LTC1152CN8 [Linear]

Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp; 轨至轨输入,轨到轨输出的零漂移运算放大器
LTC1152CN8
型号: LTC1152CN8
厂家: Linear    Linear
描述:

Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp
轨至轨输入,轨到轨输出的零漂移运算放大器

运算放大器 放大器电路 光电二极管
文件: 总8页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1152  
Rail-to-Rail Input  
Rail-to-Rail Output  
Zero-Drift Op Amp  
U
DESCRIPTIO  
EATURE  
S
F
TheLTC®1152isahighperformance, lowpowerzero-drift  
op amp featuring an input stage that common modes to  
both power supply rails and an output stage that provides  
rail-to-rail swing, even into heavy loads. The wide input  
common-mode range is achieved with a high frequency  
on-board charge pump. This technique eliminates the  
crossover distortion and limited CMRR imposed by com-  
peting technologies. The LTC1152 is a C-LoadTM of amp,  
enabling it to drive any capacitive load.  
Input Common-Mode Range Includes Both Rails  
Output Swings Rail to Rail  
Output Will Drive 1kLoad  
No External Components Required  
Input Offset Voltage: 10µV Max  
Input Offset Drift: 100nV/°C Max  
Minimum CMRR: 115dB  
Supply Current: 3.0mA Max  
Shutdown Pin Drops Supply Current to 5µA Max  
Output Configurable to Drive Any Capacitive Load  
Operates from 2.7V to 14V Total Supply Voltage  
The LTC1152 shares the excellent DC performance specs  
of LTC’s other zero-drift amplifiers. Typical offset voltage  
is 1µV and typical offset drift is 10nV/°C. CMRR and PSRR  
are 130dB and 120dB and open-loop gain is 130dB. Input  
noise voltage is 2µVP-P from 0.1Hz to 10Hz. Gain-band-  
width product is 0.7MHz and slew rate is 0.5V/µs, all with  
supply current of 3.0mA max over temperature. The  
LTC1152 also includes a shutdown feature which drops  
supply current to 1µA and puts the output stage in a high  
impedance state.  
O U  
PPLICATI  
S
A
Rail-to-Rail Amplifiers and Buffers  
High Resolution Data Acquisition Systems  
Supply Current Sensing in Either Rail  
Low Supply Voltage Transducer Amplifiers  
High Accuracy Instrumentation  
Single Negative Supply Operation  
The LTC1152 is available in 8-pin PDIP and 8-pin SO  
packages and uses the standard op amp pinout, allowing  
it to be a plug-in replacement for many standard op amps.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
C-Load is trademark of Linear Technology Corporation.  
U
O
TYPICAL APPLICATI  
Input and Output Waveforms  
Rail-to-Rail Buffer  
5V  
5V  
VOUT  
2V/DIV  
7
2
3
0V  
5V  
6
OUT  
LTC1152  
+
IN  
VIN  
2V/DIV  
4
1152 TA01  
0V  
1152 TA02  
1
LTC1152  
W
U
W W W  
U
ABSOLUTE AXI U RATI GS  
/O  
PACKAGE RDER I FOR ATIO  
Total Supply Voltage (V+ to V) ............................. 14V  
Input Voltage ............................ V+ + 0.3V to V– 0.3V  
Output Short-Circuit Duration (Pin 6) ............. Indefinite  
Operating Temperature Range  
ORDER PART  
NUMBER  
TOP VIEW  
SHDN  
–IN  
1
2
3
4
CP  
8
7
6
5
+
LTC1152CN8  
LTC1152CS8  
LTC1152IN8  
LTC1152IS8  
V
+IN  
OUT  
LTC1152C............................................... 0°C to 70°C  
LTC1152I.......................................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
V
COMP  
N8 PACKAGE  
8-LEAD PDIP  
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
1152  
1152I  
TJMAX = 110°C, θJA = 130°C/ W (N8)  
TJMAX = 110°C, θJA = 200°C/ W (S8)  
Consult factory for Military grade parts.  
VS = 5V, TA = operating temperature range, unless otherwise specified.  
ELECTRICAL CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
T = 25°C (Note 1)  
A
MIN  
TYP  
±1  
MAX  
±10  
UNITS  
µV  
V
Input Offset Voltage  
Average Input Offset Drift  
Long-Term Offset Drift  
Input Bias Current  
OS  
V  
(Note 1)  
±10  
±50  
±10  
±100  
nV/°C  
nV/Mo  
OS  
I
I
T = 25°C (Note 2)  
A
±100  
±1000  
pA  
pA  
B
Input Offset Current  
T = 25°C (Note 2)  
A
±20  
±200  
±500  
pA  
pA  
OS  
e
n
Input Noise Voltage (Note 3)  
R = 100, 0.1Hz to 10Hz  
R = 100, 0.1Hz to 1Hz  
S
2
0.5  
3
1
µV  
µV  
S
P-P  
P-P  
i
Input Noise Current  
f = 10Hz  
0.6  
130  
120  
fA/Hz  
n
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
V
CM  
= 0V to 5V  
115  
dB  
V = 3V to 12V  
S
110  
105  
dB  
dB  
A
V
Large-Signal Voltage Gain  
R = 10k, V = 0.5V to 4.5V  
L OUT  
110  
130  
dB  
VOL  
Maximum Output Voltage Swing (Note 4)  
R = 1k, V = Single 5V  
4.0  
±2.0  
4.4  
2.2  
±2.49  
V
V
V
OUT  
L
S
R = 1k, V = ±2.5V  
L
S
R = 100k, V = ±2.5V  
L
S
SR  
Slew Rate  
R = 10k, C = 50pF, V = ±2.5V  
0.5  
0.7  
V/µs  
L
L
S
GBW  
Gain-Bandwidth Product  
Supply Current  
R = 10k, C = 50pF, V = ±2.5V  
MHz  
L
L
S
I
No Load  
Shutdown = 0V  
2.2  
1
3.0  
5
mA  
µA  
S
I
Output Leakage Current  
Shutdown = 0V  
±10  
7.3  
2.5  
4
±100  
nA  
V
OSD  
V
V
V
Charge Pump Output Voltage  
Shutdown Pin Input Low Voltage  
Shutdown Pin Input High Voltage  
Shutdown Pin Input Current  
Internal Charge Pump Frequency  
Internal Sampling Frequency  
I
= 0  
CP  
CP  
IL  
V
V
IH  
I
f
f
V
SHDN  
= 0V  
–1  
4.7  
2.3  
–5  
µA  
MHz  
kHz  
IN  
T = 25°C  
A
CP  
T = 25°C  
A
SMPL  
2
LTC1152  
ELECTRICAL CHARACTERISTICS VS = 3V, TA = operating temperature range, unless otherwise specified.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
Average Input Offset Drift  
Input Bias Current  
T = 25°C (Note 1)  
±1  
±10  
µV  
OS  
A
V  
(Note 1)  
±10  
±5  
±100  
nV/°C  
OS  
I
T = 25°C (Note 2)  
A
±100  
±1000  
pA  
pA  
B
I
Input Offset Current  
T = 25°C (Note 2)  
A
±10  
±200  
±500  
pA  
pA  
OS  
e
n
Input Noise Voltage (Note 3)  
R = 100, 0.1Hz to 10Hz  
R = 100, 0.1Hz to 1Hz  
S
2
0.75  
µV  
µV  
S
P-P  
P-P  
i
Input Noise Current  
f = 10Hz  
0.6  
130  
130  
fA/Hz  
dB  
n
CMRR  
Common-Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
CM  
= 0V to 3V  
A
V
R = 10k, V = 0.5V to 2.5V  
L OUT  
106  
2.0  
dB  
VOL  
OUT  
Maximum Output Voltage Swing (Note 4)  
R = 1k, V = Single 3V  
2.5  
±1.48  
V
V
L
S
R = 100k, V = ±1.5V  
L
S
SR  
Slew Rate  
R = 10k, C = 50pF, V = ±1.5V  
0.4  
0.5  
V/µs  
L
L
S
GBW  
Gain-Bandwidth Product  
Supply Current  
R = 10k, C = 50pF, V = ±1.5V  
MHz  
L
L
S
I
No Load  
Shutdown = 0V  
1.8  
1
2.5  
5
mA  
µA  
S
I
Output Leakage Current  
Shutdown = 0V  
±10  
4.5  
1.2  
2.3  
–1  
nA  
V
OSD  
V
V
V
Charge Pump Output Voltage  
Shutdown Pin Input Low Voltage  
Shutdown Pin Input High Voltage  
Shutdown Pin Input Current  
Internal Charge Pump Frequency  
Internal Sampling Frequency  
I
= 0  
CP  
CP  
IL  
V
V
IH  
I
f
f
V
SHDN  
= 0V  
µA  
MHz  
kHz  
IN  
T = 25°C  
A
4.2  
2.1  
CP  
T = 25°C  
A
SMPL  
The  
denotes specifications which apply over the full operating  
filter at 0.1Hz. Contact LTC factory for sample tested or 100% tested noise  
parts.  
temperature range.  
Note 1: These parameters are guaranteed by design. Thermocouple effects  
preclude measurement of these voltage levels during automated testing.  
Note 2: At T 0°C these parameters are guaranteed by design and not  
tested.  
Note 4: All output swing measurements are taken with the load resistor  
connected from output to ground. For single supply tests, only the positive  
swing is specified (negative swing will be 0V due to the pull-down effect of  
the load resistor). For dual supply operation, both positive and negative  
swing are specified.  
Note 3: 0.1Hz to 10Hz noise is specified DC coupled in a 10-sec window;  
0.1Hz to 1Hz noise is specified in a 100-sec window with an RC highpass  
3
LTC1152  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Common-Mode Range vs  
Supply Voltage  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
3.0  
2.5  
2.0  
1.5  
1.0  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
8
6
T
= 25°C  
V = 5V  
S
A
4
2
0
–2  
–4  
–6  
–8  
6
1
2
3
4
5
7
0
2
6
8
10 12  
14  
–50 –25  
0
25  
50  
75  
100  
4
POWER SUPPLY VOLTAGE (±V)  
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
1152 G01  
1152 G02  
1152 G03  
Output Short-Circuit Current vs  
Supply Voltage  
Open-Loop Output Resistance vs  
Supply Voltage  
Output Swing vs Load Resistance  
40  
30  
20  
10  
0
300  
250  
200  
150  
100  
6
5
4
3
2
1
0
T
= 25°C  
A
T
= 25°C  
T
A
= 25°C  
SOURCE  
A
V
S
= SINGLE 5V  
SINK  
V
S
= SINGLE 3V  
V
= ±2.5V  
= ±1.5V  
S
V
S
2
4
6
8
10  
12  
14  
2
4
6
8
10  
12  
14  
0.2 0.5  
1
2
5
10 20 50 100 200  
TOTAL SUPPLY VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
LOAD RESISTANCE (k)  
1152 G05  
1152 G06  
1152 G04  
Charge Pump Voltage vs  
Supply Voltage  
Charge Pump Voltage vs  
Load Current  
Input Bias Current vs Temperature  
1000  
100  
10  
3
2
1
0
3
2
1
0
V
S
= 5V  
T
A
= 25°C  
T
= 25°C  
= 5V  
A
S
V
120 140  
0
20  
40 60 80 100  
160  
–50 –25  
0
25  
50  
75  
100  
2
6
8
10  
12  
14  
4
LOAD CURRENT (µA)  
TEMPERATURE (°C)  
TOTAL SUPPLY VOLTAGE (V)  
1152 G09  
1152 G08  
1152 G07  
4
LTC1152  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Gain and Phase Shift vs  
Frequency  
Common-Mode Rejection Ratio vs  
Frequency  
Power Supply Rejection Ratio vs  
Frequency  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
120  
100  
80  
60  
40  
20  
0
T
A
= 25°C  
T
= 25°C  
T
= 25°C  
A
S
A
V
= ±2.5V  
V
= ±2.5V  
S
PHASE  
GAIN  
PIN 5 = NC  
50  
40  
80  
30  
–PSRR  
+PSRR  
70  
20  
60  
10  
50  
0
40  
–10  
–20  
30  
–10  
0.1  
1
10  
100  
1000  
10  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1152 G14  
1152 G13  
1152 G10  
Gain and Phase Shift vs  
Frequency  
0.1Hz to 10Hz Input Noise  
Voltage Noise vs Frequency  
2
1
70  
60  
150  
125  
100  
75  
120  
100  
80  
T
V
C
= 25°C  
A
S
= ±2.5V  
PHASE  
= 1000pF  
COMP  
50  
40  
60  
30  
40  
0
20  
20  
10  
0
50  
GAIN  
–1  
–2  
0
–20  
–40  
–60  
25  
–10  
–20  
0
1
10  
100  
1k  
10k  
0
2
4
6
8
10  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
TIME (SEC)  
1152 G15  
1152 G11  
1152 G18  
Gain and Phase Shift vs  
Frequency  
Small-Signal Transient Response  
Large-Signal Transient Response  
60  
50  
180  
160  
140  
120  
100  
80  
T
V
C
= 25°C  
A
S
= ±2.5V  
= 0.1µF  
COMP  
40  
30  
PHASE  
20  
10  
0
60  
–10  
–20  
–30  
–40  
40  
GAIN  
20  
VS = ±2.5V  
AV = 1  
VS = ±2.5V  
0
1152 G16  
A
V = 1  
1152 G17  
–20  
0.01  
0.1  
1
10  
FREQUENCY (kHz)  
1152 G12  
5
LTC1152  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
V
CC  
Rail-to-Rail Operation  
(PIN 7)  
INTERNAL  
CHARGE  
PUMP  
V
+ 2V  
CC  
The LTC1152 is a rail-to-rail input common-mode range,  
rail-to-rail output swing op amp. Most CMOS op amps,  
including the entire LTC zero-drift amplifier line, and even  
a few bipolar op amps, can and do, claim rail-to-rail output  
swing. One obvious use for such a device is to provide a  
unity-gainbufferfor0Vto5Vsignalsrunningfromasingle  
5V power supply. This is not possible with the vast  
majority of so-called “rail-to-rail” op amps; although the  
output can swing to both rails, the negative input (which  
isconnectedtotheoutput)willexceedthecommon-mode  
input range of the device at some point (generally about  
1.5V below the positive supply), opening the feedback  
loop and causing unpredictable and sometimes bizarre  
behavior.  
CP (PIN 8)  
0.1µF*  
–IN  
OUTPUT  
INPUT  
OUT  
RAIL TO RAIL  
+
+IN  
*OPTIONAL EXTERNAL  
CAPACITOR TO REDUCE  
1152 F01  
CHARGE PUMP FEEDTHROUGH  
Figure 1. LTC1152 Internal Block Diagram  
time. This diode can stand short-term peak currents of  
about 50mA, allowing it to quickly charge external capaci-  
tance to ground or V. Large capacitors (>1µF) should not  
be connected between pin 8 and ground or Vto prevent  
excessive diode current from flowing at start-up. The  
LTC1152 can withstand continuous short circuits be-  
tween pin 8 and V+; however, short circuiting pin 8 to  
ground or Vwill cause large amounts of current to flow  
through the diode, destroying the LTC1152. Don’t do it.  
The LTC1152 is an exception to this rule. It features both  
rail-to-rail output swing and rail-to-rail input common-  
mode range (CMR); the input CMR actually extends be-  
yond either rail by about 0.3V. This allows unity-gain  
buffer circuits to operate with any input signal within the  
powersupplyrails;inputsignalswingislimitedonlybythe  
output stage swing into the load. Additionally, signals  
occurring at either rail (power supply current sensing, for  
example) can be amplified without any special circuitry.  
Output Drive  
The LTC1152 features an enhanced output stage that can  
sink and source 10mA with a single 5V supply while  
maintaining rail-to-rail output swing under most loading  
conditions. The output stage can be modeled as a perfect  
rail-to-rail voltage source with a resistor in series with it;  
this open-loop output resistance limits the output swing  
by creating a resistor divider with the output load.  
Internal Charge Pump  
The LTC1152 achieves its rail-to-rail input CMR by using  
a charge pump to generate an internal voltage approxi-  
mately 2V higher than V+. The input stages of the op amp  
are run from this higher voltage, making signals at V+  
appeartobe2Vbelowthefrontend’spowersupply(Figure  
1). The charge pump is contained entirely within the  
LTC1152; no external components are required.  
The output resistance drops as total power supply voltage  
increases, as shown in the typical performance curves. It  
is typically 140with a single 5V supply, allowing a 4.4V  
output swing into a 1k resistor with a single 5V supply.  
About 100µVP-P of residual charge pump switching noise  
will be present on the output of the LTC1152. This  
feedthrough is at 4.7MHz, higher than the gain-bandwidth  
of the LTC1152, and will generally not cause any prob-  
lems. Very sensitive applications can reduce this  
feedthrough by connecting a capacitor from the CP pin  
(pin 8) to V+(pin 7); a 0.1µF capacitor will reduce charge  
pump feedthrough to negligible levels. The LTC1152 in-  
cludes an internal diode from pin 8 to pin 7 to prevent  
external parasitic capacitance from lengthening start-up  
V
CC  
(PIN 7)  
R
LTC1152  
OUTPUT  
DRIVER  
OUT  
OUT (PIN 6)  
140AT 5V SUPPLY  
R
LOAD  
1152 F02  
Figure 2. LTC1152 Output Resistance Model  
6
LTC1152  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
Compensation/Bandwidth Limiting  
is running from ±5V or ±3V supplies. The internal 1µA  
pull-up also allows pin 1 to interface with open-collector/  
open-drain devices or discrete transistors.  
The LTC1152 is unity-gain stable with capacitive loads up  
to 1000pF. Larger capacitive loads can be driven by  
externally compensating the LTC1152. Adding 1000pF  
between COMP (pin 5) and OUT (pin 6) allows capacitive  
loadingofupto1µF;0.1µFbetweenpins5and6allowsthe  
LTC1152 to drive infinite capacitive load (Figure 3).  
The high impedance output in shutdown allows several  
LTC1152s to be connected together as a MUX, with their  
outputs tied in parallel and the active channel selected by  
using the shutdown pins. Deselected (shutdown) chan-  
nels will go to high impedance at the outputs, preventing  
them from fighting with the active channel. This works  
best when the individual LTC1152s are connected in  
noninverting feedback configurations to prevent the feed-  
back resistors from passing signals through deselected  
channels. See the Typical Applications section for a circuit  
example.  
8
7
6
5
1
2
3
4
+
V
LTC1152  
1N4148*  
OUTPUT  
1N4148*  
V
C
C
*OPTIONAL DIODES TO PREVENT  
1152 F03  
LATCH-UP WITH C > 1µF  
Zero-Drift Operation  
C
The LTC1152 is a zero-drift op amp. Like other LTC zero-  
drift op amps, it features virtually error-free DC perfor-  
mance, verylittledriftovertimeandtemperature, andvery  
low noise at low frequencies. The internal nulling clock  
runs at about 2.3kHz (the charge pump frequency of  
4.7MHz divided by 2048) and is synchronized to the  
internal charge pump to prevent beat frequencies from  
appearing at the output. The self-nulling circuit constantly  
corrects the input offset voltage, keeping it typically below  
±1µV over the entire input common-mode range. This has  
the added benefit of providing exceptional CMRR and  
PSRR at low frequencies––far better than competing rail-  
to-rail op amps.  
Figure 3. Output Compensation Connection  
Large compensation capacitors can also be used to limit  
the bandwidth of the LTC1152. With 0.1µF from pin 5 to  
pin 6, the LTC1152’s gain-bandwidth product is reduced  
from 700kHz to around 200Hz. Note that compensation  
capacitors greater than 1µF can cause latch-up under  
severe output fault conditions; this can be prevented by  
clampingpin5toeachsupplywithstandardsignaldiodes,  
as shown in Figure 3.  
Shutdown  
The LTC1152 includes a shutdown pin (pin 1). When this  
pin is at V+, the LTC1152 operates normally. An internal  
1µApull-upkeepsthepinhighifitisleftfloating. Whenpin  
1 is pulled low, the part enters shutdown mode; supply  
current drops to 1µA, all internal clocking stops and the  
output enters a high impedance state. During shutdown  
the voltage at the CP pin (pin 8) will drop to 0.5V belowV+.  
When pin 1 is brought high again, about 10µs will elapse  
before the charge pump regains full voltage. During this  
timetheLTC1152willoperatenormally,buttheinputCMR  
may not include V+. Pin 1 is compatible with CMOS logic  
running from the same supply as the LTC1152. Addition-  
ally, the input trip levels allow ground referenced CMOS  
logicsignalstointerfacedirectlytopin1whentheLTC1152  
Because it uses a sampling front end, the LTC1152 will  
exhibit aliasing behavior and clock noise at frequencies  
neartheinternal2.3kHzsamplingfrequency.TheLTC1152  
includesaninternalanti-aliasingcircuittokeeptheseerror  
terms to a minimum. As a rule, alias frequencies will be  
down by (80dB – ACLG) in most standard amplifier con-  
figurations, where ACLG is the closed-loop gain of the  
LTC1152 circuit. Clock noise is also dependent on closed-  
loopgain;itwillgenerallyconsistofspikesofabout100µV  
in amplitude, input referred. In general, these error terms  
are too small to affect most applications. For a more  
detailed explanation of zero-drift amplifier behavior, see  
the LTC1051/LTC1053 data sheet.  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LTC1152  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
High Precision Three-Input MUX  
High Gain Amplifier with ±1.5V Supplies  
1.5V  
1.1k  
10k  
10Ω  
100k  
SEL1  
2
3
1
2
3
7
6
6
LTC1152  
LTC1152  
OUT  
IN 1  
= 10  
A
V
= 10k  
= 80dB  
+
IN  
+
0.1µF  
A
V
4
10Ω  
10k  
OUT  
1152 TA03  
–1.5V  
SEL2  
2
1
High-Side Power Supply Current Sensing  
6
LTC1152  
CHANGE SENSE RESISTOR  
TO CHANGE SENSITIVITY  
3
IN 2  
+
A
V
= 1000  
TO  
0.01Ω  
100Ω  
5V  
MEASURED  
CIRCUIT  
0.1µF  
SEL3  
3
2
1
+
10k  
10k  
6
6
LTC1152  
LTC1152  
2
IN 3  
= 1  
3
+
A
2
3
V
10k  
+
OUT  
1V/100mA  
LOAD CURRENT IN  
MEASURED CIRCUIT  
6
100k  
LT1097  
SELECT INPUTS ARE CMOS LOGIC COMPATIBLE.  
SELECT ONLY ONE CHANNEL AT ONCE!  
1152 TA04  
0.1µF  
10k  
GND  
GND  
1152 TA05  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead Plastic DIP  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197*  
(4.801 – 5.004)  
0.400*  
(10.160)  
MAX  
7
5
8
6
8
7
6
5
4
*THESE DIMENSIONS DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTURSIONS SHALL  
NOT EXCEED 0.010 INCH (0.254mm).  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.150 – 0.157*  
(3.810 – 3.988)  
*THESE DIMENSIONS DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL  
NOT EXCEED 0.006 INCH (0.15mm).  
0.228 – 0.244  
(5.791 – 6.197)  
1
2
3
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.325  
(7.620 – 8.255)  
1
2
3
4
0.045 – 0.065  
(1.143 – 1.651)  
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.065  
(1.651)  
0.009 – 0.015  
(0.229 – 0.381)  
TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
0.125  
(3.175)  
MIN  
0.015  
(0.380)  
MIN  
+0.025  
–0.015  
SO8 0294  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0694  
LT/GP 0195 10K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
8
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1995  

相关型号:

LTC1152CN8#PBF

LTC1152 - Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1152CS8

Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp
Linear

LTC1152CS8#PBF

LTC1152 - Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1152CS8#TR

LTC1152 - Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1152CS8#TRPBF

LTC1152 - Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1152I

Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp
Linear

LTC1152IN8

Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp
Linear

LTC1152IN8#PBF

暂无描述
Linear

LTC1152IS8

Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp
Linear

LTC1152IS8#PBF

LTC1152 - Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1152IS8#TR

LTC1152 - Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1153

Auto-Reset Electronic Circuit Breaker
Linear