LT6108IDCB-1#PBF [Linear]

LT6108 - High Side Current Sense Amplifier with Reference and Comparator; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C;
LT6108IDCB-1#PBF
型号: LT6108IDCB-1#PBF
厂家: Linear    Linear
描述:

LT6108 - High Side Current Sense Amplifier with Reference and Comparator; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C

光电二极管
文件: 总30页 (文件大小:398K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6108-1/LT6108-2  
High Side Current Sense  
Amplifier with Reference  
and Comparator  
FEATURES  
DESCRIPTION  
The LT®6108 is a complete high side current sense device  
that incorporates a precision current sense amplifier, an  
integrated voltage reference and a comparator. Two ver-  
sions of the LT6108 are available. The LT6108-1 has a  
latching comparator and the LT6108-2 has a non-latching  
comparator. In addition, the current sense amplifier and  
comparatorinputsandoutputsaredirectlyaccessible.The  
amplifier gain and comparator trip point are configured  
by external resistors. The open-drain comparator output  
allows for easy interface to other system components.  
n
Current Sense Amplifier  
– Fast Step Response: 500ns  
– Low Offset Voltage: 125µV Maximum  
– Low Gain Error: 0.2% Maximum  
n
Internal 400mV Precision Reference  
n
Internal Comparator  
– Fast Response Time: 500ns  
– Total Threshold Error: 1.25% Maximum  
– Latching or Non-Latching Comparator Option  
n
Wide Supply Range: 2.7V to 60V  
n
Supply Current: 450µA  
Low Shutdown Current: 5µA Maximum  
TheoverallpropagationdelayoftheLT6108istypicallyonly  
1.4µs, allowing for quick reaction to overcurrent condi-  
tions. The 1MHz bandwidth allows the LT6108 to be used  
for error detection in critical applications such as motor  
control. The high threshold accuracy of the comparator,  
combined with the ability to latch the comparator, ensures  
the LT6108 can capture high speed events.  
n
n
Specified for –40°C to 125°C Temperature Range  
n
Available in 8-Lead MSOP and 8-Lead (2mm × 3mm)  
DFN Packages  
APPLICATIONS  
n
Overcurrent and Fault Detection  
The LT6108 is fully specified for operation from –40°C to  
125°C, making it suitable for industrial and automotive  
applications. The LT6108 is available in the small 8-lead  
MSOP and 8-lead DFN packages.  
L, LT, LTC, LTM, TimerBlox, Linear Technology and the Linear logo are registered trademarks  
of Linear Technology Corporation. All other trademarks are the property of their respective  
owners.  
n
Current Shunt Measurement  
n
Battery Monitoring  
Motor Control  
Automotive Monitoring and Control  
Remote Sensing  
Industrial Control  
n
n
n
n
TYPICAL APPLICATION  
Response to Overcurrent Event  
Circuit Fault Protection with Very Fast Latching Load Disconnect  
0.1Ω  
IRF9640  
12V  
TO LOAD  
V
LOAD  
0.1µF  
1k  
100Ω  
10V/DIV  
6.2V*  
0V  
SENSEHI SENSELO  
+
V
V
OUTA  
OUT  
I
3.3V  
LOAD  
LT6108-1  
200mA/DIV  
6.04k  
1.6k  
RESET  
EN/RST  
1k  
10k  
0mA  
250mA DISCONNECT  
V
OUTC  
5V/DIV  
250mA DISCONNECT  
2N2700  
OUTC  
INC  
0V  
V
610812 TA01a  
610812 TA01b  
5µs/DIV  
*CMH25234B  
610812fa  
1
LT6108-1/LT6108-2  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
+
Total Supply Voltage (V to V ).................................60V  
AmplifierOutputShort-CircuitDuration(toV ).. Indefinite  
Maximum Voltage  
Operating Temperature Range (Note 3)  
+
(SENSELO, SENSEHI, OUTA)............................... V + 1V  
LT6108I................................................–40°C to 85°C  
LT6108H ............................................ –40°C to 125°C  
Specified Temperature Range (Note 3)  
+
Maximum V – (SENSELO or SENSEHI)....................33V  
Maximum EN, EN/RST Voltage .................................60V  
Maximum Comparator Input Voltage........................60V  
Maximum Comparator Output Voltage......................60V  
Input Current (Note 2)..........................................–10mA  
SENSEHI, SENSELO Input Current ....................... 10mA  
Differential SENSEHI or SENSELO Input Current .. 2.5mA  
LT6108I................................................–40°C to 85°C  
LT6108H ............................................ –40°C to 125°C  
Maximum Junction Temperature .......................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
MSOP Lead Temperature (Soldering, 10 sec)........300°C  
PIN CONFIGURATION  
LT6108-1  
LT6108-2  
TOP VIEW  
TOP VIEW  
SENSELO  
EN/RST  
OUTC  
1
2
3
4
8 SENSEHI  
7 V  
6 OUTA  
5 INC  
SENSELO  
EN  
1
2
3
4
8 SENSEHI  
7 V  
6 OUTA  
5 INC  
+
+
OUTC  
V
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
θ
JA  
= 163°C/W, θ = 45°C/W  
θ
JA  
= 163°C/W, θ = 45°C/W  
JC  
JC  
TOP VIEW  
TOP VIEW  
8
8
SENSEHI  
SENSELO  
EN/RST  
OUTC  
1
2
3
4
SENSEHI  
SENSELO  
EN  
1
2
3
4
+
+
7
6
5
V
7
6
5
V
9
9
OUTA  
INC  
OUTC  
OUTA  
INC  
V
V
DCB PACKAGE  
8-LEAD (2mm × 3mm) PLASTIC DFN  
DCB PACKAGE  
8-LEAD (2mm × 3mm) PLASTIC DFN  
θ
= 64°C/W, θ = 10°C/W  
θ
= 64°C/W, θ = 10°C/W  
JA  
JC  
JA  
JC  
EXPOSED PAD (PIN 9) IS V , PCB CONNECTION OPTIONAL  
EXPOSED PAD (PIN 9) IS V , PCB CONNECTION OPTIONAL  
610812fa  
2
LT6108-1/LT6108-2  
ORDER INFORMATION  
LEAD FREE FINISH  
LT6108AIMS8-1#PBF  
LT6108IMS8-1#PBF  
LT6108AHMS8-1#PBF  
LT6108HMS8-1#PBF  
LT6108AIMS8-2#PBF  
LT6108IMS8-2#PBF  
LT6108AHMS8-2#PBF  
LT6108HMS8-2#PBF  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
–40°C to 85°C  
LT6108AIMS8-1#TRPBF  
LT6108IMS8-1#TRPBF  
LT6108AHMS8-1#TRPBF  
LT6108HMS8-1#TRPBF  
LT6108AIMS8-2#TRPBF  
LT6108IMS8-2#TRPBF  
LT6108AHMS8-2#TRPBF  
LT6108HMS8-2#TRPBF  
LTFND  
LTFND  
LTFND  
LTFND  
LTFNG  
LTFNG  
LTFNG  
LTFNG  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
Lead Free Finish  
TAPE AND REEL (MINI)  
TAPE AND REEL  
PART MARKING*  
LFNF  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
–40°C to 85°C  
LT6108IDCB-1#TRMPBF  
LT6108IDCB-1#TRPBF  
8-Lead (2mm × 3mm) Plastic DFN  
8-Lead (2mm × 3mm) Plastic DFN  
8-Lead (2mm × 3mm) Plastic DFN  
8-Lead (2mm × 3mm) Plastic DFN  
LT6108HDCB-1#TRMPBF LT6108HDCB-1#TRPBF  
LT6108IDCB-2#TRMPBF LT6108IDCB-2#TRPBF  
LT6108HDCB-2#TRMPBF LT6108HDCB-2#TRPBF  
LFNF  
–40°C to 125°C  
LFNH  
–40°C to 85°C  
LFNH  
–40°C to 125°C  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
610812fa  
3
LT6108-1/LT6108-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 12V, VPULLUP = V+, VEN = VEN/RST = 2.7V, RIN = 100Ω,  
ROUT = R1 + R2 = 10k, gain = 100, RC = 25.5k, CL = CLC = 2pF, unless otherwise noted. (See Figure 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
+
l
V
Supply Voltage Range  
Supply Current (Note 4)  
2.7  
60  
+
I
S
V = 2.7V, R = 1k, V  
= 5mV  
= 5mV  
450  
550  
µA  
IN  
SENSE  
+
V = 60V, R = 1k, V  
650  
950  
µA  
µA  
IN  
SENSE  
l
l
l
+
Supply Current in Shutdown  
V = 2.7V, V  
= 0V, R = 1k, V  
= 0.5V  
= 0.5V  
3
7
5
7
µA  
µA  
EN/RST  
IN  
SENSE  
+
V = 60V, V  
= 0V, R = 1k, V  
11  
13  
µA  
µA  
EN/RST  
IN  
SENSE  
+
EN/RST Pin Current  
EN Pin Current  
V
V
= 0V, V = 60V (LT6108-1 Only)  
–200  
–100  
nA  
nA  
V
EN/RST  
+
= 0V, V = 60V (LT6108-2 Only)  
EN  
+
l
l
l
l
V
IH  
V
IL  
V
IH  
V
IL  
EN/RST Pin Input High  
EN/RST Pin Input Low  
EN Pin Input High  
EN Pin Input Low  
V = 2.7V to 60V (LT6108-1 Only)  
1.9  
1.9  
+
V = 2.7V to 60V (LT6108-1 Only)  
0.8  
0.8  
V
+
V = 2.7V to 60V (LT6108-2 Only)  
V
+
V = 2.7V to 60V (LT6108-2 Only)  
V
Current Sense Amplifier  
V
OS  
Input Offset Voltage  
V
SENSE  
V
SENSE  
V
SENSE  
V
SENSE  
= 5mV, LT6108A  
= 5mV, LT6108  
= 5mV, LT6108A  
= 5mV, LT6108  
–125  
–350  
–250  
–450  
125  
350  
250  
450  
µV  
µV  
µV  
µV  
l
l
l
Input Offset Voltage Drift  
V
= 5mV  
0.8  
60  
µV/°C  
V /T  
SENSE  
+
OS  
I
B
Input Bias Current  
(SENSELO, SENSEHI)  
V = 2.7V to 60V  
300  
350  
nA  
nA  
l
+
I
I
Input Offset Current  
V = 2.7V to 60V  
5
nA  
OS  
l
l
Output Current (Note 5)  
1
mA  
OUTA  
+
PSRR  
Power Supply Rejection Ratio  
(Note 6)  
V = 2.7V to 60V  
120  
114  
127  
dB  
dB  
+
CMRR  
Common Mode Rejection Ratio  
V = 36V, V  
= 5mV, V  
= 5mV, V  
= 2.7V to 36V  
125  
125  
dB  
SENSE  
SENSE  
ICM  
ICM  
+
V = 60V, V  
= 27V to 60V  
110  
103  
dB  
dB  
l
l
V
Full-Scale Input Sense Voltage  
(Note 5)  
R
IN  
= 500Ω  
500  
mV  
SENSE(MAX)  
+
+
Gain Error (Note 7)  
V = 2.7V to 12V  
–0.08  
%
%
%
l
l
V = 12V to 60V, V  
= 5mV to 100mV, MS8 Package  
= 5mV to 100mV, DFN Package  
–0.2  
–0.3  
0
0
SENSE  
SENSE  
+
V = 12V to 60V, V  
+
+
l
l
SENSELO Voltage (Note 8)  
V = 2.7V, V  
= 100mV, R  
= 100mV  
= 2k  
OUT  
2.5  
27  
V
V
SENSE  
SENSE  
V = 60V, V  
+
+
l
l
Output Swing High (V to V  
)
V = 2.7V, V  
= 27mV  
0.2  
0.5  
V
V
OUTA  
SENSE  
SENSE  
+
V = 12V, V  
= 120mV  
BW  
Signal Bandwidth  
I
I
= 1mA  
1
MHz  
kHz  
OUT  
OUT  
+
= 100µA  
140  
t
t
Input Step Response (to 50% of V = 2.7V, V  
Final Output Voltage)  
= 24mV Step, Output Rising Edge  
SENSE  
500  
500  
ns  
ns  
r
+
V = 12V to 60V, V  
= 100mV Step, Output Rising Edge  
SENSE  
Settling Time to 1%  
V
= 10mV to 100mV, R = 2k  
OUT  
2
µs  
SETTLE  
SENSE  
610812fa  
4
LT6108-1/LT6108-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 12V, VPULLUP = V+, VEN = VEN/RST = 2.7V, RIN = 100Ω,  
ROUT = R1 + R2 = 10k, gain = 100, RC = 25.5k, CL = CLC = 2pF, unless otherwise noted. (See Figure 3)  
SYMBOL  
Reference and Comparator  
Rising Input Threshold Voltage  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
+
l
l
V
V = 2.7V to 60V, LT6108A  
395  
392  
400  
400  
405  
408  
mV  
mV  
TH(R)  
(Note 9)  
V = 2.7V to 60V, LT6108  
+
V
V
= V  
– V  
TH(F)  
V = 2.7V to 60V  
3
10  
15  
mV  
nA  
HYS  
OL  
HYS  
TH(R)  
+
l
l
Comparator Input Bias Current  
Output Low Voltage  
V
INC  
= 0V, V = 60V  
–50  
+
V
I
= 500µA, V = 2.7V  
60  
150  
220  
mV  
mV  
OUTC  
High to Low Propagation Delay  
5mV Overdrive  
100mV Overdrive  
3
0.5  
µs  
µs  
Output Fall Time  
Reset Time  
0.08  
0.5  
µs  
µs  
µs  
t
t
LT6108-1 Only  
LT6108-1 Only  
RESET  
l
Valid RST Pulse Width  
2
15  
RPW  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: The full-scale input sense voltage and the maximum output  
current must be considered to achieve the specified performance.  
Note 6: Supply voltage and input common mode voltage are varied while  
amplifier input offset voltage is monitored.  
Note 2: Input and output pins have ESD diodes connected to ground. The  
SENSEHI and SENSELO pins have additional current handling capability  
specified as SENSEHI, SENSELO Input Current.  
Note 7: The specified gain error does not include the effect of external  
resistors R and R . Although gain error is only guaranteed between  
IN  
OUT  
+
12V and 60V, similar performance is expected for V < 12V, as well.  
Note 3: The LT6108I is guaranteed to meet specified performance from  
–40°C to 85°C. LT6108H is guaranteed to meet specified performance  
from –40°C to 125°C.  
Note 4: Supply current is specified with the comparator output high. When  
the comparator output goes low the supply current will increase by 75µA  
typically.  
Note 8: Refer to SENSELO, SENSEHI Range in the Applications  
Information section for more information.  
Note 9: The input threshold voltage which causes the output voltage of the  
comparator to transition from high to low is specified. The input voltage  
which causes the comparator output to transition from low to high is  
the magnitude of the difference between the specified threshold and the  
hysteresis.  
610812fa  
5
LT6108-1/LT6108-2  
Performance characteristics taken at T = 25°C,  
TYPICAL PERFORMANCE CHARACTERISTICS  
A
V+ = 12V, VPULLUP = V+, VEN = VEN/RST = 2.7V, RIN = 100Ω, ROUT = R1 + R2 = 10k, gain = 100, RC = 25.5k, CL = CLC = 2pF, unless  
otherwise noted. (See Figure 3)  
Supply Current vs Supply Voltage  
Start-Up Supply Current  
Enable/Disable Response  
600  
500  
400  
300  
200  
100  
0
+
V
5V/DIV  
V
EN/RST  
2V/DIV  
0V  
0V  
I
S
I
S
500µA/DIV  
500µA/DIV  
0µA  
0µA  
610812 G02  
0
20  
30  
40  
50  
60  
10  
10µs/DIV  
100µs/DIV  
SUPPLY VOLTAGE (V)  
610812 G03  
610812 G01  
Input Offset Voltage  
vs Temperature  
Amplifier Offset Voltage  
vs Supply Voltage  
Offset Voltage Drift Distribution  
300  
200  
100  
0
12  
10  
8
100  
80  
5 TYPICAL UNITS  
5 TYPICAL UNITS  
60  
40  
20  
0
6
–20  
–40  
–60  
–80  
–100  
–100  
–200  
–300  
4
2
0
–2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
610812 G04  
0
10  
30  
40  
50  
60  
20  
OFFSET VOLTAGE DRIFT (µV/°C)  
SUPPLY VOLTAGE (V)  
610812 G38  
610812 G05  
Amplifier Gain Error  
vs Temperature  
Amplifier Output Swing  
vs Temperature  
Amplifier Gain Error Distribution  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.02  
0
25  
20  
V
= 5mV TO 100mV  
SENSE  
+
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
–016  
–0.18  
V
= 12V  
R
= 1k  
IN  
V
= 120mV  
SENSE  
15  
R
IN  
= 100Ω  
10  
5
+
V
= 2.7V  
V
= 27mV  
SENSE  
V
= 5mV TO 100mV  
SENSE  
–25  
0
–50  
0
25  
50  
75 100 125  
–25  
–50  
0
25  
50  
75 100 125  
–0.048 –0.052 –0.056 –0.060 –0.064 –0.068  
GAIN ERROR (%)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
610812 G18  
610812 G06  
610812 G07  
610812fa  
6
LT6108-1/LT6108-2  
Performance characteristics taken at T = 25°C,  
TYPICAL PERFORMANCE CHARACTERISTICS  
A
V+ = 12V, VPULLUP = V+, VEN = VEN/RST = 2.7V, RIN = 100Ω, ROUT = R1 + R2 = 10k, gain = 100, RC = 25.5k, CL = CLC = 2pF, unless  
otherwise noted. (See Figure 3)  
Common Mode Rejection Ratio  
vs Frequency  
LT6108-1 Step Response  
Amplifier Gain vs Frequency  
140  
120  
100  
80  
46  
40  
34  
28  
22  
16  
V
SENSE  
100mV/DIV  
0V  
G = 100, R  
= 10k  
OUT  
V
OUTA  
1V/DIV  
0V  
G = 50, R  
G = 20, R  
= 5k  
OUT  
V
OUTC  
60  
2V/DIV  
= 2k  
OUT  
0V  
40  
V
EN/RST  
5V/DIV  
20  
I
I
= 1mA  
= 100µA  
OUTA  
OUTA  
R
= 2k  
0V  
OUT  
100mV INC OVERDRIVE  
0
1
10 100 1k 10k 100k 1M 10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
2µs/DIV  
FREQUENCY (Hz)  
610812 G11  
610812 G10  
610812 G09  
Amplifier Input Bias Current  
vs Temperature  
Amplifier Step Response  
(VSENSE = 0mV to 100mV)  
LT6108-2 Step Response  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R
OUT  
= 2k,100mV INC OVERDRIVE  
R
= 100Ω  
IN  
V
SENSE  
G = 100V/V  
100mV/DIV  
0V  
V
OUTA  
SENSEHI  
V
OUTA  
2V/DIV  
1V/DIV  
0V  
SENSELO  
0V  
V
OUTC  
V
SENSE  
2V/DIV  
50mV/DIV  
0V  
0V  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
610812 G13  
2µs/DIV  
2µs/DIV  
610812 G14  
610812 G12  
Amplifier Step Response  
(VSENSE = 0mV to 100mV)  
Amplifier Step Response  
(VSENSE = 10mV to 100mV)  
Amplifier Step Response  
(VSENSE = 10mV to 100mV)  
R
= 1k  
OUT  
R
= 1k  
IN  
IN  
R
= 20k  
R
= 20k  
OUT  
G = 20V/V  
G = 20V/V  
V
V
OUTA  
OUTA  
V
OUTA  
1V/DIV  
1V/DIV  
2V/DIV  
0V  
0V  
0V  
V
V
SENSE  
SENSE  
V
100mV/DIV  
0V  
SENSE  
100mV/DIV  
0V  
50mV/DIV  
0V  
2µs/DIV  
2µs/DIV  
2µs/DIV  
610912 G17  
610812 G16  
610812 G15  
610812fa  
7
LT6108-1/LT6108-2  
Performance characteristics taken at T = 25°C,  
TYPICAL PERFORMANCE CHARACTERISTICS  
A
V+ = 12V, VPULLUP = V+, VEN = VEN/RST = 2.7V, RIN = 100Ω, ROUT = R1 + R2 = 10k, gain = 100, RC = 25.5k, CL = CLC = 2pF, unless  
otherwise noted. (See Figure 3)  
Comparator Threshold  
vs Temperature  
Comparator Threshold  
Distribution  
Power Supply Rejection Ratio  
vs Frequency  
408  
406  
404  
402  
400  
398  
396  
394  
392  
160  
140  
120  
100  
80  
25  
20  
5 TYPICAL UNITS  
15  
10  
5
60  
40  
20  
0
0
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
610812 G20  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
396  
397.6 399.2 400.8 402.8  
COMPARATOR THRESHOLD (mV)  
404  
610812 G08  
610812 G19  
Hysteresis Distribution  
Hysteresis vs Temperature  
Hysteresis vs Supply Voltage  
20  
18  
16  
14  
12  
10  
8
30  
25  
20  
15  
10  
5
14  
12  
10  
8
5 TYPICAL UNITS  
–40°C  
25°C  
125°C  
6
6
4
4
2
2
0
0
0
3
7.7 9.3 10.9 12.5 14.1 15.7 17.3  
COMPARATOR HYSTERESIS (mV)  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
610812 G22  
40  
60  
4.6 6.2  
0
10  
20  
30  
50  
+
V
(V)  
610812 G21  
610812 G23  
LT6108-1 EN/RST Current vs  
Voltage  
LT6108-2 EN Current  
vs Voltage  
50  
0
50  
0
–50  
–50  
–100  
–150  
–200  
–250  
–100  
–150  
–200  
–250  
0
20  
30  
40  
50  
60  
0
20  
30  
40  
50  
60  
10  
10  
EN/RST VOLTAGE (V)  
EN VOLTAGE (V)  
610812 G24  
610812 G25  
610812fa  
8
LT6108-1/LT6108-2  
Performance characteristics taken at T = 25°C,  
TYPICAL PERFORMANCE CHARACTERISTICS  
A
V+ = 12V, VPULLUP = V+, VEN = VEN/RST = 2.7V, RIN = 100Ω, ROUT = R1 + R2 = 10k, gain = 100, RC = 25.5k, CL = CLC = 2pF, unless  
otherwise noted. (See Figure 3)  
Comparator Input Bias Current  
vs Input Voltage  
Comparator Output Low Voltage  
vs Output Sink Current  
Comparator Input Bias Current  
vs Input Voltage  
10  
5
10  
5
1.00  
0.75  
0.50  
0.25  
0
125°C  
25°C  
–40°C  
0
0
–5  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
125°C  
125°C  
25°C  
25°C  
–40°C  
–40°C  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
20  
40  
60  
0
1
2
3
COMPARATOR INPUT VOLTAGE (V)  
COMPARATOR INPUT VOLTAGE (V)  
I
(mA)  
OUTC  
610812 G28  
610812 G27  
610812 G29  
Comparator Propagation Delay  
vs Input Overdrive  
Comparator Rise/Fall Time  
vs Pull-Up Resistor  
Comparator Output Leakage  
Current vs Pull-Up Voltage  
23  
18  
13  
8
10000  
1000  
100  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= 0.9 • V  
= 0.1 • V  
OH  
OL  
PULLUP  
PULLUP  
100mV INC OVERDRIVE  
C
= 2pF  
L
125°C  
RISING INPUT  
LT6108-1 AND LT6108-2  
FALLING  
INPUT  
LT6108-2  
FALLING INPUT  
LT6108-2  
RISING INPUT  
LT6108-1 AND  
LT6108-2  
3
–40°C AND 25°C  
10  
–2  
0
20  
30  
40  
50  
60  
1
10  
100  
1000  
10  
0
40  
80  
120  
160  
200  
R
PULL-UP RESISTOR (kΩ)  
COMPARATOR OUTPUT PULL-UP VOLTAGE (V)  
COMPARATOR INPUT OVERDRIVE (mV)  
C
610812 G32  
610812 G30  
610812 G31  
LT6108-1 Comparator Step  
Response (100mV INC Overdrive)  
LT6108-1 Comparator Step  
Response (5mV INC Overdrive)  
+
V
= 5V  
V
INC  
V
INC  
0.5V/DIV  
0V  
0.5V/DIV  
0V  
V
OUTC  
V
OUTC  
2V/DIV  
2V/DIV  
0V  
0V  
V
V
EN/RST  
EN/RST  
5V/DIV  
5V/DIV  
0V  
0V  
5µs/DIV  
5µs/DIV  
610812 G34  
610812 G33  
610812fa  
9
LT6108-1/LT6108-2  
Performance characteristics taken at T = 25°C,  
TYPICAL PERFORMANCE CHARACTERISTICS  
A
V+ = 12V, VPULLUP = V+, VEN = VEN/RST = 2.7V, RIN = 100Ω, ROUT = R1 + R2 = 10k, gain = 100, RC = 25.5k, CL = CLC = 2pF, unless  
otherwise noted. (See Figure 3)  
LT6108-2 Comparator Step  
Response (5mV INC Overdrive)  
LT6108-2 Comparator Step  
Response (100mV INC Overdrive)  
LT6108-1 Comparator Reset  
Response  
+
+
V
= 5V  
V
= 5V  
V
V
INC  
0.5V/DIV  
0V  
INC  
0.5V/DIV  
0V  
V
OUTC  
5V/DIV  
0V  
V
V
OUTC  
1V/DIV  
OUTC  
1V/DIV  
V
EN/RST  
2V/DIV  
0V  
0V  
0V  
5µs/DIV  
5µs/DIV  
5µs/DIV  
610812 G35  
610812 G36  
610812 G37  
PIN FUNCTIONS  
SENSELO (Pin 1): Sense Amplifier Input. This pin must  
be tied to the load end of the sense resistor.  
OUTA (Pin 6): Current Output of the Sense Amplifier. This  
pin will source a current that is equal to the sense voltage  
divided by the external gain setting resistor, R .  
IN  
EN/RST (Pin 2, LT6108-1 Only): Enable and Latch Reset  
Input. When the EN/RST pin is pulled high the LT6108-1  
is enabled. When the EN/RST pin is pulled low for longer  
than typically 40µs, the LT6108-1 will enter the shutdown  
mode. Pulsing this pin low for between 2µs and 15µs will  
reset the comparator of the LT6108-1.  
+
+
V (Pin 7): Positive Supply Pin. The V pin can be con-  
nected directly to either side of the sense resistor, R  
.
SENSE  
+
When V is tied to the load end of the sense resistor, the  
+
SENSEHI pin can go up to 0.2V above V . Supply current  
is drawn through this pin.  
EN (Pin 2, LT6108-2 Only): Enable Input. When the en-  
able pin is pulled high the LT6108-2 is enabled. When the  
enable pin is pulled low for longer than typically 40µs, the  
LT6108-2 will enter the shutdown mode  
SENSEHI (Pin 8): Sense Amplifier Input. The internal  
sense amplifier will drive SENSEHI to the same potential  
as SENSELO. A resistor (typically R ) tied from supply  
IN  
to SENSEHI sets the output current, I  
= V  
/R ,  
SENSE  
OUT  
SENSE IN  
where V  
is the voltage developed across R  
.
SENSE  
OUTC (Pin 3): Open-Drain Comparator Output. Off-state  
voltage may be as high as 60V above V , regardless of  
ExposedPad(Pin9,DCBPackageOnly):V .Theexposed  
+
V used.  
pad may be left open or connected to device V . Connect-  
ing the exposed pad to a V plane will improve thermal  
V (Pin 4): Negative Supply Pin. This pin is normally con-  
management in high voltage applications. The exposed  
nected to ground.  
pad should not be used as the primary connection for V .  
INC (Pin 5): This is the inverting input of the comparator.  
The other comparator input is internally connected to the  
400mV reference.  
610812fa  
10  
LT6108-1/LT6108-2  
BLOCK DIAGRAMS  
7
+
LT6108-1  
V
100Ω  
34V  
6V  
3k  
3k  
SENSEHI  
8
+
SENSELO  
1
OUTA  
6
V
V
+
V
V
200nA  
EN/RST  
ENABLE AND  
RESET TIMING  
2
RESET  
+
V
+
INC  
5
OVERCURRENT FLAG  
OUTC  
3
400mV  
REFERENCE  
V
V
4
610812 F01  
Figure 1. LT6108-1 Block Diagram (Latching Comparator)  
7
+
LT6108-2  
V
100Ω  
34V  
6V  
3k  
3k  
SENSEHI  
8
+
SENSELO  
1
OUTA  
6
5
V
V
+
V
V
100nA  
EN  
2
+
V
+
INC  
OVERCURRENT FLAG  
OUTC  
3
400mV  
REFERENCE  
V
V
4
610812 F02  
Figure 2. LT6108-2 Block Diagram (Non-Latching Comparator)  
610812fa  
11  
LT6108-1/LT6108-2  
APPLICATIONS INFORMATION  
Note that V  
can be exceeded without damag-  
The LT6108 high side current sense amplifier provides  
accuratemonitoringofcurrentsthroughanexternalsense  
resistor. The input sense voltage is level-shifted from the  
sensed power supply to a ground referenced output and  
is amplified by a user-selected gain to the output. The  
output voltage is directly proportional to the current flow-  
ing through the sense resistor.  
SENSE(MAX)  
ing the amplifier, however, output accuracy will degrade  
as V exceeds V , resulting in increased  
SENSE  
SENSE(MAX)  
output current, I  
.
OUTA  
Selection of External Current Sense Resistor  
Theexternalsenseresistor,R ,hasasignificanteffect  
on the function of a current sensing system and must be  
chosen with care.  
SENSE  
The LT6108 comparator has a threshold set with a built-in  
400mV precision reference and has 10mV of hysteresis.  
The open-drain output can be easily used to level shift to  
digital supplies.  
First, the power dissipation in the resistor should be  
considered. The measured load current will cause power  
dissipation as well as a voltage drop in R  
result, the sense resistor should be as small as possible  
while still providing the input dynamic range required by  
the measurement. Note that the input dynamic range is  
the difference between the maximum input signal and the  
minimum accurately reproduced signal, and is limited  
primarily by input DC offset of the internal sense ampli-  
fier of the LT6108. To ensure the specified performance,  
. As a  
SENSE  
Amplifier Theory of Operation  
An internal sense amplifier loop forces SENSEHI to have  
the same potential as SENSELO as shown in Figure 3.  
Connecting an external resistor, R , between SENSEHI  
IN  
and V  
forces a potential, V  
, across R . A  
SUPPLY  
corresponding current, I  
SENSE IN  
, equal to V  
/R , will  
SENSE IN  
OUTA  
flow through R . The high impedance inputs of the sense  
IN  
amplifier do not load this current, so it will flow through  
R
should be small enough that V  
SENSE(MAX)  
does not  
SENSE  
exceed V  
SENSE  
an internal MOSFET to the output pin, OUTA.  
under peak load conditions. As an  
example, an application may require the maximum sense  
voltage be 100mV. If this application is expected to draw  
The output current can be transformed back into a voltage  
by adding a resistor from OUTA to V (typically ground).  
2A at peak load, R  
should be set to 50mΩ.  
SENSE  
The output voltage is then:  
Once the maximum R  
value is determined, the mini-  
SENSE  
V
= V + I  
• R  
OUT  
OUTA OUT  
mum sense resistor value will be set by the resolution or  
dynamic range required. The minimum signal that can be  
accuratelyrepresentedbythissenseamplifierislimitedby  
theinputoffset.Asanexample,theLT6108hasamaximum  
input offset of 125µV. If the minimum current is 20mA, a  
where R  
= R1 + R2 as shown in Figure 3.  
OUT  
Table 1. Example Gain Configurations  
GAIN  
20  
R
IN  
R
V
FOR V  
= 5V  
I
AT V  
= 5V  
OUT  
OUT  
SENSE  
OUT  
OUTA  
499Ω  
200Ω  
100Ω  
10k  
10k  
10k  
250mV  
100mV  
50mV  
500µA  
500µA  
500µA  
sense resistor of 6.25mΩ will set V  
to 125µV. This is  
SENSE  
50  
the same value as the input offset. A larger sense resistor  
100  
will reduce the error due to offset by increasing the sense  
voltage for a given load current. Choosing a 50mΩ R  
SENSE  
Useful Equations  
Input Voltage: VSENSE = ISENSE RSENSE  
will maximize the dynamic range and provide a system  
that has 100mV across the sense resistor at peak load  
(2A), while input offset causes an error equivalent to only  
2.5mA of load current.  
VOUT  
VSENSE RIN  
ROUT  
Voltage Gain:  
Current Gain:  
=
In the previous example, the peak dissipation in R  
IOUTA RSENSE  
ISENSE  
SENSE  
=
is 200mW. If a 5mΩ sense resistor is employed, then  
the effective current error is 25mA, while the peak sense  
voltage is reduced to 10mV at 2A, dissipating only 20mW.  
RIN  
610812fa  
12  
LT6108-1/LT6108-2  
APPLICATIONS INFORMATION  
The low offset and corresponding large dynamic range of  
theLT6108makeitmoreexiblethanothersolutionsinthis  
respect.The125µVmaximumoffsetgives72dBofdynamic  
range for a sense voltage that is limited to 500mV max.  
Selection of External Input Gain Resistor, R  
IN  
R
should be chosen to allow the required speed and  
IN  
resolution while limiting the output current to 1mA. The  
maximum value for R is 1k to maintain good loop sta-  
IN  
SENSE  
bility. For a given V  
, larger values of R will lower  
IN  
Sense Resistor Connection  
power dissipation in the LT6108 due to the reduction  
Kelvin connection of the SENSEHI and SENSELO inputs  
to the sense resistor should be used in all but the lowest  
power applications. Solder connections and PC board  
interconnections that carry high currents can cause sig-  
nificant error in measurement due to their relatively large  
resistances.One10mm× 10mmsquaretraceof1ozcopper  
is approximately 0.5mΩ. A 1mV error can be caused by as  
little as 2A flowing through this small interconnect. This  
in I  
while smaller values of R will result in faster  
OUT  
IN  
response time due to the increase in I . If low sense  
OUT  
currents must be resolved accurately in a system that has  
a very wide dynamic range, a smaller R may be used  
IN  
if the maximum I  
such as with a Schottky diode across R  
current is limited in another way,  
OUTA  
(Figure 4).  
SENSE  
This will reduce the high current measurement accuracy  
by limiting the result, while increasing the low current  
measurement resolution.  
will cause a 1% error for a full-scale V  
of 100mV.  
SENSE  
A 10A load current in the same interconnect will cause  
a 5% error for the same 100mV signal. By isolating the  
sense traces from the high current paths, this error can  
be reduced by orders of magnitude. A sense resistor with  
integratedKelvinsenseterminalswillgivethebestresults.  
Figure3illustratestherecommendedmethodforconnect-  
ing the SENSEHI and SENSELO pins to the sense resistor.  
+
V
R
D
SENSE  
SENSE  
610812 F04  
LOAD  
Figure 4. Shunt Diode Limits Maximum Input Voltage to Allow  
Better Low Input Resolution Without Overranging  
V
SUPPLY  
+
R
IN  
R
SENSE  
V
SENSE  
LT6108-1  
SENSEHI  
8
7
1
SENSELO  
LOAD  
+
V
SENSE  
R
SENSE  
C1  
I
=
+
SENSE  
V
V
+
V
2
3
EN/RST  
V
RESET  
OUTA  
INC  
6
5
V
OUT  
V
+
PULLUP  
V
I
OUTA  
R2*  
R1*  
C
L
+
R
C
OUTC  
OVERCURRENT  
FLAG  
400mV  
C
LC  
REFERENCE  
V
610812 F03  
4
*R  
OUT  
= R1 + R2  
Figure 3. LT6108-1 Typical Connection  
610812fa  
13  
LT6108-1/LT6108-2  
APPLICATIONS INFORMATION  
This approach can be helpful in cases where occasional  
bursts of high currents can be ignored.  
Amplifier Error Sources  
The current sense system uses an amplifier and resistors  
to apply gain and level-shift the result. Consequently, the  
output is dependent on the characteristics of the amplifier,  
suchasgainerrorandinputoffset, aswellasthematching  
of the external resistors.  
Care should be taken when designing the board layout for  
R , especially for small R values. All trace and inter-  
IN  
IN  
connect resistances will increase the effective R value,  
IN  
causing a gain error.  
The power dissipated in the sense resistor can create a  
thermal gradient across a printed circuit board and con-  
Ideally, the circuit output is:  
R
RIN  
OUT ; VSENSE = RSENSE ISENSE  
sequently a gain error if R and R  
are placed such  
VOUT = VSENSE  
IN  
OUT  
that they operate at different temperatures. If significant  
power is being dissipated in the sense resistor then care  
In this case, the only error is due to external resistor  
mismatch, which provides an error in gain only. However,  
offset voltage, input bias current and finite gain in the  
amplifier can cause additional errors:  
should be taken to place R and R  
such that the gain  
OUT  
IN  
error due to the thermal gradient is minimized.  
Selection of External Output Gain Resistor, R  
OUT  
Output Voltage Error, V  
, Due to the Amplifier  
OUT(VOS)  
The output resistor, R , determines how the output cur-  
OUT  
DC Offset Voltage, V  
OS  
rent is converted to voltage. V  
is simply I  
• R  
.
OUT  
OUTA  
OUT  
Typically, R  
is a combination of resistors configured  
OUT  
ROUT  
RIN  
VOUT(VOS) = VOS •  
as a resistor divider which has a voltage tap going to the  
comparator input to set the comparator threshold.  
The DC offset voltage of the amplifier adds directly to the  
In choosing an output resistor, the maximum output volt-  
age must first be considered. If the subsequent circuit is a  
valueofthesensevoltage, V . AsV isincreased,  
SENSE  
SENSE  
accuracyimproves.Thisisthedominanterrorofthesystem  
and it limits the available dynamic range.  
buffer or ADC with limited input range, then R  
must be  
OUT  
chosen so that I  
• R  
is less than the allowed  
OUTA(MAX)  
maximum input range of this circuit.  
OUT  
Output Voltage Error, V  
, Due to the Bias  
OUT(IBIAS)  
+
In addition, the output impedance is determined by R  
.
Currents I and I  
OUT  
B
B
If another circuit is being driven, then the input impedance  
ofthatcircuitmustbeconsidered.Ifthesubsequentcircuit  
has high enough input impedance, then almost any use-  
ful output impedance will be acceptable. However, if the  
subsequent circuit has relatively low input impedance, or  
draws spikes of current such as an ADC load, then a lower  
outputimpedancemayberequiredtopreservetheaccuracy  
oftheoutput. MoreinformationcanbefoundintheOutput  
Filtering section. As an example, if the input impedance of  
+
The amplifier bias current I flows into the SENSELO pin  
B
while I flows into the SENSEHI pin. The error due to I  
B
B
is the following:  
RSENSE  
RIN  
VOUT(IBIAS) = ROUT IB+ •  
IB  
+
Since I ≈ I = I  
, if R  
<< R then,  
B
B
BIAS  
SENSE IN  
V  
= –R  
(I  
)
OUT(IBIAS)  
OUT BIAS  
the driven circuit, R  
, is 100 times R , then the  
IN(DRIVEN)  
OUT  
It is useful to refer the error to the input:  
V = –R (I  
accuracy of V  
will be reduced by 1% since:  
ROUT RIN(DRIVEN)  
ROUT + RIN(DRIVEN)  
100  
OUT  
)
IN BIAS  
VIN(IBIAS)  
VOUT = IOUTA  
For instance, if I  
is 100nA and R is 1k, the input re-  
IN  
BIAS  
ferred error is 100µV. This error becomes less significant  
= IOUTA ROUT  
= 0.99IOUTA ROUT  
as the value of R decreases. The bias current error can  
IN  
101  
610812fa  
14  
LT6108-1/LT6108-2  
APPLICATIONS INFORMATION  
+
be reduced if an external resistor, R , is connected as  
Output Current Limitations Due to Power Dissipation  
IN  
shown in Figure 5, the error is then reduced to:  
The LT6108 can deliver a continuous current of 1mA to the  
+
V
= R  
• I ; I = I – I  
OUTA pin. This current flows through R and enters the  
OUT(IBIAS)  
OUT OS OS  
B
B
IN  
current sense amplifier via the SENSEHI pin. The power  
Minimizing low current errors will maximize the dynamic  
range of the circuit.  
dissipated in the LT6108 due to the output signal is:  
P
= (V  
– V  
) • I  
OUT  
SENSEHI  
OUTA  
OUTA  
+
+
V
+
7
+
Since V  
≈ V , P  
≈ (V – V  
) • I  
OUTA OUTA  
SENSEHI  
OUTA  
V
LT6108  
V
BATT  
There is also power dissipated due to the quiescent power  
supply current:  
R
IN  
+
8
1
SENSEHI  
+
R
SENSE  
P = I • V  
S
S
OUTA  
6
SENSELO  
V
OUT  
+
The comparator output current flows into the comparator  
R
IN  
R
OUT  
V
4
I
SENSE  
output pin and out of the V pin. The power dissipated in  
610812 F05  
the LT6108 due to the comparator is often insignificant  
and can be calculated as follows:  
Figure 5. RIN+ Reduces Error Due to IB  
P
OUTC  
= (V  
– V ) • I  
OUTC  
OUTC  
Output Voltage Error, V  
, Due to  
OUT(GAIN ERROR)  
The total power dissipated is the sum of these  
dissipations:  
External Resistors  
The LT6108 exhibits a very low gain error. As a result,  
the gain error is only significant when low tolerance  
resistors are used to set the gain. Note the gain error is  
systematically negative. For instance, if 0.1% resistors  
P
TOTAL  
= P  
+ P + P  
OUTC S  
OUTA  
At maximum supply and maximum output currents, the  
totalpowerdissipationcanexceed150mW.Thiswillcause  
significant heating of the LT6108 die. In order to prevent  
damage to the LT6108, the maximum expected dissipa-  
tion in each application should be calculated. This number  
are used for R and R  
then the resulting worst-case  
IN  
OUT  
gain error is –0.4% with R = 100Ω. Figure 6 is a graph  
IN  
of the maximum gain error which can be expected versus  
the external resistor tolerance.  
can be multiplied by the θ value, 163°C/W for the MS8  
JA  
package or 64°C/W for the DFN, to find the maximum  
expecteddietemperature.Properheatsinkingandthermal  
relief should be used to ensure that the die temperature  
does not exceed the maximum rating.  
10  
1
R
IN  
= 100Ω  
Output Filtering  
R
= 1k  
IN  
The AC output voltage, V , is simply I  
• Z . This  
OUT  
OUT  
OUTA  
0.1  
makes filtering straightforward. Any circuit may be used  
which generates the required Z to get the desired filter  
OUT  
response. For example, a capacitor in parallel with R  
OUT  
0.01  
0.01  
0.1  
1
10  
will give a lowpass response. This will reduce noise at the  
output, and may also be useful as a charge reservoir to  
keep the output steady while driving a switching circuit  
RESISTOR TOLERANCE (%)  
610812 F06  
Figure 6. Gain Error vs Resistor Tolerance  
610812fa  
15  
LT6108-1/LT6108-2  
APPLICATIONS INFORMATION  
such as a MUX or ADC. This output capacitor in parallel  
60  
50  
40  
with R  
will create an output pole at:  
OUT  
1
f–3dB  
=
2π ROUT CL  
40.2V  
SENSELO, SENSEHI Range  
The difference between V  
VALID SENSELO/  
SENSEHI RANGE  
+
30  
27  
(see Figure 7) and V , as  
SENSE  
BATT  
well as the maximum value of V  
, must be considered  
20.2V  
20  
to ensure that the SENSELO pin doesn’t exceed the range  
listed in the Electrical Characteristics table. The SENSELO  
and SENSEHI pins of the LT6108 can function from 0.2V  
above the positive supply to 33V below it. These operat-  
ing voltages are limited by internal diode clamps shown  
in Figures 1 and 2. On supplies less than 35.5V, the lower  
10  
2.8  
2.5  
2.7  
10  
20  
30 35.5 40  
V (V)  
50  
60  
610812 F08  
+
range is limited by V + 2.5V. This allows the monitored  
Figure 8. Allowable SENSELO, SENSEHI Voltage Range  
supply, V  
, to be separate from the LT6108 positive  
BATT  
supply as shown in Figure 7. Figure 8 shows the range of  
operating voltages for the SENSELO and SENSEHI inputs,  
7
+
+
for different supply voltage inputs (V ). The SENSELO and  
V
LT6108  
V
BATT  
SENSEHI range has been designed to allow the LT6108 to  
monitor its own supply current (in addition to the load),  
R
IN  
+
8
1
SENSEHI  
as long as V  
Figure 9.  
is less than 200mV. This is shown in  
R
SENSE  
SENSE  
6
OUTA  
SENSELO  
V
OUT  
R
OUT  
V
4
Minimum Output Voltage  
I
SENSE  
610812 F09  
The output of the LT6108 current sense amplifier can  
produceanon-zerooutputvoltagewhenthesensevoltage  
Figure 9. LT6108 Supply Current Monitored with Load  
is zero. This is a result of the sense amplifier V being  
OS  
forced across R as discussed in the Output Voltage Er-  
IN  
ror, V  
section. Figure 10 shows the effect of the  
OUT(VOS)  
120  
G = 100  
input offset voltage on the transfer function for parts at  
100  
80  
the V limits. With a negative offset voltage, zero input  
OS  
+
V
= –125µV  
OS  
V
60  
7
+
V
LT6108  
V
BATT  
40  
20  
0
V
= 125µV  
OS  
R
IN  
+
8
1
SENSEHI  
R
SENSE  
6
OUTA  
SENSELO  
V
OUT  
0
100 200 300 400 500 600 700 800 900 1000  
INPUT SENSE VOLTAGE (µV)  
R
OUT  
I
SENSE  
V
4
610812 F10  
610812 F07  
Figure 10. Amplifier Output Voltage vs Input Sense Voltage  
Figure 7. V+ Powered Separately from Load Supply (VBATT  
)
610812fa  
16  
LT6108-1/LT6108-2  
APPLICATIONS INFORMATION  
sense voltage produces an output voltage. With a positive  
offset voltage, the output voltage is zero until the input  
sense voltage exceeds the input offset voltage. Neglect-  
overdrive on the comparator input being determined by  
the speed of the amplifier output.  
Internal Reference and Comparator  
ing V , the output circuit is not limited by saturation of  
OS  
pull-down circuitry and can reach 0V.  
The integrated precision reference and comparator com-  
bined with the high precision current sense allow for rapid  
andeasydetectionofabnormalloadcurrents. Thisisoften  
critical in systems that require high levels of safety and  
reliability. The LT6108-1 comparator is optimized for fault  
detectionandisdesignedwithalatchingoutput.Thelatch-  
ing output prevents faults from clearing themselves and  
requires a separate system or user to reset the output. In  
applications where the comparator output can intervene  
and disconnect loads from the supply, a latched output  
is required to avoid oscillation. The latching output is  
also useful for detecting problems that are intermittent.  
The comparator output on the LT6108-2 is non-latching  
and can be used in applications where a latching output  
is not desired.  
Response Time  
The LT6108 amplifier is designed to exhibit fast response  
to inputs for the purpose of circuit protection or current  
monitoring. This response time will be affected by the  
external components in two ways, delay and speed.  
If the output current is very low and an input transient  
occurs, there may be an increased delay before the  
outputvoltagebeginstochange. TheTypicalPerformance  
Characteristics show that this delay is short and it can  
be improved by increasing the minimum output current,  
either by increasing R  
or decreasing R . Note that  
SENSE  
IN  
the Typical Performance Characteristics are labeled with  
respect to the initial sense voltage.  
The comparator has one input available externally. The  
other comparator input is connected internally to the  
400mV precision reference. The input threshold (the  
voltage which causes the output to transition from high  
to low) is designed to be equal to that of the reference.  
The reference voltage is established with respect to the  
The speed is also affected by the external components.  
Using a larger R  
will decrease the response time, since  
OUT  
V
= I  
OUT  
• Z  
where Z  
is the parallel combination  
OUT OUTA OUT  
OUT  
of R  
and any parasitic and/or load capacitance. Note  
that reducing R or increasing R  
will both have the  
IN  
OUT  
effect of increasing the voltage gain of the circuit. If the  
device V connection.  
output capacitance is limiting the speed of the system, R  
IN  
and R  
can be decreased together in order to maintain  
OUT  
Comparator Input  
the desired gain and provide more current to charge the  
output capacitance.  
ThecomparatorinputcanswingfromV to60Vregardless  
of the supply voltage used. The input current for inputs  
well above the threshold is just a few pAs. With decreas-  
ing input voltage, a small bias current begins to be drawn  
out of the input near the threshold, reaching 50nA max  
when at ground potential. Note that this change in input  
bias current can cause a small nonlinearity in the OUTA  
transfer function if the comparator input is coupled to  
the amplifier output with a voltage divider. For example,  
if the maximum comparator input current is 50nA, and  
the resistance seen looking out of the comparator input is  
1k, then a change in output voltage of 50µV will be seen  
on the analog output when the comparator input voltage  
passes through its threshold.  
The response time of the comparator is the sum of the  
propagation delay and the fall time. The propagation delay  
is a function of the overdrive voltage on the input of the  
comparator.Alargeroverdrivewillresultinalowerpropaga-  
tion delay. This helps achieve a fast system response time  
to fault events. The fall time is affected by the load on the  
output of the comparator as well as the pull-up voltage.  
The LT6108 amplifier has a typical response time of 500ns  
andthecomparatorshaveatypicalresponsetimeof500ns.  
When configured as a system, the amplifier output drives  
the comparator input causing a total system response  
time which is typically greater than that implied by the  
individually specified response times. This is due to the  
610812fa  
17  
LT6108-1/LT6108-2  
APPLICATIONS INFORMATION  
Setting Comparator Threshold  
As shown in Figure 12, R2 can be used to increase the  
gain from V  
to V  
without changing V  
.
SENSE  
OUT  
SENSE(TRIP)  
Thecomparatorhasaninternal400mVprecisionreference.  
In order to set the trip point of the LT6108 comparator as  
configured in Figure 11, the input sense voltage at which  
As before, R1 can be easily calculated:  
400mV  
R1= RIN  
the comparator will trip, V  
must be calculated:  
SENSE(TRIP)  
VSENSE(TRIP)  
V
= I  
• R  
SENSE(TRIP) SENSE  
SENSE(TRIP)  
The gain is now:  
The selection of R is discussed in the Selection of Exter-  
nal Input Gain Resistor R section. Once R is selected,  
OUT  
IN  
R1+ R2  
AV =  
IN  
IN  
R
can be calculated:  
RIN  
400mV  
VSENSE(TRIP)  
This gain equation can be easily solved for R2:  
R2 = A R – R1  
ROUT = RIN  
V
IN  
Since the amplifier output is connected directly to the  
IftheconfigurationofFigure11givestoomuchgain,R2can  
comparator input, the gain from V  
to V  
is:  
be used to reduce the gain without changing V  
SENSE  
OUT  
SENSE(TRIP)  
as shown in Figure 13. A can be easily calculated:  
V
400mV  
AV =  
R1  
AV =  
VSENSE(TRIP)  
RIN  
V
SUPPLY  
+
R
IN  
R
SENSE  
V
SENSE  
LT6108-1  
SENSEHI  
8
7
1
SENSELO  
LOAD  
+
V
SENSE  
R
SENSE  
C1  
I
=
+
SENSE  
V
V
+
V
2
3
EN/RST  
V
RESET  
OUTA  
INC  
6
5
V
OUT  
V
+
PULLUP  
V
I
OUTA  
C
L
+
R
C
OUTC  
OVERCURRENT  
FLAG  
R
OUT  
400mV  
C
LC  
REFERENCE  
V
610812 F11  
4
Figure 11. Basic Comparator Configuration  
610812fa  
18  
LT6108-1/LT6108-2  
APPLICATIONS INFORMATION  
V
SUPPLY  
+
R
IN  
R
SENSE  
V
SENSE  
LT6108-1  
SENSEHI  
8
1
SENSELO  
LOAD  
+
V
SENSE  
R
SENSE  
C1  
I
=
+
SENSE  
V
V
7
+
V
2
3
EN/RST  
V
RESET  
OUTA  
INC  
6
V
OUT  
V
+
PULLUP  
V
I
OUTA  
R2  
R1  
C
L
5
+
R
C
OUTC  
OVERCURRENT  
FLAG  
400mV  
C
LC  
REFERENCE  
V
610812 F12  
4
Figure 12: Comparator Configuration with Increased AV  
V
SUPPLY  
+
R
IN  
R
SENSE  
V
SENSE  
LT6108-1  
SENSEHI  
8
7
1
SENSELO  
LOAD  
+
V
SENSE  
R
SENSE  
C1  
I
=
+
SENSE  
V
V
+
V
2
3
EN/RST  
V
RESET  
OUTA  
INC  
6
5
+
V
I
V
C
L
OUTA  
PULLUP  
+
R
C
OUTC  
OVERCURRENT  
FLAG  
R2  
400mV  
REFERENCE  
C
LC  
V
OUT  
R1  
610812 F13  
V
4
Figure 13: Comparator Configuration with Reduced AV  
610812fa  
19  
LT6108-1/LT6108-2  
APPLICATIONS INFORMATION  
This gain equation can be easily solved for R1:  
circuitry will have an effect on both the rising and fall-  
ing input thresholds, V (the actual internal threshold  
TH  
R1 = A • R  
V
IN  
remains unaffected).  
The value of R2 can be calculated:  
Figure 15 shows how to add additional hysteresis to the  
comparator.  
400mV RIN – VSENSE(TRIP) R1  
R2=  
VSENSE(TRIP)  
R5canbecalculatedfromtheamplifieroutputcurrentwhich  
is required to cause the comparator output to trip, I  
.
OVER  
Hysteresis  
400mV  
IOVER  
R5=  
, Assuming R1+ R2 >> R5  
(
)
The comparator has a typical built-in hysteresis of 10mV  
to simplify design, ensure stable operation in the pres-  
ence of noise at the input, and to reject supply noise that  
might be induced by state change load transients. The  
hysteresis is designed such that the threshold voltage is  
altered when the output is transitioning from low to high  
as is shown in Figure 14.  
To ensure (R1 + R2) >> R5, R1 should be chosen such  
that R1 >> R5 so that V does not change significantly  
OUTA  
when the comparator trips.  
R3 should be chosen to allow sufficient V and compara-  
tor output rise time due to capacitive loading.  
OL  
R2 can be calculated:  
External positive feedback circuitry can be employed  
to increase the effective hysteresis if desired, but such  
VDD – 390mV  
VHYS(EXTRA)  
R2 = R1•  
INCREASING  
OUTC  
V
INC  
Note that the hysteresis being added, V  
, is in  
HYS(EXTRA)  
610812 F14  
V
additiontothetypical10mVofbuilt-inhysteresis. Forvery  
large values of R2 PCB related leakage may become an  
issue. A tee network can be implemented to reduce the  
required resistor values.  
HYS  
V
TH  
Figure 14. Comparator Output Transfer Characteristics  
+
V
7
+
V
LT6108-1  
+
V
R
IN  
+
8
1
SENSEHI  
SENSELO  
R
SENSE  
OUTA  
INC  
6
5
I
LOAD  
+
V
V
+
R4  
R5  
V
R1  
+
VTH  
R3  
3
OUTC  
400mV  
REFERENCE  
V
4
V
DD  
R2  
610812 F15  
Figure 15. Inverting Comparator with Added Hysteresis  
610812fa  
20  
LT6108-1/LT6108-2  
APPLICATIONS INFORMATION  
The approximate total hysteresis is:  
EN/RST Pin (LT6108-1 Only)  
The EN/RST pin performs the two functions of resetting  
the latch on the comparator as well as shutting down the  
LT6108-1. When this pin is pulled high the LT6108-1 is  
enabled. After powering on the LT6108-1, the comparator  
mustberesetinordertoguaranteeavalidstateatitsoutput.  
V 390mV  
DD  
VHYS = 10mV + R1•  
R2  
For example, to achieve I  
= 900µA with 50mV of total  
OVER  
hysteresis, R5 = 442Ω. Choosing R1 = 4.42k, R3 = 10k  
and V = 5V results in R2 = 513k.  
DD  
Applying a pulse to the EN/RST pin will reset the compara-  
tor from its tripped low state as long as the input on the  
comparator is below the threshold and hysteresis. For  
The analog output voltage will also be affected when the  
comparator trips due to the current injected into R5 by  
the positive feedback. Because of this, it is desirable to  
have (R1 + R2) >> R5. The maximum V  
by this can be calculated as:  
example, if V is pulled higher than 400mV and latches  
INC  
thecomparator,aresetpulsewillnotresetthatcomparator  
unless its input is held below the threshold by a voltage  
greater than the 10mV typical hysteresis. The comparator  
output typically unlatches in 0.5µs with 2pF of capacitive  
load. Increased capacitive loading on the comparator  
output will cause an increased unlatch time.  
error caused  
OUTA  
R5  
VOUTA = VDD  
R1+ R2+ R5  
In the previous example, this is an error of 4.3mV at the  
output of the amplifier or 43µV at the input of the amplifier  
assuming a gain of 100.  
Figure 16 shows the reset functionality of the EN/RST  
pin. The width of the pulse applied to reset the compara-  
tor must be greater than t  
RPW(MAX)  
(2µs) but less than  
RPW(MIN)  
When using the comparator with its input decoupled from  
the output of the amplifier it may be driven directly by a  
voltage source. It is useful to know the threshold voltage  
equationswithadditionalhysteresis. Theinputrisingedge  
threshold which causes the output to transition from high  
to low is:  
t
(15µs). Applying a pulse that is longer than  
40µs typically (or tying the pin low) will cause the part  
to enter shutdown. Once the part has entered shutdown,  
the supply current will be reduced to 3µA typically and the  
amplifier, comparator and reference will cease to function  
until the EN/RST pin is transitioned high. When the part  
is disabled, both the amplifier and comparator outputs  
are high impedance.  
R1  
R2  
VTH R = 400mV 1+  
( )  
RESET PULSE WIDTH LIMITS  
COMPARATOR  
The input falling edge threshold which causes the output  
to transition from low to high is:  
EN/RST  
RESET  
t
RPW(MIN)  
2µs  
R1  
R2  
R1  
R2  
t
RPW(MAX)  
15µs  
VTH F = 390mV 1+  
– V  
DD   
( )  
610812 F16  
OUTC  
Comparator Output  
t
RESET  
0.5µs (TYPICAL)  
The comparator output can maintain a logic-low level of  
150mV while sinking 500µA. The output can sink higher  
Figure 16. Comparator Reset Functionality  
currents at elevated V levels as shown in the Typical  
OL  
PerformanceCharacteristics.Loadcurrentsareconducted  
When the EN/RST pin is transitioned from low to high  
to enable the part, the amplifier output PMOS can turn  
on momentarily causing typically 1mA of current to flow  
into the SENSEHI pin and out of the OUTA pin. Once  
to the V pin. The output off-state voltage may range  
between 0V and 60V with respect to V , regardless of the  
supply voltage used.  
the amplifier is fully on, the output will go to the correct  
610812fa  
21  
LT6108-1/LT6108-2  
APPLICATIONS INFORMATION  
current.Figure17showsthisbehaviorandtheimpactithas  
Power Up  
on V  
. Circuitry connected to OUTA can be protected  
OUTA  
After powering on the LT6108-1, the comparator must  
be reset in order to guarantee a valid state at its output.  
Fast supply ramps may cause a supply current transient  
during start-up as shown in the Typical Performance  
Characteristics. This current can be lowered by reducing  
the edge speed of the supply.  
from these transients by using an external diode to clamp  
, or a capacitor to filter V  
V
.
OUTA  
OUTA  
+
V
= 60V  
R
R
= 100Ω  
OUT  
IN  
= 10k  
V
EN/RST  
2V/DIV  
Reverse-Supply Protection  
0V  
The LT6108 is not protected internally from external rever-  
sal of supply polarity. To prevent damage that may occur  
during this condition, a Schottky diode should be added  
V
OUTA  
2V/DIV  
in series with V (Figure 18). This will limit the reverse  
0V  
current through the LT6108. Note that this diode will limit  
the low voltage operation of the LT6108 by effectively  
50µs/DIV  
610812 F17  
reducing the supply voltage to the part by V .  
D
Figure 17. Amplifier Enable Response  
Also note that the comparator reference, comparator  
output and EN/RST input are referenced to the V pin. In  
EN Pin (LT6108-2)  
order to preserve the precision of the reference and to  
Whenthispinispulledhigh,theLT6108-2isenabled.When  
the enable pin is pulled low for longer than 40µs typically,  
the LT6108-2 will enter the shutdown mode.  
avoid driving the comparator inputs below V , R2 must  
connect to the V pin. This will shift the amplifier output  
voltage up by V . V  
can be accurately measured  
D
OUTA  
+
V
7
+
V
LT6108-1  
+
V
R
IN  
+
8
1
SENSEHI  
SENSELO  
R
SENSE  
OUTA  
INC  
6
5
V
DD  
I
+
LOAD  
+
V
V
V
R1  
DD  
R3  
+
3
2
OUTC  
V
OUTA  
R2  
400mV  
REFERENCE  
V
DD  
EN/RST  
V
4
610812 F18  
+
V
D
Figure 18. Schottky Prevents Damage During Supply Reversal  
610812fa  
22  
LT6108-1/LT6108-2  
APPLICATIONS INFORMATION  
differentially across R1 and R2. The comparator output  
valid input levels to the LT6108 and avoid driving EN/RST  
low voltage will also be shifted up by V . The EN/RST pin  
below V the negative supply of the driving circuit should  
D
threshold is referenced to the V pin. In order to provide  
be tied to V of the LT6108.  
TYPICAL APPLICATIONS  
Overcurrent Battery Fault Protection  
12 LITHIUM  
40V CELL STACK  
IRF9640  
TO LOAD  
0.1Ω  
+
+
+
10µF  
100k  
6.2V*  
R10  
100Ω  
8
1
6
SENSEHI SENSELO  
+
7
V
OUTA  
V
OUT  
0.8A  
OVERCURRENT  
DETECTION  
5V  
LT6108-1  
+
9.53k  
475Ω  
5
2
3
100k  
10k  
RESET  
EN/RST  
INC  
OUTC  
V
2N7000  
4
610812 TA02  
*CMH25234B  
MCU Interfacing with Hardware Interrupts  
0.1Ω  
TO LOAD  
Example:  
+
V
5V  
0V  
OUTC GOES LOW  
100Ω  
8
1
SENSEHI SENSELO  
+
6
7
V
OUT  
V
OUTA  
ADC IN  
MCU INTERUPT  
AtMega1280  
PB0  
LT6108-1  
5
6
7
2
3
1
2
3
RESET  
8.66k  
1.33k  
EN/RST  
PB1  
PCINT2  
PCINT3  
ADC2  
OVERCURRENT ROUTINE  
RESET COMPARATOR  
5
5V  
OUTC  
INC  
V
V
/ADC IN  
OUT  
10k  
4
PB5  
6108 TA03  
610812 TA03b  
The comparator is set to have a 300mA overcurrent  
threshold. The MCU will receive the comparator output as  
a hardware interrupt and immediately run an appropriate  
fault routine.  
610812fa  
23  
LT6108-1/LT6108-2  
TYPICAL APPLICATIONS  
Simplified DC Motor Torque Control  
V
MOTOR  
100µF  
1k  
0.1Ω  
8
7
1
6
SENSEHI SENSELO  
+
CURRENT SET POINT (0V TO 5V)  
BRUSHED  
DC MOTOR  
(0A TO 5A)  
MABUCHI  
RS-540SH  
V
OUTA  
V
OUT  
1µF  
0.47µF  
1N5818  
100k  
LT6108-1  
9k  
1k  
5V  
2
3
5
EN/RST  
INC  
RESET  
5
2
4
7
+
V
1
3
6
6
MOD OUT  
IRF640  
OUTC  
3 +  
LTC6246  
V
LTC6992-1  
4
100k  
4
78.7k  
SET DIV  
GND  
5V  
280k  
1M  
2
610812 TA04  
The figure above shows a simplified DC motor control  
circuit. The circuit controls motor current, which is pro-  
portional to motor torque; the LT6108 is used to provide  
current feedback to an integrator that servos the motor  
current to the current set point. The LTC®6992 is used to  
convert the output of the difference amp to the motors  
PWM control signal.  
Power-On Reset or Disconnect Using TimerBlox® Circuit  
5V  
7
+
V
LT6108-1  
SENSEHI  
+
R
V
IN  
100Ω  
8
1
+
R7  
10k  
R
SENSE  
SENSELO  
OUTA  
INC  
6
5
I
+
LOAD  
V
R1  
9.53k  
V
5V  
+
3
2
OUTC  
R2  
499Ω  
R6  
30k  
CREATES A DELAYED  
10µs RESET PULSE  
ON START-UP  
C1  
0.1µF  
Q1  
2N2222  
400mV  
REFERENCE  
EN/RST  
TRIG  
GND  
SET  
OUT  
OPTIONAL:  
LTC6993-3  
R4  
1M  
DISCHARGES C1  
WHEN SUPPLY  
+
V
V
IS DISCONNECTED  
610812 TA06  
4
DIV  
R5  
487k  
TheLTC6993-3providesa1sresetpulsetotheLT6108-1.  
TheresetpulseisdelayedbyR4andC1whosetimeconstant  
must be greater than 10ms and longer than the supply  
turn-on time. Optional components R6 and Q1 discharge  
capacitor C1 when the supply and/or ground are discon-  
nected. This ensures that when the power supply and/or  
ground are restored, capacitor C1 can fully recharge and  
triggertheLTC6993-3toproduceanothercomparatorreset  
pulse. These optional components are particularly useful  
if the power and/or ground connections are intermittent,  
as can occur when PCB are plugged into a connector.  
610812fa  
24  
LT6108-1/LT6108-2  
TYPICAL APPLICATIONS  
LT6108-2 with External Latch and Power-On Reset or Disconnect  
5V  
7
+
V
LT6108-2  
SENSEHI  
+
R
V
IN  
100Ω  
8
1
+
R3  
10k  
R
SENSE  
SENSELO  
OUTA  
INC  
6
5
I
+
LOAD  
V
R7  
9.53k  
R1  
24.9k  
V
VTH  
+
3
OUTC  
R8  
499Ω  
400mV  
REFERENCE  
V
4
R5*  
R9*  
30k  
V
DD  
100k  
R2  
200k  
Q1*  
2N2222  
C1  
0.1µF  
R4*  
3.4k  
610812 TA06  
*OPTIONAL COMPONENT  
R6  
1M  
The input rising edge threshold which causes the output  
to transition from high to low is:  
An external latch is implemented with positive feedback.  
R6 and C1 provide a reset pulse on power-up. The time  
constant formed by R6 and C1 should be set slower than  
that of the supply. Optional components R9 and Q1 dis-  
charge capacitor C1 when the supply and/or ground are  
disconnected. This ensures that when the power supply  
and/orgroundarerestored,capacitorC1canfullyrecharge.  
While C1 is charging, the NOR gate output is low, ensuring  
that the comparator powers up in the correct state. These  
optional components are particularly useful if the power  
and/or ground connections are intermittent, as can occur  
when PCB are plugged into a connector. R4 and R5 are  
optional and minimize the movement of the rising input  
threshold voltage.  
400mV  
VTH R = 400mV if R4 = R5 •  
( )  
V – 400mV  
DD  
The input falling edge which causes the output to transi-  
tion from low to high is:  
   
1
1
VDD R1  
R2+ R4||R5  
VTH F = 390mV R1 •  
+
( )  
   
   
R1 R2+ R4||R5  
610812fa  
25  
LT6108-1/LT6108-2  
TYPICAL APPLICATIONS  
Precision Power-On Reset Using TimerBlox Circuit  
5V  
7
+
V
LT6108-1  
+
R
V
IN  
100Ω  
8
1
SENSEHI  
SENSELO  
+
R3  
10k  
R
SENSE  
OUTA  
INC  
6
5
I
+
LOAD  
V
R1  
9.53k  
V
R8  
+
100k  
3
2
OUTC  
R2  
499Ω  
1 SECOND DELAY  
ON START-UP  
10µs RESET PULSE  
GENERATOR  
400mV  
REFERENCE  
EN/RST  
TRIG  
OUT  
TRIG  
OUT  
C1  
0.1µF  
LTC6994-1  
LTC6993-1  
+
+
GND  
V
GND  
V
V
C2  
0.1µF  
R6  
1M  
610812 TA08  
4
SET  
DIV  
SET  
DIV  
R7  
191k  
R5  
681k  
R4  
487k  
610812fa  
26  
LT6108-1/LT6108-2  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-ꢀꢂꢂ0 Rev F)  
0.889 0.ꢀꢁ7  
(.035 .005)  
5.ꢁ3  
3.ꢁ0 – 3.45  
(.ꢁ0ꢂ)  
(.ꢀꢁꢂ – .ꢀ3ꢂ)  
MIN  
3.00 0.ꢀ0ꢁ  
(.ꢀꢀ8 .004)  
(NOTE 3)  
0.5ꢁ  
(.0ꢁ05)  
REF  
0.ꢂ5  
(.0ꢁ5ꢂ)  
BSC  
0.4ꢁ 0.038  
(.0ꢀꢂ5 .00ꢀ5)  
TYP  
8
7 ꢂ 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.ꢀ0ꢁ  
(.ꢀꢀ8 .004)  
(NOTE 4)  
4.90 0.ꢀ5ꢁ  
(.ꢀ93 .00ꢂ)  
DETAIL “A”  
0.ꢁ54  
(.0ꢀ0)  
0° – ꢂ° TYP  
GAUGE PLANE  
3
4
0.53 0.ꢀ5ꢁ  
(.0ꢁꢀ .00ꢂ)  
ꢀ.ꢀ0  
(.043)  
MAX  
0.8ꢂ  
(.034)  
REF  
DETAIL “A”  
0.ꢀ8  
(.007)  
SEATING  
PLANE  
0.ꢁꢁ – 0.38  
0.ꢀ0ꢀꢂ 0.0508  
(.009 – .0ꢀ5)  
(.004 .00ꢁ)  
0.ꢂ5  
(.0ꢁ5ꢂ)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
NOTE:  
ꢀ. DIMENSIONS IN MILLIMETER/(INCH)  
ꢁ. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.ꢀ5ꢁmm (.00ꢂ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.ꢀ5ꢁmm (.00ꢂ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.ꢀ0ꢁmm (.004") MAX  
610812fa  
27  
LT6108-1/LT6108-2  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DCB Package  
8-Lead Plastic DFN (2mm × 3mm)  
(Reference LTC DWG # 05-08-ꢀ7ꢀ8 Rev A)  
0.70 0.05  
ꢀ.35 0.05  
3.50 0.05  
ꢀ.65 0.05  
2.ꢀ0 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.45 BSC  
ꢀ.35 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.ꢀꢀ5  
2.00 0.ꢀ0  
(2 SIDES)  
0.40 0.ꢀ0  
TYP  
5
R = 0.05  
TYP  
8
ꢀ.35 0.ꢀ0  
ꢀ.65 0.ꢀ0  
3.00 0.ꢀ0  
(2 SIDES)  
PIN ꢀ NOTCH  
PIN ꢀ BAR  
TOP MARK  
(SEE NOTE 6)  
R = 0.20 OR 0.25  
× 45° CHAMFER  
(DCB8) DFN 0ꢀ06 REV A  
4
0.23 0.05  
0.45 BSC  
0.75 0.05  
0.200 REF  
ꢀ.35 REF  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
ꢀ. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
610812fa  
28  
LT6108-1/LT6108-2  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
12/12 Addition of A-grade Performance and Electrical Characteristics  
Addition of A-grade Order Information  
1, 3, 4, 5, 12, 13, 16 (Fig10), 28  
2
Clarification to Absolute Maximum Short Circuit Duration  
Clarification to nomenclature used in Typical Performance Characteristics  
Clarification to Description of EN/RST Pin Function  
2
6, 7, 9  
10  
Internal Reference Block redrawn for consistency  
11, 13, 18, 19  
Additional information provided to Reverse Supply Protection  
Correction to Overcurrent Battery Fault Protection diagram  
22  
23  
610812fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
29  
LT6108-1/LT6108-2  
TYPICAL APPLICATION  
ADC Driving Application  
SENSE  
HIGH  
SENSE  
LOW  
0.1Ω  
IN  
OUT  
0.1µF  
V
CC  
V
REF  
100Ω  
COMP  
8
7
1
SENSEHI SENSELO  
+
6
+
V
OUTA  
IN  
LTC2470  
TO  
MCU  
LT6108-1  
V
CC  
0.1µF  
2
3
RESET  
8.66k  
1.33k  
EN/RST  
10k  
5
OUTC  
INC  
V
4
OVERCURRENT  
6108 TA05  
The low sampling current of the LTC2470 16-bit delta  
sigma ADC is ideal for the LT6108.  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1787  
LTC4150  
LT6100  
LTC6101  
LTC6102  
LTC6103  
LTC6104  
LT6105  
LT6106  
LT6107  
LT6109  
Bidirectional High Side Current Sense Amplifier  
Coulomb Counter/Battery Gas Gauge  
2.7V to 60V, 75µV Offset, 60µA Quiescent, 8V/V Gain  
Indicates Charge Quantity and Polarity  
Gain-Selectable High Side Current Sense Amplifier  
High Voltage High Side Current Sense Amplifier  
Zero Drift High Side Current Sense Amplifier  
Dual High Side Current Sense Amplifier  
4.1V to 48V, Gain Settings: 10, 12.5, 20, 25, 40, 50V/V  
Up to 100V, Resistor Set Gain, 300µV Offset, SOT-23  
Up to 100V, Resistor Set Gain, 10µV Offset, MSOP8/DFN  
4V to 60V, Resistor Set Gain, 2 Independent Amps, MSOP8  
4V to 60V, Separate Gain Control for Each Direction, MSOP8  
–0.3V to 44V Input Range, 300µV Offset, 1% Gain Error  
2.7V to 36V, 250µV Offset, Resistor Set Gain, SOT-23  
2.7V to 36V, 55°C to 150°C, Fully Tested: –55°C, 25°C, 150°C  
2.7V to 60V, 125µV, Resistor Set Gain, 1.25% Threshold Error  
Bidirectional High Side Current Sense Amplifier  
Precision Rail-to-Rail Input Current Sense Amplifer  
Low Cost High Side Current Sense Amplifier  
High Temperature High Side Current Sense Amplifier  
High Side Current Sense Amplifier with Reference and  
Comparators  
LT6700  
Dual Comparator with 400mV Reference  
1.4V to 18V, 6.5µA Supply Current  
610812fa  
LT 1212 REV A • PRINTED IN USA  
30 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY