithm to account for parasitics and op  
amplimitations. AdesignusingFilterCADwillalwaysyield  
the best possible design. By using the FilterCAD design  
tool you can also achieve filters with cutoff frequencies  
beyond 256kHz. Cutoff frequencies up to 360kHz are  
attainable.  
R = 10k(256kHz/fC)  
where fC is the desired cutoff frequency. For many appli-  
cations, this formula is all that is needed to design a filter.  
For example, a 50kHz filter requires a 51.2k resistor. In  
practice, a 51.1k resistor would be used as this is the  
closest E96, 1% value available.  
The LTC1563-X is constructed with two 2nd order sec-  
tions. The output of the first section (section A) is simply  
fed into the second section (section B). Note that section  
A and section B are similar, but not identical. The parts are  
designed to be simple and easy to use.  
Contact the Linear Technology Filter Applications Group  
for a copy the FilterCAD software. FilterCAD can also be  
downloaded from our website at www.linear.com.  
By simply utilizing different valued resistors, gain, other  
transfer functions and higher cutoff frequencies are  
achieved. For these applications, the resistor value calcu-  
lation gets more difficult. The tables of formulas provided  
later in this section make this task much easier. For best  
results,designthesefiltersusingFilterCADVersion3.0(or  
newer) or contact the Linear Technology Filter Applica-  
tions group for assistance.  
DC Offset, Noise and Gain Considerations  
The LTC1563-X is DC offset trimmed in a 2-step manner.  
First, section A is trimmed for minimum DC offset. Next,  
section B is trimmed to minimize the total DC offset  
(section A plus section B). This method is used to give the  
minimum DC offset in unity gain applications and most  
higher gain applications.  
Cutoff Frequency (fC) and Gain Limitations  
Forgainsgreaterthanunity, thegainshouldbedistributed  
such that most of the gain is taken in section A, with  
section B at a lower gain (preferably unity). This type of  
gain distribution results in the lowest noise and lowest DC  
offset. For high gain, low frequency applications, all of the  
gain is taken in section A, with section B set for unity-gain.  
In this configuration, the noise and DC offset is dominated  
by those of section A. At higher frequencies, the op amps’  
finite bandwidth limits the amount of gain that section A  
can reliably achieve. The gain is more evenly distributed in  
this case. The noise and DC offset of section A is now  
multiplied by the gain of section B. The result is slightly  
higher noise and offset.  
The LTC563-X has both a maximum fC limit and a mini-  
mumfC limit.ThemaximumfC limit(256kHzinHighSpeed  
mode and 25.6kHz in the Low Power mode) is set by the  
speed of the LTC1563-X’s op amps. At the maximum fC,  
the gain is also limited to unity.  
A minimum fC is dictated by the practical limitation of  
reliably obtaining large valued, precision resistors. As the  
desiredfC decreases,theresistorvaluerequiredincreases.  
When fC is 256Hz, the resistors are 10M. Obtaining a  
reliable, precise 10M resistance between two points on a  
printed circuit board is somewhat difficult. For example, a  
10M resistor with only 200Mof stray, layout related  
156323fa  
10  
LTC1563-2/LTC1563-3  
U
W U U  
APPLICATIONS INFORMATION  
Output Loading: Resistive and Capacitive  
near the cutoff frequency. Poor layout can give 0.5dB to  
1dB of excess peaking.  
The op amps of the LTC1563-X have a rail-to-rail output  
stage. To obtain maximum performance, the output load-  
ing effects must be considered. Output loading issues can  
be divided into resistive effects and capacitive effects.  
To minimize the effects of parasitic layout capacitance, all  
of the resistors for section A should be placed as close as  
possible to the SA pin. Place the R31 resistor first so that  
it is as close as possible to the SA pin on one end and as  
close as possible to the INVA pin on the other end. Use the  
same strategy for the layout of section B, keeping all of the  
resistors as close as possible to the SB node and first  
placing R32 between the SB and INVB pins. It is also best  
if the signal routing and resistors are on the same layer as  
the part without any vias in the signal path.  
Resistiveloadingaffectsthemaximumoutputsignalswing  
and signal distortion. If the output load is excessive, the  
output swing is reduced and distortion is increased. All of  
theoutputvoltageswingtestingontheLTC1563-Xisdone  
withR22=100kanda10kloadresistor.Forbestundistorted  
outputswing, theoutputloadresistanceshouldbegreater  
than 10k.  
Figure 1 illustrates a good layout using the LTC1563-X  
with surface mount 0805 size resistors. An even tighter  
layout is possible with smaller resistors.  
Capacitive loading on the output reduces the stability of  
the op amp. If the capacitive loading is sufficiently high,  
the stability margin is decreased to the point of oscillation  
at the output. Capacitive loading should be kept below  
30pF. Good, tight layout techniques should be maintained  
at all times. These parts should not drive long traces and  
must never drive a long coaxial cable. When probing the  
LTC1563-X,alwaysusea10xprobe.Neverusea1xprobe.  
A standard 10x probe has a capacitance of 10pF to 15pF  
while a 1x probe’s capacitance can be as high as 150pF.  
The use of a 1x probe will probably cause oscillation.  
R11  
V
IN  
LTC1563-X  
V
OUT  
R12  
For larger capacitive loads, a series isolation resistor can  
be used between the part and the capacitive load. If the  
load is too great, a buffer must be used.  
1653 F01  
Figure 1. PC Board Layout  
Layout Precautions  
Single Pole Sections and Odd Order Filters  
The LTC1563-X is an active RC filter. The response of the  
filter is determined by the on-chip capacitors and the  
external resistors. Any external, stray capacitance in par-  
allel with an on-chip capacitor, or to an AC ground, can  
alter the transfer function.  
The LTC1563 is configured to naturally form even ordered  
filters (2nd, 4th, 6th and 8th). With a little bit of work,  
singlepolesectionsandoddorderfiltersareeasilyachieved.  
To form a single pole section you simply use the op amp,  
the on-chip C1 capacitor and two external resistors as  
shown in Figure 2. This gives an inverting section with the  
gain set by the R2-R1 ratio and the pole set by the R2-C1  
time constant. You can use this pole with a 2nd order  
section to form a noninverting gain 3rd order filter or as a  
stand alone inverting gain single pole filter.  
Capacitance to an AC ground is the most likely problem.  
Capacitance on the LPA or LPB pins does not affect the  
transfer function but does affect the stability of the op  
amps. Capacitance on the INVA and INVB pins will affect  
the transfer function somewhat and will also affect the  
stability of the op amps. Capacitance on the SA and SB  
pins alters the transfer function of the filter. These pins are  
the most sensitive to stray capacitance. Stray capacitance  
on these pins results in peaking of the frequency response  
Figure 3 illustrates another way of making odd order  
filters. The R1 input resistor is split into two parts with an  
additional capacitor connected to ground in between the  
resistors.ThisTEEnetworkformsasinglerealpole.RB1  
156323fa  
11  
LTC1563-2/LTC1563-3  
U
W U U  
APPLICATIONS INFORMATION  
RA1  
RB1  
P
R2  
R3  
C1  
should be much larger than RA1 to minimize the interac-  
tion of this pole with the 2nd order section. This circuit is  
useful in forming dual 3rd order filters and 5th order filters  
with a single LTC1563 part. By cascading two parts, 7th  
order and 9th order filters are achieved.  
C
S
INV  
LP  
R1  
R2  
+
V
V
OUT  
IN  
C2  
(OPEN)  
S
AGND  
INV  
LP  
C1  
1/2 LTC1563  
RB1  
+
1563 F03  
C2  
RA1 ≈  
10  
1
F
=
P
RA1 • RB1  
AGND  
2π •  
C
P
(
)
RA1 + RB1  
1/2 LTC1563  
–R2  
Figure 3  
DC GAIN =  
LTC1563-2: C1A = 53.9pF, C1B = 39.2pF  
LTC1563-3: C1A = 35pF, C1B = 26.8pF  
R1  
What To Do with an Unused Section  
1
F
=
P
1563 F02  
2π • R2 • C1  
If the LTC1563 is used as a 2nd or 3rd order filter, one of  
the sections is not used. Do not leave this section uncon-  
nected. If the section is left unconnected, the output is left  
to float and oscillation may occur. The unused section  
should be connected as shown in Figure 4 with the INV pin  
connected to the LP pin and the S pin left open.  
Figure 2  
You can also use the TEE network in both sections of the  
part to make a 6th order filter. This 6th order filter does not  
conform exactly to the textbook responses. Textbook  
responses (Butterworth, Bessel, Chebyshev etc.) all have  
three complex pole pairs. This filter has two complex pole  
pairs and two real poles. The textbook response always  
has one section with a low Q value between 0.5 and 0.6. By  
replacing this low Q section with two real poles (two real  
poles are the same mathematically as a complex pole pair  
with a Q of 0.5) and tweaking the Q of the other two  
complex pole pair sections you end up with a filter that is  
indistinguishable from the textbook filter. The Typical  
Applicationssectionillustratesa100kHz,6thorderpseudo-  
Butterworth filter. FilterCAD is a valuable tool for custom  
filter design and tweaking textbook responses.  
(OPEN)  
S
INV  
LP  
C1  
+
C2  
AGND  
1/2 LTC1563  
1563 F04  
Figure 4  
156323fa  
12  
LTC1563-2/LTC1563-3  
U
W U U  
APPLICATIONS INFORMATION  
4th Order Filter Responses Using the LTC1563-2  
LTC1563-2  
10  
0
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
LP  
V
V
OUT  
R22  
SA  
LPB  
NC  
–20  
–40  
–60  
NC  
R31  
R21  
R32  
INVA  
NC  
INVB  
NC  
BUTTERWORTH  
0.5dB RIPPLE  
CHEBYSHEV  
0.1dB RIPPLE  
CHEBYSHEV  
LPA  
AGND  
SB  
NC  
R11  
R12  
V
EN  
–80  
–90  
1563 F05  
NORMALIZED TO f = 1Hz  
C
V
IN  
0.1  
1
10  
FREQUENCY (Hz)  
1563 F05a  
Figure 5. 4th Order Filter Connections (Power Supply, Ground,  
EN and LP Connections Not Shown for Clarity). Table 1 Shows  
Resistor Values  
Figure 5a. Frequency Response  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1
0
–2  
–4  
BUTTERWORTH  
0.5dB RIPPLE  
CHEBYSHEV  
0.1dB RIPPLE  
CHEBYSHEV  
BUTTERWORTH  
0.5dB RIPPLE  
CHEBYSHEV  
0.1dB RIPPLE  
CHEBYSHEV  
–6  
–8  
NORMALIZED TO f = 1Hz  
C
NORMALIZED TO f = 1Hz  
C
–10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.1  
1
2
TIME (s)  
FREQUENCY (Hz)  
1563 F05b  
1563 F05c  
Figure 5b. Passband Frequency Response  
Figure 5c. Step Response  
Table 1. Resistor Values, Normalized to 256kHz Cutoff Frequency (f ), Figure 5. The Passband  
C
Gain, of the 4th Order LTC1563-2 Lowpass Filter, Is Set to Unity. (Note 1)  
0.1dB RIPPLE  
CHEBYSHEV  
0.5dB RIPPLE  
CHEBYSHEV  
BUTTERWORTH  
25.6kHz  
LP Mode Max f  
15kHz  
13kHz  
C
HS Mode Max f  
R11 = R21 =  
R31 =  
256kHz  
135kHz  
113kHz  
C
10k(256kHz/f )  
13.7k(256kHz/f )  
20.5k(256kHz/f )  
C
C
C
10k(256kHz/f )  
10.7k(256kHz/f )  
12.4k(256kHz/f )  
C
C
C
R12 = R22 =  
R32 =  
10k(256kHz/f )  
10k(256kHz/f )  
12.1k(256kHz/f )  
C
C
C
10k(256kHz/f )  
6.81k(256kHz/f )  
6.98k(256kHz/f )  
C
C
C
Example: In HS mode, 0.1dB ripple Chebyshev, 100kHz cutoff frequency, R11 = R21 = 35k 34.8k (1%),  
R31 = 27.39k 27.4k (1%), R12 = R22 = 256k 255k (1%), R32 = 17.43k 17.4k (1%)  
Note 1: The resistor values listed in this table provide good approximations of the listed transfer functions. For the  
optimal resistor values, higher gain or other transfer functions, use FilterCAD Version 3.0 (or newer) or contact the  
Linear Technology Filter Applications group for assistance.  
156323fa  
13  
LTC1563-2/LTC1563-3  
U
W U U  
APPLICATIONS INFORMATION  
4th Order Filter Responses Using the LTC1563-3  
10  
0
LTC1563-3  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
LP  
V
V
OUT  
R22  
R32  
SA  
LPB  
NC  
–20  
–40  
–60  
NC  
R31  
R21  
INVA  
NC  
INVB  
NC  
BESSEL  
TRANSITIONAL  
GAUSSIAN TO 12dB  
TRANSITIONAL  
GAUSSIAN TO 6dB  
LPA  
AGND  
SB  
NC  
R11  
R12  
V
EN  
–80  
–90  
NORMALIZED TO f = 1Hz  
C
1563 F06  
V
IN  
0.1  
1
10  
FREQUENCY (Hz)  
1563 F06a  
Figure 6. 4th Order Filter Connections (Power Supply, Ground,  
EN and LP Connections Not Shown for Clarity). Table 2 Shows  
Resistor Values  
Figure 6a. Frequency Response  
1.2  
1.0  
0.8  
1.05  
1.00  
0.95  
BESSEL  
TRANSITIONAL  
GAUSSIAN TO 12dB  
TRANSITIONAL  
GAUSSIAN TO 6dB  
0.6  
BESSEL  
TRANSITIONAL  
GAUSSIAN TO 12dB  
TRANSITIONAL  
GAUSSIAN TO 6dB  
0.4  
0.2  
0
NORMALIZED TO f = 1Hz  
C
NORMALIZED TO f = 1Hz  
C
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
TIME (s)  
TIME (s)  
1563 F06b  
1563 F06c  
Figure 6b. Step Response  
Figure 6c. Step Response—Settling  
Table 2. Resistor Values, Normalized to 256kHz Cutoff Frequency (f ), Figure 6. The Passband  
C
Gain, of the 4th Order LTC1563-3 Lowpass Filter, Is Set to Unity. (Note 1)  
TRANSITIONAL  
GAUSSIAN TO 6dB  
TRANSITIONAL  
GAUSSIAN TO 12dB  
BESSEL  
25.6kHz  
256kHz  
LP Mode Max f  
20kHz  
21kHz  
C
HS Mode Max f  
R11 = R21 =  
R31 =  
175kHz  
185kHz  
C
10k(256kHz/f )  
17.4k(256kHz/f )  
15k(256kHz/f )  
C
C
C
10k(256kHz/f )  
13.3k(256kHz/f )  
11.8k(256kHz/f )  
C
C
C
R12 = R22 =  
R32 =  
10k(256kHz/f )  
14.3k(256kHz/f )  
10.5k(256kHz/f )  
C
C
C
10k(256kHz/f )  
6.04k(256kHz/f )  
6.19k(256kHz/f )  
C
C
C
Note 1: The resistor values listed in this table provide good approximations of the listed transfer functions. For the  
optimal resistor values, higher gain or other transfer functions, use FilterCAD Version 3.0 (or newer) or contact the  
Linear Technology Filter Applications group for assistance.  
156323fa  
14  
LTC1563-2/LTC1563-3  
U
TYPICAL APPLICATIO S  
±5V, 2.3mA Supply Current, 20kHz, 4th Order,  
Frequency Response  
0.5dB Ripple Chebyshev Lowpass Filter  
10  
0
LTC1563-2  
V
OUT  
5V  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
LP  
V
162k  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0.1µF  
SA  
LPB  
NC  
NC  
169k  
274k  
95.3k  
INVA  
NC  
INVB  
NC  
274k  
–5V  
V
IN  
LPA  
AGND  
SB  
NC  
162k  
ENABLE  
V
EN  
0.1µF  
1563 TA03  
1
10  
100  
FREQUENCY (kHz)  
1563 TA04  
Single 3.3V, 2mA Supply Current, 20kHz 8th Order Butterworth Lowpass Filter  
3.3V  
0.1µF  
0.1µF  
LTC1563-2  
LTC1563-2  
210k  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
+
+
LP  
LP  
V
V
V
OUT  
82.5k  
196k  
158k  
100k  
SA  
SA  
LPB  
NC  
LPB  
NC  
NC  
NC  
115k  
137k  
75k  
INVA  
NC  
INVA  
NC  
INVB  
NC  
INVB  
NC  
210k  
LPA  
AGND  
LPA  
AGND  
SB  
SB  
NC  
NC  
115k  
82.5k  
158k  
V
V
EN  
EN  
0.1µF  
0.1µF  
V
IN  
1563 TA05  
ENABLE  
Frequency Response  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
1
10  
100  
FREQUENCY (kHz)  
1563 TA06  
156323fa  
15  
LTC1563-2/LTC1563-3  
U
TYPICAL APPLICATIO S  
100kHz, 6th Order Pseudo-Butterworth  
Frequency Response  
3.3V  
10  
0
0.1µF  
LTC1563-2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
R22  
+
LP  
V
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
28.7k  
SA  
LPB  
NC  
V
OUT  
NC  
R32  
R31  
INVA  
NC  
INVB  
NC  
20.5k  
17.8k  
R21  
R
3.16k  
R
B1  
29.4k  
A1  
V
IN  
LPA  
AGND  
SB  
32.4k  
C11  
560pF  
NC  
V
EN  
0.1µF  
R
3.16k  
R
25.5k  
10k  
100k  
1M  
A2  
B2  
FREQUENCY (Hz)  
C12  
560pF  
1563 TA07a  
1563 TA07  
The complex, 2nd order section of the textbook design  
withthelowestQisreplacedwithtworealfirstorderpoles.  
The Q of another section is slightly altered such that the  
final filter’s response is indistinguisable from a textbook  
Butterworth response.  
TEXTBOOK BUTTERWORTH  
PSEUDO-BUTTERWORTH  
f 1 = 100kHz Q1 = 1.9319  
f 1 = 100kHz  
Q1 = 1.9319  
Q2 = 0.7071  
Q3 = 0.5176  
O
O
f 2 = 100kHz  
f 2 = 100kHz Q2 = 0.7358  
O
O
f 3 = 100kHz  
f 3 = 100kHz Real Poles  
O
O
f 4 = 100kHz Real Poles  
O
Other Pseudo Filter Response Coefficients (All f Are Normalized for a 1Hz Filter Cutoff)  
O
BESSEL 0.1dB RIPPLE CHEBYSHEV 0.5dB RIPPLE CHEBYSHEV  
TRANSITIONAL GAUSSIAN TO 12dB TRANSITIONAL GAUSSIAN TO 6dB  
f 1  
1.9070  
1.0230  
1.6910  
0.6110  
1.6060  
1.6060  
1.0600  
3.8500  
0.8000  
1.0000  
0.6000  
1.0000  
1.0100  
5.3000  
0.7200  
1.2000  
0.5000  
0.8000  
2.1000  
2.2000  
1.2500  
0.8000  
1.2500  
1.2500  
1.5000  
2.8500  
1.0500  
0.9000  
0.9000  
0.9000  
O
Q1  
f 2  
O
Q2  
f 3  
O
f 4  
O
The fO and Q values listed above can be entered in  
FilterCAD’s Enhanced Design window as a custom re-  
sponse filter. After entering the coefficients, FilterCAD will  
produce a schematic of the circuit. The procedure is as  
follows:  
4. Enter the fO and Q coefficients as listed above. For a  
Butterworth filter, use the same coefficients as the  
example circuit above except set all of the fO to 1Hz.  
5. Set the custom FC to the desired cutoff frequency. This  
will automatically multiply all of the fO coefficients. You  
have now finished the design of the filter and you can  
click on the frequency response or step response  
buttons to verify the filter’s response.  
1. After starting FilterCAD, select the Enhanced Design  
window.  
2. Select the Custom Response and set the custom FC to  
1Hz.  
6. Click on the Implement button to go on to the filter  
implementation stage.  
3. IntheCoefficientstable,gototheTypecolumnandclick  
onthetypeslistedandsetthecolumnwithtwoLPtypes  
andtwoLP1types.Thissetsupatemplateofa6thorder  
filter with two 2nd order lowpass sections and two 1st  
order lowpass sections.  
7. In the Enhanced Implement window, click on the Active  
RC button to choose the LTC1563-2 part. You are now  
done with the filter’s implementation. Click on the  
schematic button to view the resulting circuit.  
156323fa  
16  
LTC1563-2/LTC1563-3  
U
TYPICAL APPLICATIO S  
22kHz, 5th Order, 0.1dB Ripple Chebyshev Lowpass Filter  
Driving the LTC1604, 16-Bit ADC  
5V  
0.1µF  
LTC1563-2  
10µF  
+
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
LTC1604  
+
R22  
1
2
35  
+
LP  
V
A
A
V
AV  
AV  
5V  
IN  
IN  
DD  
137k  
10  
560pF  
36  
49.9Ω  
2.2µF  
SA  
LPB  
NC  
DD  
3
33  
NC  
SHDN  
CS  
REF  
10µF  
R32  
R31  
4
32  
INVA  
NC  
INVB  
NC  
REFCOMP  
AGND  
78.7k  
47µF  
µP  
82.5k  
R21  
5
31  
CONVST  
RD  
CONTROL  
LINES  
R
26.7k  
R
215k  
B1  
A1  
V
6
30  
IN  
LPA  
AGND  
SB  
AGND  
243k  
C11  
560pF  
7
27  
NC  
AGND  
BUSY  
–5V  
V
8
11 TO 26  
EN  
AGND  
16-BIT  
PARALLEL BUS  
9
0.1µF  
DV  
DD  
5V  
+
R12 137k  
10  
34  
29  
DGND  
OV  
DD  
10µF  
10µF  
5V OR 3V  
+
28  
V
OGND  
10µF  
SS  
–5V  
+
1563 TA08  
4096 Point FFT of the Output Data  
0
–20  
–40  
–60  
–80  
f
f
= 292.6kHz  
SAMPLE  
= 20kHz  
IN  
SINAD = 85dB  
THD = –91.5dB  
–100  
–120  
–140  
0
36.58  
73.15  
109.73  
146.30  
FREQUENCY (kHz)  
1563 TA08a  
156323fa  
17  
LTC1563-2/LTC1563-3  
U
TYPICAL APPLICATIO S  
50kHz Wideband Bandpass  
4th Order Bessel Lowpass at 128kHz with Two Highpass Poles at 11.7kHz Yields a Wideband Bandpass Centered at 50kHz  
10  
5V  
LTC1563-3  
0.1µF  
0
–10  
–20  
–30  
–40  
–50  
–60  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
R22  
20k  
LP  
V
SA  
LPB  
NC  
V
OUT  
NC  
R31  
R32  
20k  
INVA  
NC  
INVB  
NC  
C11  
680pF  
20k  
R21  
R11  
20k  
LPA  
SB  
V
IN  
20k  
R12  
20k  
AGND  
NC  
V
EN  
–5V  
C12  
680pF  
0.1µF  
1k  
10k  
100k  
1M  
1563 TA09  
FREQUENCY (Hz)  
1563 TA09a  
To design these wideband bandpass filters with the  
LTC1563, start with a 4th order lowpass filter and add two  
highpasspoleswiththeinput,ACcouplingcapacitors.The  
lowpass cutoff frequency and highpass pole frequencies  
dependonthespecificapplication. Someexperimentation  
oflowpassandhighpassfrequenciesisrequiredtoachieve  
the desired response. FilterCAD does not directly support  
this configuration. Use the custom design window in  
FilterCAD get the desired response and then use FilterCAD  
to give the schematic for the lowpass portion of the filter.  
Calculate the two highpass poles using the following  
formulae:  
4. In the Coefficients table, the first two rows are the LP  
Type with the fO and Q as previously defined. Go to the  
third and fourth rows and click on the Type column  
(currently a hyphen is in this space). Change the Type  
of each of these rows to type HP1. This sets up a  
templateofa6thorderfilterwithtwo2ndorderlowpass  
sections and two 1st order highpass sections.  
5. Change the frequency of the highpass (HP1) poles to  
get the desired frequency response.  
6. You may have to perform this loop several times before  
you close in on the correct response.  
7. Once you have reached a satisfactory response, note  
thehighpasspolefrequencies. TheHP1highpasspoles  
must now be removed from the Custom design coeffi-  
cientstable.Afterremovingthehighpasspoles,clickon  
the Implement button to go on to the filter implementa-  
tion stage.  
1
1
f HPA =  
, f HPB =  
O
(
)
(
)
O
2• π R11C11  
2• π R12C12  
The design process is as follows:  
1. After starting FilterCAD, select the Enhanced Design  
window.  
8. In the Enhanced Implement window, click on the Active  
RC button and choose the LTC1563-2 part. Click on the  
schematic button to view the resulting circuit.  
2. Choose a 4th order Bessel or Butterworth lowpass filter  
response and set the cutoff frequency to the high  
frequency corner of the desired bandpass.  
9. You now have the schematic for the 4th order lowpass  
part of the design. Now calculate the capacitor values  
from the following formulae:  
3. Click on the custom response button. This copies the  
lowpass coefficients into the custom design Coeffi-  
cients table.  
1
1
C11=  
, C12 =  
2• π R11• f HPA  
2• π R12• f HPB  
(
)
(
)
O
O
156323fa  
18  
LTC1563-2/LTC1563-3  
U
TYPICAL APPLICATIO S  
150kHz, 0.5dB Ripple, 4th Order Chebyshev with 10dB of DC Gain  
20  
10  
5V  
LTC1563-2  
0.1µF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
0
R22  
21k  
LP  
V
–10  
–20  
–30  
–40  
–50  
–60  
–70  
SA  
LPB  
NC  
V
OUT  
NC  
R31  
R32  
INVA  
NC  
INVB  
NC  
9.76k  
R21  
12.7k  
R11  
24.3k  
LPA  
AGND  
SB  
V
IN  
76.8k  
R12  
21k  
NC  
–5V  
V
EN  
0.1µF  
10k  
100k  
1M  
1563 TA10  
FREQUENCY (Hz)  
1563 TA10a  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
GN Package  
16-Lead Plastic SSOP (Narrow 0.150)  
(LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ± .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
156323fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC1563-2/LTC1563-3  
U
TYPICAL APPLICATIO S  
Single Supply, 10kHz, Bandpass Filter  
Maximum Fcenter = 120kHz (–3dB Bandwidth = Fcenter/10)  
Frequency Response  
+
3
0
V
LTC1563-2  
0.1µF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
R3  
LP  
V
200k  
–3  
SA  
LPB  
NC  
V
OUT  
R1  
31.6k  
NC  
–6  
V
IN  
INVA  
NC  
INVB  
NC  
–9  
R4  
200k  
R2  
4.99k  
–12  
–15  
–18  
–21  
LPA  
AGND  
SB  
NC  
0.1µF  
V
EN  
–24  
1563 TA11  
5
7.5  
10  
12.5  
20  
15  
17.5  
31.6k  
R1  
FREQUENCY (kHz)  
GAIN AT f  
=
MAXIMUM GAIN = 120kHz/f  
CENTER  
CENTER  
R2 = 4.99k  
1563 TA11a  
R3 = R4 = R  
21  
10  
R =  
2
11  
f
• (f  
+ 5 • 10 )  
CENTER  
CENTER  
Single Supply, 100kHz, Elliptic Lowpass Filter  
Maximum Fcutoff = 120kHz  
Frequency Response  
V
6
OUT  
+
V
0
–6  
LTC1563-2  
0.1µF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
R1  
R5  
LP  
V
32.4k  
32.4k  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
V
SA  
IN  
LPB  
NC  
R3  
NC  
15k  
INVA  
NC  
INVB  
NC  
R4  
32.4k  
R2  
32.4k  
LPA  
AGND  
SB  
R6  
21k  
NC  
C
IN  
27pF  
0.1µF  
V
EN  
1K  
10K  
100K  
1M  
FREQUENCY (Hz)  
1563 TA12  
PASSBAND GAIN = 0dB  
STOPBAND ATTENUATION = 26dB AT 1.5X f  
IN  
1563 TA12a  
CUTOFF  
C
= 27pF R2 = R4 = R5 = R1  
9
R1  
2.16  
R1  
1.54  
3.24 • 10  
CUTOFF  
R1 =  
R3 =  
R6 =  
f
RELATED PARTS  
PART NUMBER  
LTC1560-1  
LTC1562  
DESCRIPTION  
COMMENTS  
No External Components, SO-8  
10kHz < f < 150kHz  
5-Pole Elliptic Lowpass, f = 1MHz/0.5MHz  
C
Universal Quad 2-Pole Active RC  
O
LTC1562-2  
LTC1569-6  
LTC1569-7  
LTC1565-31  
LTC1568  
Universal Quad 2-Pole Active RC  
20kHz < f < 300kHz  
O
Low Power 10-Pole Delay Equalized Elliptic Lowpass  
10-Pole Delay Equalized Elliptic Lowpass  
650kHz Continuous Time, Linear Phase Lowpass  
f < 80kHz, One Resistor Sets f , SO-8  
C C  
f < 256kHz, One Resistor Sets f , SO-8  
C
C
f = 650kHz, Differential In/Out  
C
th  
Very Low Noise 4 Order Filter Building Block  
f < 10MHz  
C
156323fa  
LT 1205 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LTC1563-3IGN

Active RC, 4th Order Lowpass Filter Family
Linear

LTC1563-3IGN#TRPBF

LTC1563 - Active RC, 4th Order Lowpass Filter Family; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1563-3_15

Active RC, 4th Order Lowpass Filter Family
Linear

LTC1563C

Active RC, 4th Order Lowpass Filter Family
Linear

LTC1563I

Active RC, 4th Order Lowpass Filter Family
Linear

LTC1564

10kHz to 150kHz Digitally Controlled Antialiasing Filter and 4-Bit P.G.A
Linear

LTC1564CG

10kHz to 150kHz Digitally Controlled Antialiasing Filter and 4-Bit P.G.A
Linear

LTC1564CG#TR

暂无描述
Linear

LTC1564CGPBF

暂无描述
Linear

LTC1564IG

10kHz to 150kHz Digitally Controlled Antialiasing Filter and 4-Bit P.G.A
Linear

LTC1564IG#PBF

LTC1564 - 10kHz to 150kHz Digitally Controlled Antialiasing Filter and 4-Bit P.G.A; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1564IG#TRPBF

LTC1564 - 10kHz to 150kHz Digitally Controlled Antialiasing Filter and 4-Bit P.G.A; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear