LTC1335ISW [Linear]

LTC1335 - RS232/EIA562/RS485 Transceivers; Package: SO; Pins: 24; Temperature Range: -40°C to 85°C;
LTC1335ISW
型号: LTC1335ISW
厂家: Linear    Linear
描述:

LTC1335 - RS232/EIA562/RS485 Transceivers; Package: SO; Pins: 24; Temperature Range: -40°C to 85°C

文件: 总20页 (文件大小:454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1321/LTC1322/LTC1335  
RS232/EIA562/RS485  
Transceivers  
U
DESCRIPTIO  
EATURE  
S
F
The LTC1321/LTC1322/LTC1335 are low power CMOS  
bidirectionaltransceivers,eachfeaturingtworeconfigurable  
interface ports. Each can be configured as two RS485  
differential ports, as two single-ended ports, or as one  
RS485 differential port and one single-ended port. The  
LTC1321/LTC1322canprovideRS232orEIA562compat-  
ible single-ended outputs; the LTC1335 provides EIA562  
compatible outputs and additionally includes an output  
enable pin, allowing the receiver logic level outputs to be  
three-stated.  
LTC1321: 2-EIA562/RS232 Transceivers/2-RS485  
Transceivers  
LTC1322: 4-EIA562/RS232 Transceivers/2-RS485  
Transceivers  
LTC1335: 4-EIA562 Transceivers/2-RS485  
Transceivers with OE  
LTC1321/LTC1322 Have the Same Pinout as  
SP301/SP302  
LTC1335 Features Receiver Three-State Outputs  
Low Supply Current: 1mA Typical  
15µA Supply Current in Shutdown  
120kBaud in EIA/TIA-562 or RS232 Mode  
10MBaud in RS485/RS422 Mode  
Self-Testing Capability in Loopback Mode  
Power-Up/Down Glitch-Free Outputs  
Driver Maintains High Impedance in Three-State,  
Shutdown or With Power Off  
The RS232/EIA562 transceivers operate to 120kbaud and  
are in full compliance with EIA/TIA-562 specification. The  
RS485 transceivers operate to 10Mbaud and are in full  
compliance with RS485 and RS422 specifications. All  
interface drivers feature short-circuit and thermal shut-  
down protection. An enable pin allows RS485 driver  
outputs to be forced into high impedance which is main-  
tained even when the outputs are forced beyond supply  
rails or power is off. Both driver outputs and receiver  
inputs feature ±10kV ESD protection. A loopback mode  
connects the driver outputs back to the receiver inputs for  
diagnostic self-test.  
Thermal Shutdown Protection  
I/O Lines Can Withstand ±25V  
Withstands Repeated 10kV ESD Pulses  
U
APPLICATIONS  
Low Power RS485/RS422/EIA562/RS232 Interface  
Cable Repeater  
The LTC1321/LTC1322 can support RS232 voltage levels  
when 6.5V VDD 10V and 6.5V VEE 10V. The  
LTC1335 supports receiver output enable but not RS232  
levels. A shutdown mode reduces the ICC supply current  
to 15µA.  
Level Translator  
U
O
TYPICAL APPLICATI  
24  
1
15  
V
24  
1
V
CC2  
CC1  
5V  
5V  
11  
10  
2
3
22  
RS485 INTERFACE  
RX OUT  
RX OUT  
21  
20  
16  
17  
120Ω  
DR ENABLE  
120Ω  
DR ENABLE  
DR IN  
9
4
DR IN  
8
7
5
4000-FT 24-GAUGE TWISTED PAIR  
EIA562 INTERFACE  
19  
18  
22  
23  
20  
21  
13  
19  
18  
17  
16  
15  
14  
13  
6
5V  
5V  
5V  
0V  
5V  
5V  
5V  
0V  
LTC1322  
6
LTC1322  
7
3
2
8
RX OUT  
RX OUT  
DR IN  
DR IN  
DR IN  
RX OUT  
RX OUT  
9
5
10  
11  
4
DR IN  
12  
12  
V
V
EE2  
EE1  
–5V  
–5V  
1321/22/35 TA01  
1
LTC1321/LTC1322/LTC1335  
W W W  
U
ABSOLUTE AXI U RATI GS  
Supply Voltage  
Output Voltage  
VCC .................................................................... 6.5V  
VDD (LTC1321/LTC1322 Only) ........................... 10V  
Drivers ................................................. 25V to 25V  
Receivers ............................... 0.3V to (VCC + 0.3V)  
Output Short-Circuit Duration......................... Indefinite  
Operating Temperature Range  
V
EE ................................................................... 10V  
Input Voltage  
Drivers ................................... 0.3V to (VCC + 0.3V)  
Receivers ............................................. 25V to 25V  
ON/OFF, LB, SEL1,  
LTC1321C/LTC1322C/LTC1335C ......... 0°C to 70°C  
LTC1321I/LTC1322I/LTC1335I......... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................ 300°C  
SEL2, OE ............................ 0.3V to (VCC + 0.3V)  
W
U
/O  
PACKAGE RDER I FOR ATIO  
2 RS485 DRIVERS/RECEIVERS  
4 EIA/TIA-562 DRIVERS/RECEIVERS  
2 RS485 DRIVERS/RECEIVERS  
4 EIA/TIA-562 DRIVERS/RECEIVERS  
2 RS485 DRIVERS/RECEIVERS  
2 EIA/TIA-562 DRIVERS/RECEIVERS  
TOP VIEW  
TOP VIEW  
TOP VIEW  
OE  
B1  
1
2
V
CC  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
V
V
1
2
V
CC  
1
2
V
24  
23  
22  
21  
20  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DD  
B1  
DD  
B1  
CC  
R
R
D
D
R
R
D
D
NC  
R
B1  
A1  
B1  
A1  
A1  
3
A1  
Z1  
Y1  
A1  
Z1  
Y1  
3
3
A1  
Z1  
4
/DE1  
4
/DE1  
Z1  
4
DE1  
Z1  
Y1  
5
5
5
D
Y1  
Y1  
Y1  
SEL1  
SEL2  
Y2  
6
LB  
SEL1  
SEL2  
Y2  
SEL1  
SEL2  
Y2  
6
19 LB  
6
LB  
7
ON/OFF  
7
7
ON/OFF  
18 ON/OFF  
8
D
Y2  
8
D
D
R
R
V
8
D
17  
16  
15  
14  
13  
Y2  
Z2  
A2  
B2  
Y2  
Z2  
9
D
R
R
V
/DE2  
Z2  
Z2  
9
/DE2  
9
DE2  
Z2  
A2  
B2  
A2  
10  
11  
12  
A2  
A2  
10  
11  
12  
10  
11  
12  
R
A2  
B2  
B2  
B2  
NC  
GND  
GND  
GND  
V
EE  
EE  
EE  
N PACKAGE  
24-LEAD PLASTIC DIP  
N PACKAGE  
24-LEAD PLASTIC DIP  
S PACKAGE  
24-LEAD PLASTIC SOL  
S PACKAGE  
24-LEAD PLASTIC SOL  
N PACKAGE  
S PACKAGE  
24-LEAD PLASTIC DIP 24-LEAD PLASTIC SOL  
T
JMAX = 125°C, θJA = 75°C/W (N)  
TJMAX = 125°C, θJA = 75°C/W (N)  
TJMAX = 125°C, θJA = 85°C/W (S)  
TJMAX = 125°C, θJA = 75°C/W (N)  
TJMAX = 125°C, θJA = 85°C/W (S)  
TJMAX = 125°C, θJA = 85°C/W (S)  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
LTC1322CN  
LTC1322CS  
LTC1322IN  
LTC1322IS  
LTC1321CN  
LTC1321CS  
LTC1321IN  
LTC1321IS  
LTC1335CN  
LTC1335CS  
LTC1335IN  
LTC1335IS  
Consult factory for Military grade parts.  
2
LTC1321/LTC1322/LTC1335  
DC ELECTRICAL CHARACTERISTICS  
VCC = VDD (LTC1321/LTC1322) = 5V ±5%, VEE = 5V ±5% (Notes 2, 3)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RS485 Driver (SEL1 = SEL2 = HIGH)  
V
OD1  
V
OD2  
Differential Driver Output Voltage (Unloaded)  
Differential Driver Output Voltage (With Load)  
I = 0  
5
V
O
Figure 1, R = 50(RS422)  
Figure 1, R = 27(RS485)  
2.0  
1.5  
5
5
V
V
V  
Change in Magnitude of Driver Differential  
Output Voltage for Complementary Output States  
Figure 1, R = 27or R = 50Ω  
0.2  
V
OD  
V
Driver Common-Mode Output Voltage  
Figure 1, R = 27or R = 50Ω  
Figure 1, R = 27or R = 50Ω  
3
V
V
OC  
V  
Change in Magnitude of Driver Common-Mode  
Output Voltage for Complementary Output States  
0.2  
OC  
I
Driver Short-Circuit Current  
7V V 12V, V = HIGH  
35  
10  
250  
250  
mA  
mA  
OSD  
O
O
7V V 12V, V = LOW (Note 4)  
O
O
I
Three-State Output Current (Y, Z)  
7V V 12V  
±5  
±500  
µA  
OZD  
O
EIA/TIA-562 Driver (SEL1 = SEL2 = LOW)  
V
O
Output Voltage Swing  
Figure 4, R = 3k, Positve  
3.7  
3.7  
4.2  
4.3  
V
V
L
Figure 4, R = 3k, Negative  
L
I
Output Short-Circuit Current  
V = 0V  
O
±11  
±60  
mA  
OSD  
Driver Inputs and Control Inputs  
V
Input High Voltage  
Input Low Voltage  
Input Current  
D, DE, ON/OFF, SEL1, SEL2, LB  
OE (LTC1335)  
2
2
V
V
IH  
V
IL  
D, DE, ON/OFF, SEL1, SEL2, LB  
OE (LTC1335)  
0.8  
0.8  
V
V
I
D, SEL1, SEL2  
DE, ON/OFF, LB  
OE (LTC1335)  
±10  
15  
15  
µA  
µA  
µA  
IN  
–4  
4
RS485 Receiver (SEL1 = SEL2 = HIGH)  
V
TH  
Differential Input Threshold Voltage  
7V V 7V, Commercial  
0.2  
0.3  
0.2  
0.3  
V
V
CM  
7V V 7V, Industrial  
CM  
V  
Input Hysteresis  
Input Current (A, B)  
Input Resistance  
V
= 0V  
70  
24  
mV  
mA  
kΩ  
TH  
CM  
I
7V V 12V  
±1  
IN  
IN  
R
IN  
7V V 12V  
12  
IN  
EIA/TIA-562 Receiver (SEL1 = SEL2 = LOW)  
V
Receiver Input Voltage Threshold  
Input Low Threshold  
Input High Threshold  
0.8  
1.1  
1.7  
V
V
TH  
2.4  
1.0  
7
V  
Receiver Input Hysteresis  
Receiver Input Resistance  
0.1  
3
0.6  
5
V
TH  
R
V
IN  
= ±10V  
kΩ  
IN  
Receiver Output  
V
V
Receiver Output High Voltage  
Receiver Output Low Voltage  
Short-Circuit Current  
I = 3mA, V = 0V, SEL1 = SEL2 = LOW  
3.5  
7
4.6  
0.2  
V
V
OH  
OL  
O
IN  
I = 3mA, V = 3V, SEL1 = SEL2 = LOW  
0.4  
85  
O
IN  
I
I
0V V V  
CC  
mA  
OSR  
OZR  
O
Three-State Output Current  
ON/OFF = 0V  
OE = V (LTC1335)  
±10  
±10  
µA  
µA  
CC  
3
LTC1321/LTC1322/LTC1335  
DC ELECTRICAL CHARACTERISTICS  
VCC = VDD (LTC1321/LTC1322) = 5V ±5%, VEE = 5V ±5% (Notes 2, 3)  
SYMBOL PARAMETER  
Supply Currents  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
I
I
V
CC  
V
DD  
V
EE  
Supply Current  
No Load (SEL1 = SEL2 = HIGH)  
Shutdown, ON/OFF = 0V  
1000  
15  
2000  
50  
µA  
µA  
CC  
DD  
EE  
Supply Current (LTC1321/LTC1322)  
Supply Current  
No Load (SEL1 = SEL2 = LOW)  
Shutdown, ON/OFF = 0V  
300  
0.1  
1000  
50  
µA  
µA  
No Load (SEL1 = SEL2 = HIGH)  
Shutdown, ON/OFF = 0V  
1000  
0.1  
2000  
50  
µA  
µA  
AC  
ELECTRICAL CHARACTERISTICS  
VCC = VDD (LTC1321/LTC1322) = 5V ±5%, VEE = 5V ±5% (Notes 2, 3)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EIA/TIA-562 Mode (SEL1 = SEL2 = LOW)  
SR  
Slew Rate  
Figure 4, R = 3k, C = 15pF  
14  
7
30  
V/µs  
V/µs  
L
L
Figure 4, R = 3k, C = 1000pF  
4
L
L
t
t
t
t
t
Transition Time  
Figure 4, R = 3k, C = 2500pF  
0.22  
1.9  
0.6  
0.6  
0.3  
0.4  
3.1  
4
µs  
µs  
µs  
µs  
µs  
T
L
L
Driver Input to Output  
Driver Input to Output  
Receiver Input to Output  
Receiver Input to Output  
Figures 4,10, R = 3k, C = 15pF  
L L  
PLH  
PHL  
PLH  
PHL  
Figures 4,10, R = 3k, C = 15pF  
4
L
L
Figures 5,11  
Figures 5,11  
6
6
RS485 Mode (SEL1 = SEL2 = HIGH)  
t
t
t
Driver Input to Output  
Figures 2,7, R = 54, C = 100pF  
20  
20  
40  
40  
5
70  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PLH  
L
L
Driver Input to Output  
Figures 2,7, R = 54, C = 100pF  
L L  
PHL  
Driver Output to Output  
Driver Rise or Fall Time  
Driver Enable to Output Low  
Driver Enable to Output High  
Driver Disable from Low  
Driver Disable from High  
Receiver Input to Output  
Receiver Input to Output  
Differential Receiver Skew,  
Figures 2,7, R = 54, C = 100pF  
15  
SKEW  
L
L
t , t  
Figures 2,7, R = 54, C = 100pF  
3
15  
50  
50  
50  
60  
60  
70  
10  
40  
r
f
L
L
t
t
t
t
t
t
Figures 3,8, C = 100pF, S1 Closed  
90  
ZL  
ZH  
LZ  
HZ  
L
Figures 3,8, C = 100pF, S2 Closed  
90  
L
Figures 3,8, C = 15pF, S1 Closed  
90  
L
Figures 3,8, C = 15pF, S2 Closed  
90  
L
Figures 2,9, R = 54, C = 100pF  
20  
20  
140  
140  
PLH  
PHL  
L
L
Figures 2,9, R = 54, C = 100pF  
L
L
t
t
-t  
Figures 2,9, R = 54, C = 100pF  
L L  
SKEW  
PLH PHL  
Receiver Output Enable/Disable (LTC1335)  
t
t
Receiver Enable to Output Low  
Receiver Enable to Output High  
Figures 6,12, C = 15pF, S1 Closed  
40  
40  
90  
90  
ns  
ns  
ZL  
L
Figures 6,12, C = 15pF, S2 Closed  
ZH  
L
t
t
Receiver Disable from Low  
Receiver Disable from High  
Figures 6,12, C = 15pF, S1 Closed  
40  
50  
90  
90  
ns  
ns  
LZ  
L
Figures 6,12, C = 15pF, S2 Closed  
HZ  
L
The  
denotes specifications which apply over the full operating  
Note 3: All typicals are given at V = V (LTC1321/LTC1322) = 5V,  
DD  
CC  
EE A  
temperature range.  
V
= 5V, and T = 25°C.  
Note 1: Absolute maximum ratings are those values beyond which the  
safety of the device cannot be guaranteed.  
Note 4: Short-circuit current for RS485 driver output low state folds back  
above V . Peak current occurs around V = 3V.  
CC  
O
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
4
LTC1321/LTC1322/LTC1335  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
RS485 Driver Differential Output  
Voltage vs Temperature  
RS485 Driver Differential Output  
Current vs Output Voltage  
RS485 Driver Skew vs  
Temperature  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
15  
12  
9
70  
60  
50  
40  
30  
20  
10  
0
T
A
= 25°C  
R
= 54Ω  
L
6
3
0
–50  
0
25  
50  
75 100 125  
1
2
5
–50  
–25  
0
25  
50  
75 100 125  
–25  
0
3
4
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
1321 G01  
1321 G03  
1321 G02  
RS485 Driver Output Low Voltage  
vs Output Current  
RS485 Driver Output Short-Circuit  
Current vs Temperature  
RS485 Driver Output High Voltage  
vs Output Current  
120  
100  
80  
60  
40  
20  
0
160  
140  
120  
100  
80  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
T
A
= 25°C  
T
= 25°C  
A
SINK  
OUT  
(V  
= 5V)  
SOURCE  
OUT  
(V  
= 0V)  
60  
40  
1
2
4
0
1
2
3
4
5
–50  
25  
50  
75  
100 125  
0
5
–25  
0
3
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
1321 G05  
1321 G04  
1321 G19  
EIA562 Driver Output Voltage  
vs Supply Voltage  
EIA562 Driver Output Voltage  
vs Temperature  
EIA562 Driver Output Short-Circuit  
Current vs Temperature  
5
4
18  
16  
14  
12  
10  
8
10  
8
V
OUT  
= 0V  
R
= 3k  
L
OUTPUT HIGH  
T
= 25°C  
A
3
V
= –V  
EE  
DD  
6
OUTPUT HIGH  
2
4
1
2
R
= 3k  
L
SOURCE  
0
0
–1  
–2  
–3  
–4  
–5  
–2  
–4  
–6  
–8  
–10  
SINK  
OUTPUT LOW  
OUTPUT LOW  
6
–50  
0
25  
50  
75 100 125  
–25  
–50  
25  
50  
75  
100 125  
–25  
0
4
5
7
8
9
10  
6
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
SUPPLY VOLTAGE (V)  
DD  
1321 G07  
1321 G09  
1321 G08  
5
LTC1321/LTC1322/LTC1335  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Receiver Output Low Voltage  
vs Temperature  
Receiver Output High Voltage  
vs Temperature  
RS485 Receiver tPLH tPHL  
vs Temperature  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
18  
16  
14  
12  
10  
8
I
= 3mA  
I
= 3mA  
OUT  
OUT  
6
4
2
0
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–50  
–25  
0
25  
50  
75 100 125  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1321 G10  
1321 G11  
1321 G12  
Receiver Output Current  
vs Output High Voltage  
Receiver Output Current  
vs Output Low Voltage  
EIA562 Receiver Input Threshold  
Voltage vs Temperature  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
40  
35  
30  
25  
20  
15  
10  
5
120  
18  
16  
14  
12  
10  
8
T
= 25°C  
T
= 25°C  
A
A
INPUT HIGH  
INPUT LOW  
6
4
2
0
0
2.5  
50  
TEMPERATURE (°C)  
100 125  
0
0.5  
1.0  
1.5  
2.0  
3.0  
–50 –25  
0
25  
75  
2.0  
2.5  
3.5  
4.0  
4.5  
5.0  
3.0  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
1321 G14  
1321 G15  
1321 G13  
Supply Current in EIA562 Mode  
vs Temperature (Both Ports)  
Driver Output Leakage Current  
(Disable/Shutdown) vs Temperature  
Supply Current in RS485 Mode  
vs Temperature (Both Ports)  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
±400  
±350  
±300  
±250  
±200  
±150  
±100  
±50  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
L
=
R = ∞  
L
I
CC  
–I  
EE  
–I  
EE  
–I  
DD  
CC  
I
–I  
DD  
0
0
–50  
0
25  
50  
75 100 125  
–25  
25  
0
25  
50  
75  
125  
50  
TEMPERATURE (°C)  
100 125  
–50  
100  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1321 G18  
1321 G06  
1321 G17  
6
LTC1321/LTC1322/LTC1335  
U
U
U
PI FU CTIO S  
LTC1322/LTC1335  
LTC1321  
VDD(Pin1):PositiveSupplyInputforEIA/TIA-562Drivers.  
B1: (Pin 2): Receiver Input.  
OE/VDD (Pin 1): For LTC1335, pin 1 is the receiver  
outputenablewithinternalpull-down.ForLTC1322,pin  
1 is the positive supply input for EIA/TIA-562 drivers.  
A1 (Pin 3): Receiver Input.  
B1: (Pin 2): Receiver Input.  
A1 (Pin 3): Receiver Input.  
Z1 (Pin 4): Driver Output.  
Z1 (Pin 4): Driver Output.  
Y1 (Pin 5): Driver Output.  
SEL1 (Pin 6): Interface Mode Select Input.  
SEL2 (Pin 7): Interface Mode Select Input.  
Y2 (Pin 8): Driver Output.  
Y1 (Pin 5): Driver Output.  
SEL1 (Pin 6): Interface Mode Select Input.  
SEL2 (Pin 7): Interface Mode Select Input.  
Y2 (Pin 8): Driver Output.  
Z2 (Pin 9): Driver Output.  
A2 (Pin 10): Receiver Input.  
Z2 (Pin 9): Driver Output.  
B2 (Pin 11): Receiver Input.  
A2 (Pin 10): Receiver Input.  
B2 (Pin 11): Receiver Input.  
GND (Pin 12): Ground.  
GND (Pin 12): Ground.  
VEE (Pin 13): Negative Supply.  
NC (Pin 14): No Connection.  
RA2 (Pin 15): Receiver Output.  
V
EE (Pin 13): Negative Supply.  
RB2 (Pin 14): Receiver Output.  
RA2 (Pin 15): Receiver Output.  
DE2(Pin16):DriverEnablewithInternalPull-UpinRS485  
Mode.  
DZ2/DE2 (Pin 16): EIA/TIA-562 Driver Input in EIA562  
Mode. RS485 Driver Enable with Internal Pull-Up in  
RS485 Mode.  
DY2 (Pin 17): Driver Input.  
ON/OFF (Pin 18): A HIGH logic input enables the trans-  
ceivers. A LOW puts the device into shutdown mode and  
reduces ICC to 15µA. This pin has an internal pull-up.  
DY2 (Pin 17): Driver Input.  
ON/OFF (Pin 18): A HIGH logic input enables the  
transceivers. A LOW puts the device into shutdown  
mode and reduces ICC to 15µA. This pin has an internal  
pull-up.  
LB (Pin 19): Loopback Control Input. A LOW logic level  
enables loopback connections. This pin has an internal  
pull-up.  
DY1 (Pin 20): Driver Input.  
LB (Pin 19): Loopback Control Input. A LOW logic level  
enables loopback connections. This pin has an internal  
pull-up.  
DE1(Pin21):DriverEnablewithInternalPull-UpinRS485  
Mode.  
RA1 (Pin 22): Receiver Output.  
D
Y1 (Pin 20): Driver Input.  
NC (Pin 23): No Connection.  
DZ1/DE1 (Pin 21): EIA/TIA-562 Driver Input in EIA562  
Mode. RS485 Driver Enable with Internal Pull-up in  
RS485 Mode.  
VCC (Pin 24): Positive Supply; 4.75V VCC 5.25V.  
RA1 (Pin 22): Receiver Output.  
RB1 (Pin 23): Receiver Output.  
VCC (Pin 24): Positive Supply; 4.75V VCC 5.25V.  
7
LTC1321/LTC1322/LTC1335  
U
U
FU CTIO TABLES  
LTC1321  
LTC1322  
RS485 Driver Mode  
RS485 Driver Mode  
INPUTS  
LINE  
OUTPUTS  
INPUTS  
LINE  
OUTPUTS  
ON/OFF  
SEL  
1
DE  
1
D
0
1
X
X
X
CONDITION  
Y
Z
1
0
Z
Z
Z
ON/OFF  
SEL  
1
DE  
1
D
0
1
X
X
X
CONDITION  
Y
Z
1
0
Z
Z
Z
1
1
1
1
0
No Fault  
No Fault  
Fault  
X
0
1
Z
Z
Z
1
1
1
1
0
No Fault  
No Fault  
Fault  
X
0
1
Z
Z
Z
1
1
1
1
1
1
1
1
1
0
1
0
1
X
X
1
X
X
RS485 Receiver Mode  
INPUTS  
RS485 Receiver Mode  
INPUTS  
OUTPUT  
R
OUTPUT  
R
ON/OFF  
SEL  
A – B  
< 0.2V  
> 0.2V  
ON/OFF  
SEL  
A – B  
< 0.2V  
> 0.2V  
1
1
1
0
1
0
1
1
Z
1
1
1
0
1
0
1
1
Z
1
1
1
Inputs Open  
X
1
Inputs Open  
X
1
1
RS232/EIA562 Driver Mode  
INPUTS  
RS232/EIA562 Driver Mode  
INPUTS  
LINE  
CONDITION  
OUTPUT  
Y, Z  
LINE  
CONDITION  
OUTPUT  
Y
ON/OFF  
SEL  
0
D
ON/OFF  
SEL  
D
1
1
1
0
0
1
X
X
No Fault  
No Fault  
Fault  
1
0
Z
Z
1
1
1
0
0
0
1
X
X
No Fault  
No Fault  
Fault  
1
0
Z
Z
0
0
0
0
0
X
0
X
RS232/EIA562 Receiver Mode  
INPUTS  
RS232/EIA562 Receiver Mode  
INPUTS  
OUTPUT  
R
OUTPUT  
R
ON/OFF  
SEL  
A
ON/OFF  
SEL  
A OR B  
1
1
1
0
0
0
1
0
1
Z
1
1
1
0
0
0
1
0
1
Z
0
1
Inputs Open  
X
0
1
Input Open  
X
0
0
0
0
8
LTC1321/LTC1322/LTC1335  
U
U
FU CTIO TABLES  
LTC1335  
EIA562 Driver Mode  
INPUTS  
SEL  
RS485 Driver Mode  
LINE  
CONDITION  
OUTPUT  
Y, Z  
INPUTS  
LINE  
CONDITION  
OUTPUTS  
ON/OFF  
SEL  
1
DE  
1
D
0
1
X
X
X
Y
Z
1
0
Z
Z
Z
ON/OFF  
D
0
1
X
X
1
1
1
0
0
0
0
0
No Fault  
No Fault  
Fault  
1
0
Z
Z
1
1
1
1
0
No Fault  
No Fault  
Fault  
X
0
1
Z
Z
Z
1
1
1
1
1
0
X
1
X
X
RS485 Receiver Mode  
INPUTS  
EIA562 Receiver Mode  
INPUTS  
OE  
OUTPUT  
R
OUTPUT  
R
ON/OFF  
SEL  
1
OE  
0
A – B  
< 0.2V  
> 0.2V  
Inputs Open  
X
ON/OFF  
SEL  
0
A OR B  
1
1
1
1
0
0
1
1
Z
Z
1
1
1
1
0
0
0
0
1
X
0
1
0
1
Z
Z
1
0
0
1
1
0
0
Input Open  
1
1
0
X
X
1
X
X
0
W
BLOCK DIAGRA SM  
LTC1321 Interface Configuration Without Loopback  
PORT 1 = EIA562 MODE  
PORT 2 = EIA562 MODE  
PORT 1 = RS485 MODE  
PORT 2 = EIA562 MODE  
PORT 1 = EIA562 MODE  
PORT 2 = RS485 MODE  
PORT 1 = RS485 MODE  
PORT 2 = RS485 MODE  
1
1
1
24  
22  
24  
24  
24  
1
2
3
V
V
V
V
V
V
V
V
DD  
B1  
A1  
Z1  
Y1  
CC  
DD  
CC  
DD  
CC  
DD  
A1  
CC  
3
2
3
3
22  
22  
A1  
R
B1  
A1  
R
22  
A1  
A1  
R
A1  
R
A1  
20  
19  
20  
5
6
5
6
21  
20  
4
5
21  
20  
4
5
D
Y1  
D
Y1  
DE1  
Y1  
Y1  
DE1  
Z1  
Y1  
D
SEL1  
Y1  
19  
18  
D
Y1  
SEL1  
LB  
LB  
6
7
19  
18  
17  
6
7
*SEL1  
*SEL2  
LB  
19  
*SEL1  
SEL2  
7
LB  
ON  
*SEL2  
7
8
18  
17  
ON  
7
1
ON  
D
SEL2  
Y2  
D
Y2  
8
9
8
9
Y2  
Z2  
18  
17  
Y2  
Z2  
D
Y2  
ON  
8
16  
Y2  
D
DE2  
Y2  
Y2  
16  
15  
10  
DE2  
10  
A2  
A2  
B2  
15  
13  
15  
13  
15  
13  
10  
12  
10  
12  
R
R
A2  
11  
12  
11  
12  
A2  
A2  
A2  
R
V
R
B2  
A2  
A2  
13  
V
GND  
GND  
V
EE  
V
GND  
GND  
EE  
EE  
EE  
1321BD01  
* SEL1/SEL2 = V  
CC  
9
LTC1321/LTC1322/LTC1335  
W
BLOCK DIAGRA SM  
LTC1321 Interface Configuration With Loopback  
PORT 1 = EIA562 MODE  
PORT 2 = EIA562 MODE  
PORT 1 = RS485 MODE  
PORT 2 = EIA562 MODE  
PORT 1 = EIA562 MODE  
PORT 2 = RS485 MODE  
PORT 1 = RS485 MODE  
PORT 2 = RS485 MODE  
1
1
1
24  
24  
24  
1
24  
V
V
V
V
V
V
CC  
V
V
CC  
DD  
CC  
DD  
CC  
DD  
Y1  
DD  
22  
20  
19  
22  
20  
19  
22  
R
R
A1  
22  
R
A1  
4
A1  
R
A1  
Z1  
4
Z1  
5
5
6
21  
21  
20  
D
Y1  
DE1  
Y1  
D
Y1  
DE1  
20  
5
6
D
Y1  
5
6
7
6
Y1  
D
Y1  
SEL1  
Y1  
SEL1  
LB  
LB  
19  
*SEL1  
19  
*SEL1  
SEL2  
LB  
18  
17  
LB  
7
8
ON  
7
8
7
8
18  
17  
*SEL2  
Y2  
18  
17  
ON  
D
*SEL2  
Y2  
SEL2  
Y2  
D
Y2  
ON  
D
18  
17  
ON  
D
Y2  
8
16  
Y2  
DE2  
Y2  
Y2  
16  
9
DE2  
Z2  
9
15  
13  
Z2  
15  
13  
15  
13  
R
A2  
15  
13  
R
R
V
R
V
A2  
A2  
A2  
12  
12  
12  
12  
V
V
GND  
GND  
GND  
GND  
EE  
EE  
EE  
EE  
1321 BD02  
*SEL1/SEL2 = V  
CC  
LTC1322/LTC1335 Interface Configuration Without Loopback  
PORT 1 = RS485 MODE  
PORT 1 = EIA562 MODE  
PORT 2 = EIA562 MODE  
PORT 2 = RS485 MODE  
PORT 1 = RS485 MODE  
PORT 2 = RS485 MODE  
PORT 1 = EIA562 MODE  
PORT 2 = EIA562 MODE  
24  
24  
24  
1
1
2
24  
1
1
*
*
*
*
V
V
V
CC  
V
*V /OE  
DD  
*V /OE  
DD  
*V /OE  
DD  
*V /OE  
DD  
CC  
CC  
CC  
2
23  
23  
B1  
B1  
R
R
B1  
B1  
2
3
4
23  
2
3
4
23  
B1  
A1  
Z1  
B1  
A1  
Z1  
R
R
D
D
R
R
D
D
B1  
A1  
Z1  
Y1  
B1  
A1  
Z1  
Y1  
22  
22  
R
R
3
A1  
3
4
22  
21  
20  
22  
21  
20  
A1  
A1  
A1  
Z1  
21  
20  
21  
20  
DE1  
DE1  
4
5
6
5
6
5
6
Z1  
Y1  
**SEL1  
5
6
D
Y1  
Y1  
SEL1  
Y1  
SEL1  
D
Y1  
Y1  
19  
19  
19  
19  
**SEL1  
LB  
LB  
LB  
LB  
7
7
7
SEL2  
SEL2  
7
8
**SEL2  
**SEL2  
Y2  
18  
17  
18  
17  
18  
17  
18  
17  
ON  
D
ON  
D
ON  
D
ON  
8
9
8
9
8
9
Y2  
Z2  
Y2  
Z2  
D
Y2  
Y2  
Y2  
Y2  
Z2  
Y2  
9
Z2  
16  
15  
16  
15  
16  
15  
16  
15  
D
D
Z2  
A2  
Z2  
DE2  
DE2  
10  
11  
10  
11  
10  
10  
A2  
B2  
A2  
B2  
A2  
A2  
R
R
A2  
R
R
A2  
A2  
14  
13  
14  
13  
14  
13  
11  
12  
11  
12  
14  
13  
B2  
GND  
R
B2  
V
EE  
B2  
GND  
R
R
R
B2  
B2  
B2  
EE  
12  
12  
V
V
V
GND  
GND  
EE  
EE  
1322/35 BD01  
*
FOR LTC1322 ONLY, PIN 1 IS V , AND OE IS ALWAYS ENABLED.  
DD  
FOR LTC1335, PIN 1 IS OE, AND V IS CONNECTED TO V  
DD  
.
CC  
**  
SEL1/SEL2 = V  
CC  
.
10  
LTC1321/LTC1322/LTC1335  
W
BLOCK DIAGRA SM  
LTC1322/LTC1335 Interface Configuration With Loopback  
PORT 1 = RS485 MODE  
PORT 2 = EIA562 MODE  
PORT 1 = RS485 MODE  
PORT 2 = RS485 MODE  
PORT 1 = EIA562 MODE  
PORT 2 = EIA562 MODE  
PORT 1 = EIA562 MODE  
PORT 2 = RS485 MODE  
24  
24  
24  
1
1
24  
1
1
*
*
*
*
V
CC  
V
CC  
V
CC  
V
R
*V /OE  
DD  
*V /OE  
DD  
*V /OE  
DD  
*V /OE  
DD  
CC  
23  
23  
R
B1  
B1  
23  
23  
R
R
D
D
R
R
D
D
B1  
A1  
Z1  
Y1  
B1  
A1  
Z1  
Y1  
22  
22  
R
A1  
4
R
A1  
4
22  
21  
20  
22  
21  
20  
Z1  
Z1  
21  
20  
4
4
21  
20  
DE1  
DE1  
Z1  
Z1  
5
6
5
6
5
6
D
Y1  
SEL1  
Y1  
SEL1  
5
6
D
Y1  
Y1  
Y1  
Y1  
**SEL1  
19  
19  
19  
19  
**SEL1  
LB  
LB  
LB  
LB  
7
7
SEL2  
SEL2  
7
8
7
8
**SEL2  
Y2  
**SEL2  
Y2  
18  
17  
18  
17  
18  
17  
18  
17  
ON  
D
ON  
D
ON  
ON  
8
9
8
9
D
Y2  
Y2  
Z2  
D
Y2  
Y2  
Y2  
Z2  
Y2  
16  
15  
16  
15  
16  
15  
16  
15  
D
D
Z2  
A2  
Z2  
A2  
DE2  
DE2  
9
9
Z2  
Z2  
R
R
R
A2  
R
A2  
14  
13  
14  
13  
14  
13  
14  
13  
R
B2  
V
EE  
R
B2  
V
EE  
R
B2  
V
EE  
R
B2  
EE  
12  
12  
12  
12  
V
GND  
GND  
GND  
GND  
1322/35 BD02  
*
FOR LTC1322 ONLY, PIN 1 IS V , AND OE IS ALWAYS ENABLED.  
DD  
FOR LTC1335, PIN 1 IS OE, AND V IS CONNECTED TO V  
DD CC  
.
**  
SEL1/SEL2 = V  
.
CC  
TEST CIRCUITS  
V
CC  
Y
3V  
SEL  
3V  
S1  
R
C
C
L
L
SEL  
DE  
3V  
Y
Z
500Ω  
A
B
R
D
DR OUT  
V
OD  
R
L
OE  
15pF  
C
L
S2  
V
OC  
R
0V  
Z
1321/22/35 F03  
1321/22/35 F02  
1321/22/35 F01  
Figure 1. RS485 Driver  
Test Load  
Figure 2. RS485 Driver/Receiver  
Timing Test Circuit  
Figure 3. RS485 Driver Output  
Enable/Disable Timing Test Load  
V
CC  
0V  
0V  
SEL  
0V  
SEL  
SEL  
S1  
Y OR Z  
D
1k  
Y OR Z  
A OR B  
R
D
RX OUT  
R
L
OE  
C
L
15pF  
C
S2  
L
0V  
1321/22/35 F05  
1321/22/35 F04  
1321/22/35 F06  
Figure 6. Receiver Output  
Enable/Disable Timing Test Load  
Figure 4. EIA/TIA-562 Driver  
Timing Test Circuit  
Figure 5. EIA/TIA-562 Receiver  
Timing Test Circuit  
11  
LTC1321/LTC1322/LTC1335  
U
W
SWITCHI G WAVEFOR S  
3V  
f = 1MHz: t 10ns: t 10ns  
r
f
1.5V  
1.5V  
D
0V  
t
t
PHL  
PLH  
V
O
O
90%  
90%  
V
DIFF  
= V(Y) – V(Z)  
Y – Z  
–V  
50%  
10%  
50%  
10%  
1/2 V  
O
t
r
t
f
Z
V
O
Y
t
t
SKEW  
1321/22/35 F07  
SKEW  
Figure 7. RS485 Driver Propagation Delays  
3V  
f = 1MHz: t 10ns: t 10ns  
r
f
1.5V  
1.5V  
DE  
0V  
5V  
t
ZL  
t
LZ  
Y OR Z  
2.3V  
2.3V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
0.5V  
V
OL  
OH  
0V  
t
ZH  
t
HZ  
V
Y OR Z  
1321/22/35 F08  
Figure 8. RS485 Driver Enable and Disable Times  
V
OD2  
f = 1MHz: t 10ns: t 10ns  
r
f
INPUT  
0V  
t
A – B  
–V  
0V  
OD2  
t
PLH  
PHL  
OUTPUT  
V
OH  
R
1.5V  
1.5V  
V
OL  
1321/22/35 F09  
Figure 9. RS485 Receiver Propagation Delays  
3V  
1.5V  
1.5V  
D
0V  
t
t
PLH  
PHL  
V
O
O
1321/22/35 F10  
Y OR Z  
–V  
0V  
0V  
Figure 10. EIA/TIA-562 Driver Propagation Delays  
12  
LTC1321/LTC1322/LTC1335  
U
W
SWITCHI G WAVEFOR S  
V
IH  
1.7V  
1.3V  
A OR B  
V
IL  
t
t
PLH  
PHL  
V
OH  
2.4V  
1321/22/35 F11  
R
0.8V  
V
OL  
Figure 11. EIA/TIA-562 Receiver Propagation Delays  
3V  
1.5V  
1.5V  
OE  
f = 1MHz: t 10ns: t 10ns  
r
f
0V  
5V  
t
t
LZ  
ZL  
R
1.5V  
1.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
0.5V  
V
OL  
OH  
0V  
t
t
ZH  
HZ  
V
R
1321/22/35 F12  
Figure 12. Receiver Enable and Disable Times  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
In RS485 mode, shutdown mode or with the power off,  
the input resistance of the receiver is 24k. The input  
resistance drops to 6.3k in EIA562 mode.  
Basic Theory of Operation  
The LTC1321/LTC1322/LTC1335 each have two interface  
ports.Eachportmaybeconfiguredassingle-endedEIA562  
transceiver(s) or differential RS485 transceiver by forcing  
the port’s selection input to a LOW or HIGH, respectively.  
The LTC1321 provides one EIA562 driver and one EIA562  
receiver per port to maintain same pinout as SP301. The  
LTC1322 and LTC1335 each provide two drivers and two  
receiversperport.Additionally,theLTC1321andLTC1322  
single-ended ports are RS232 compatible with higher VDD  
and VEE supply levels.  
A logic LOW at the ON/OFF pin shuts down the device  
and forces all the outputs into a high impedance state.  
AlogicHIGHenablesthedevice.Aninternal4µAcurrent  
source to VCC pulls the ON/OFF pin HIGH if left open.  
In RS485 mode, an internal 4µA current source pulls  
the driver enable pin HIGH if left open. The RS485  
receiver has a 4µA current source at the noninverting  
input. If both the RS485 receiver inputs are open, the  
output is a high state. Both the current sources are  
disabled in the EIA562 mode.  
All the interface drivers feature three-state outputs. Inter-  
faceoutputsareforcedintohighimpedancewhenthedriver  
is disabled, in the shutdown mode, or with the power off.  
For LTC1335, a logic LOW at the OE pin enables all the  
receiver outputs and a logic HIGH disables all the  
receiver outputs. An internal 4µA current source pulls  
the OE pin LOW if left open.  
All the interface driver outputs are fault protected by a  
currentlimitingandthermalshutdowncircuit.Thethermal  
shutdown circuit disables both the EIA562 and RS485  
driver outputs when the die temperature reaches 150°C.  
Thethermalshutdowncircuitenablesthedriverswhenthe  
die temperature cools to 135°C.  
A loopback mode enables internal connections from  
driver outputs to receiver inputs for self-test when the  
13  
LTC1321/LTC1322/LTC1335  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
LTC1321/LTC1322 ONLY  
(LTC1321/LTC1322)  
LB pin has a LOW logic state. The driver outputs are not  
isolated from the external loads. This allows transmitter  
verification under the loaded condition. An internal 4µA  
current source pulls the LB pin HIGH if left open and  
disables the loopback configuration.  
V
24  
22  
21  
1
2
3
V
CC  
5V  
DD  
OR OE (LTC1335)  
0.1µF  
RX OUT  
DR ENABLE  
DR IN  
120Ω  
RS485 I/O  
4
5
20  
19  
18  
17  
16  
15  
14  
13  
6
LTC1321  
LTC1322  
LTC1335  
5V  
0V  
5V  
5V  
7
EIA562/RS485 Applications  
8
EIA562 DR OUT  
DR IN  
DR IN  
RX OUT  
RX OUT  
EIA562 and RS485 output levels are supported when  
LTC1321/LTC1322/LTC1335 are powered from ±5V sup-  
plies. TheLTC1321/LTC1322requiretheVDD andVCC pins  
tobetiedtogetherandconnectedto5Vsupply(Figure13).  
The VDD and VCC are connected internally and brought out  
at VCC pin in the LTC1335. The unloaded outputs will  
swing from 5V to 5V in EIA562 mode, and from 0V to 5V  
in RS485 mode.  
9
EIA562 DR OUT (LTC1322/LTC1335 ONLY)  
EIA562 RX IN  
10  
11  
12  
EIA562 RX IN (LTC1322/LTC1335 ONLY)  
V
–5V  
EE  
0.1µF  
1321/22/35 F13  
Figure 13. EIA562/RS485 Interfaces with ±5V Supplies  
RS232/RS485 Applications  
+
V
If true RS232-compatible outputs are required, the  
LTC1321/LTC1322 may be used with the VDD and VEE  
supply voltages increased to provide the additional signal  
swing. To meet RS232, VDD must be between 6.5V and  
10V, and VEE must be between 6.5V and 10V. VCC  
remains connected to 5V. If only ±12V supplies are avail-  
able, inexpensive Zener diodes (Z1 and Z2) may be con-  
nected in series with VDD and VEE supply pins as shown in  
Figure 14. An optional 16V Zener diode between VCC and  
VEE is recommended to keep the maximum voltage be-  
tween VCC and VEE within safe limits.  
12V  
Z1  
1N5229B  
4.3V  
V
DD  
V
1
2
3
24  
22  
21  
CC  
5V  
0.1µF  
RX OUT  
0.1µF  
DR ENABLE  
120Ω  
RS485 I/O  
4
5
20  
DR IN  
5V  
Z3*  
19  
18  
17  
16  
15  
14  
13  
6
7
5V  
0V  
RS232 DR OUT  
LTC1321  
LTC1322  
1N5246B  
16V  
5V  
DR IN  
DR IN  
8
9
RS232 DR OUT (LTC1322 ONLY)  
RS232 RX IN  
10  
RX OUT  
RX OUT  
11  
12  
RS232 RX IN (LTC1322 ONLY)  
LocalTalk®/AppleTalk® Applications  
V
EE  
Z2  
0.1µF  
1N5229B  
4.3V  
The LTC1321/LTC1322/LTC1335 can be used to provide  
AppleTalk/LocalTalk-compatible signals in RS485 mode.  
Figure 15 shows one half of an LTC1335 connected to an  
LTC1320 AppleTalk transceiver in a typical LocalTalk  
configuration. Figure 16 shows a typical direct-wire con-  
nection with the LTC1335 as the DCE transceiver and the  
LTC1320 as the DTE transceiver. The LTC1321/LTC1322/  
LTC1335 RS485 mode is capable of meeting all AppleTalk  
protocol specifications.  
1321/22/35 F14  
V
*OPTIONAL  
–12V  
Figure 14. RS232/RS485 Interfaces with 5V, ±12V Supplies  
LocalTalkand AppleTalkare registered trademarks of Apple Computer, Inc.  
14  
LTC1321/LTC1322/LTC1335  
O U  
S
W
U
PPLICATI  
A
I FOR ATIO  
24  
23  
22  
1
2
5V  
OE  
1k  
1k  
RFI  
R
A1  
3
4
1
18  
5V  
RFI  
RFI  
TXD  
2
21  
20  
17 TXD  
TXI  
DE1  
RFI  
RFI  
120Ω  
120Ω  
+
16  
15  
14  
13  
12  
11  
10  
TXD  
5V  
3
5
D
Y1  
RFI  
TXDEN  
4
5
6
7
8
9
6
7
19  
18  
5V  
5V  
SEL1, 5V  
SEL2, 5V  
1k  
1k  
RXEN  
RXO  
RXO  
LTC1335  
22Ω  
22Ω  
100pF  
=
RFI  
8
+
17  
RXD  
RXD  
RFI  
RFI  
RXDO  
9
16  
15  
14  
13  
LTC1320  
10  
11  
12  
–5V  
1321/22/35 F15  
Figure 15. Apple LocalTalk Implemented Using  
LTC1320 and LTC1335 Transceivers  
1
18  
TXD  
TXI  
5V  
24  
5V  
1
+
OE  
2
17 TXD  
RFI  
23  
2
RFI  
120Ω  
120Ω  
3
3
4
22  
16  
TXD  
TXO  
TXDEN  
R
RFI  
RFI  
RFI  
RFI  
A1  
4
5
6
7
21  
15  
14  
13  
12  
11  
DE1  
5V  
RXI  
120Ω  
RXEN  
RXO  
20  
5
D
RFI  
RFI  
RFI  
Y1  
RFI  
RXI  
RXO  
19  
18  
6
7
+
5V  
5V  
RXD  
SEL1, 5V  
SEL2  
8
RXDO  
LTC1335  
120Ω  
LTC1320  
9
10 RXD  
8
17  
16  
RFI  
RFI  
D
D
Y2  
Z2  
9
RFI  
RFI  
22Ω  
22Ω  
100pF  
10  
=
RFI  
15  
14  
13  
R
A2  
11  
12  
–5V  
1321/22/35 F16  
Figure 16. AppleTalk Direct Connect Using LTC1320  
for DTE and LTC1335 for DCE Transceivers  
15  
LTC1321/LTC1322/LTC1335  
U
O
TYPICAL APPLICATI S  
A typical EIA562/RS232 interface application is shown in  
Figure 17 with LTC1322. A typical EIA562 interface appli-  
cation with LTC1335 is shown in Figure 18.  
and receivers for half duplex multi-point data transmis-  
sion. The wires must be terminated at both ends with  
resistors equal to the wire’s characteristic impedance,  
generally 120. An optional shield around the twisted pair  
helps to reduce unwanted noise and should be connected  
to ground at one end.  
A typical connection for RS485 transceiver is shown in  
Figure19. Atwistedpairofwiresconnectsupto32drivers  
1/2 LTC1335  
1/2 LTC1335  
1/2 LTC1322  
1/2 LTC1322  
17  
16  
15  
14  
7
EIA562  
INTERFACE  
LINES  
3
8
22  
23  
20  
21  
6
17  
16  
15  
14  
7
EIA562/  
RS232  
3
8
22  
23  
20  
21  
6
DR IN  
DR IN  
RX OUT  
RX OUT  
OV  
RX OUT  
RX OUT  
DR IN  
DR IN  
DR IN  
RX OUT  
RX OUT  
OV  
RX OUT  
RX OUT  
DR IN  
2
5
4
9
2
5
4
9
10  
11  
INTERFACE  
LINES  
10  
11  
DR IN  
DR IN  
0V  
1321/22/35 F18  
0V  
1321/22/35 F17  
1
1
OE = 0V  
OE = 0V  
Figure 18. Typical Connection for EIA562 Interface  
Figure 17. Typical Connection for EIA562/RS232 Interface  
1/2 LTC1322/LTC1335  
1/2 LTC1322/LTC1335  
11  
2
3
15  
22  
RX OUT  
10  
RX OUT  
DR ENABLE  
DR IN  
21  
20  
6
16  
120Ω  
120Ω  
DR ENABLE  
DR IN  
9
8
4
5
17  
7
5
4
3
2
5V  
5V  
1/2 LTC1322/LTC1335  
20 21  
22 6  
DR IN  
RX OUT  
5V  
1321/22/35 F19  
DR ENABLE  
Figure 19. Typical Connection for RS485 Interface  
16  
LTC1321/LTC1322/LTC1335  
U
O
TYPICAL APPLICATI S  
AtypicalRS422connectionshowninFigure20allowsone  
driver and ten receivers on a twisted pair of wires termi-  
nated with a 100resistor at one end. The ground shield  
is optional.  
A typical twisted pair line repeater is shown in Figure 21.  
As data transmission rate drops with increased cable  
length, repeater can be inserted to improve transmission  
rate or to transmit beyond 4000 feet limit.  
1/2 LTC1322/LTC1335  
RX OUT  
22  
6
5V  
1/2 LTC1322/LTC1335  
DR ENABLE  
1/2 LTC1322/LTC1335  
3
2
21  
11  
4
20  
6
15  
100Ω  
DR IN  
RX OUT  
7
5
10  
5V  
5V  
16  
17  
DR ENABLE  
DR IN  
2
3
9
8
22  
100Ω  
RX OUT  
1321/22/35 F20  
Figure 20. Typical Connection for RS422 Interface  
5V  
21  
22 20  
6
2
3
4
5
100Ω  
TX OUT  
RX IN  
1321/22/35 F21  
1/2 LTC1322/LTC1335  
Figure 21. Typical Cable Repeater for RS422 Interface  
17  
LTC1321/LTC1322/LTC1335  
U
O
TYPICAL APPLICATI S  
TheLTC1322/LTC1335canbeusedtotranslateEIA562to  
RS422 interface level or vice versa as shown in Figure 22.  
OneportisconfiguredasEIA562transceiverandtheother  
as RS485 transceiver. The LTC1322 can also support  
RS232 to RS422 level translation if VDD is between 6.5V  
and 10V, and VEE is between 6.5V and 10V.  
Using two LTC1321/LTC1335 as level translators, the  
EIA562/RS232interfacedistancecanbeextendedto4000  
feet with twisted wires (Figure 23).  
5V  
15 20 21  
6
4
5
10  
8
TX OUT  
RX IN  
EIA562/RS232*  
TX OUT  
RS422  
LTC1322/LTC1335  
2
3
100Ω  
RX IN  
7
17 22  
1321/22/35 F22  
* RS232 LEVELS ARE SUPPORTED ON LTC1322.  
Figure 22. Typical EIA562/RS232 to RS422 Level Translator  
5V  
17  
22  
RS422  
15 20 21  
6
2
3
4
5
8
10  
8
100Ω  
TX OUT  
RX IN  
EIA562/RS232*  
TX OUT  
EIA562/RS232*  
LTC1322/LTC1335  
LTC1322/LTC1335  
4
5
2
3
10  
100Ω  
RX IN  
21 20 15  
7
6
7
17 22  
1321/22/35 F23  
* RS232 LEVELS ARE SUPPORTED ON LTC1322.  
5V  
Figure 23. Typical Cable Extension for EIA562/RS232 Interface  
18  
LTC1321/LTC1322/LTC1335  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
N Package  
24-Lead Plastic DIP  
1.265  
(32.131)  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
10  
14  
11  
13  
12  
0.260 ± 0.010  
(6.604 ± 0.254)  
3
4
5
6
7
8
9
1
2
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.015  
(0.381)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
0.125  
(3.175)  
MIN  
0.050 – 0.085  
(1.27 – 2.159)  
0.325  
0.018 ± 0.003  
(0.457 ± 0.076)  
–0.015  
+0.635  
8.255  
0.100 ± 0.010  
(2.540 ± 0.254)  
N24 0592  
(
)
–0.381  
S Package  
24-Lead Plastic SOL  
0.598 – 0.614  
(15.190 – 15.600)  
(NOTE 2)  
24 23 22 21 20 19 18  
16 15 14 13  
17  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF  
PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY  
BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.  
2. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR  
PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT  
EXCEED 0.006 INCH (0.15mm).  
2
3
5
7
8
9
10  
1
4
6
11 12  
0.291 – 0.299  
(7.391 – 7.595)  
(NOTE 2)  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
0.005  
(0.127)  
RAD MIN  
0.010 – 0.029  
× 45°  
(0.254 – 0.737)  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
(0.229 – 0.330)  
NOTE 1  
0.014 – 0.019  
0.016 – 0.050  
(0.356 – 0.482)  
(0.406 – 1.270)  
SOL24 0392  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC1321/LTC1322/LTC1335  
U.S. Area Sales Offices  
SOUTHWEST REGION  
Linear Technology Corporation  
22141 Ventura Blvd.  
SOUTHEAST REGION  
Linear Technology Corporation  
17060 Dallas Parkway  
Suite 208  
Dallas, TX 75248  
Phone: (214) 733-3071  
FAX: (214) 380-5138  
NORTHEAST REGION  
Linear Technology Corporation  
One Oxford Valley  
2300 E. Lincoln Hwy.,Suite 306  
Langhorne, PA 19047  
Suite 206  
Woodland Hills, CA 91364  
Phone: (818) 703-0835  
FAX: (818) 703-0517  
Phone: (215) 757-8578  
FAX: (215) 757-5631  
NORTHWEST REGION  
Linear Technology Corporation  
782 Sycamore Dr.  
CENTRAL REGION  
Linear Technology Corporation  
Chesapeake Square  
Linear Technology Corporation  
266 Lowell St., Suite B-8  
Wilmington, MA 01887  
Milpitas, CA 95035  
Phone: (408) 428-2050  
FAX: (408) 432-6331  
229 Mitchell Court, Suite A-25  
Addison, IL 60101  
Phone: (708) 620-6910  
FAX: (708) 620-6977  
Phone: (508) 658-3881  
FAX: (508) 658-2701  
International Sales Offices  
KOREA  
FRANCE  
Linear Technology Korea Branch  
Namsong Building, #505  
Itaewon-Dong 260-199  
Yongsan-Ku, Seoul  
Korea  
TAIWAN  
Linear Technology S.A.R.L.  
Immeuble "Le Quartz"  
58 Chemin de la Justice  
92290 Chatenay Malabry  
France  
Linear Technology Corporation  
Rm. 801, No. 46, Sec. 2  
Chung Shan N. Rd.  
Taipei, Taiwan, R.O.C.  
Phone: 886-2-521-7575  
FAX: 886-2-562-2285  
Phone: 82-2-792-1617  
FAX: 82-2-792-1619  
Phone: 33-1-41079555  
FAX: 33-1-46314613  
SINGAPORE  
UNITED KINGDOM  
GERMANY  
Linear Technology Pte. Ltd.  
101 Boon Keng Road  
#02-15 Kallang Ind. Estates  
Singapore 1233  
Linear Technology (UK) Ltd.  
The Coliseum, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
Linear Techonolgy GmbH  
Untere Hauptstr. 9  
D-85386 Eching  
Germany  
Phone: 65-293-5322  
FAX: 65-292-0398  
Phone: 44-276-677676  
FAX: 44-276-64851  
Phone: 49-89-3197410  
FAX: 49-89-3194821  
JAPAN  
Linear Technology KK  
5F YZ Bldg.  
4-4-12 Iidabashi, Chiyoda-Ku  
Tokyo, 102 Japan  
Phone: 81-3-3237-7891  
FAX: 81-3-3237-8010  
World Headquarters  
Linear Technology Corporation  
1630 McCarthy Blvd.  
Milpitas, CA 95035-7487  
Phone: (408) 432-1900  
FAX: (408) 434-0507  
LT/GP 0594 10K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
20  
LINEAR TECHNOLOGY CORPORATION 1994  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY