LT5503 [Linear]

1.2GHz to 2.7GHz Direct IQ Modulator and Mixer; 的1.2GHz至2.7GHz直接IQ调制器和混频
LT5503
型号: LT5503
厂家: Linear    Linear
描述:

1.2GHz to 2.7GHz Direct IQ Modulator and Mixer
的1.2GHz至2.7GHz直接IQ调制器和混频

文件: 总20页 (文件大小:212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Final Electrical Specifications  
LT5503  
1.2GHz to 2.7GHz Direct  
IQ Modulator and Mixer  
U
October 2001  
DESCRIPTIO  
FEATURES  
TheLT®5503isafront-endtransmitterICdesignedforlow  
voltageoperation, andiscompatiblewiththeLTCfamilyof  
WLANproducts. TheICcontainsahighfrequencyquadra-  
ture modulator with a variable gain amplifier (VGA) and a  
balanced mixer. The modulator includes a precision 90°  
phase shifter which allows direct modulation of an RF  
signal by the baseband I and Q signals.  
Single 1.8V to 5.25V Supply  
Direct IQ Modulator with Integrated 90° Phase  
Shifter*  
Four Step RF Power Control  
120MHz Modulation Bandwidth  
Independent Double-Balanced Mixer  
Modulation Accuracy Insensitive to Carrier Input  
Power  
In a superheterodyne system, the mixer can be used to  
generatethehigh-frequencyRFinputforthemodulatorby  
mixing the system’s 1st and 2nd local oscillators.  
Modulator I/Q Inputs Internally Biased  
U
APPLICATIO S  
The LT5503 modulator output delivers –3dBm at 2.5GHz.  
The VGA allows output power reduction in three steps up  
to 13dB with digital control. The baseband inputs are  
internally biased for maximum input voltage swing at low  
supply voltage. If needed, they can be driven with external  
bias voltages.  
IEEE 802.11 DSSS and FHSS  
High Speed Wireless LAN (WLAN)  
Wireless Local Loop (WLL)  
PCS Wireless Data  
MMDS  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
*Patent Pending  
U
TYPICAL APPLICATIO  
2.45GHz  
BPF  
2.45GHz Modulated Output  
Power vs Supply Voltage  
V
CC1  
V
CC2  
2V  
2V  
–2  
–3  
–4  
–5  
–6  
+
BQ BQ  
+
V
LO2 V LO1  
MODIN  
V
RF  
V MOD  
CC  
MX  
V
VGA  
MX  
CC CC  
CC  
CC  
MIXER  
MIXEN  
ENABLE  
MODULATOR  
ENABLE  
LO2IN  
(750MHz)  
MODEN  
LO2  
MODOUT  
VGA  
0°  
÷2  
P
P
= –12dBm  
= –18dBm  
LO1  
LO2  
90°  
÷1  
BASEBAND = 1V  
P-P  
T
= 27°C  
A
CONTROL  
LOGIC  
1.8  
2.4  
3.0  
3.6  
4.2  
4.8  
5.4  
SUPPLY VOLTAGE (V)  
GC1  
GND  
GC2  
DMODE  
LO1  
2.45GHz  
MODULATED  
RFOUT  
5503 TA01b  
5503 F01  
+
LO1IN (2075MHz)  
BI BI  
Figure 1. 2.45GHz Transmitter Application, Carrier for Modulator Generated by Upmixer  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
1
LT5503  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
TOP VIEW  
Supply Voltage ...................................................... 5.5V  
Control Voltages .......................... –0.3V to (VCC + 0.3V)  
Baseband Voltages (BI+ to BIand BQ+ to BQ) ...... ±2V  
Baseband Common Mode Voltage.....1V to (VCC – 0.3V)  
LO1 Input Power .................................................. 4dBm  
LO2 Input Power .................................................. 4dBm  
MODIN Input Power ............................................. 4dBm  
Operating Temperature Range .................–40°C to 85°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
+
NUMBER  
+
BQ  
BQ  
1
2
3
4
5
6
7
8
9
20 BI  
19 BI  
LT5503EFE  
GC1  
18 GC2  
MODIN  
17 MODOUT  
V
MOD  
16  
15  
14  
13  
12  
11  
V
V
VGA  
LO2  
CC  
CC  
V
RF  
CC  
CC  
LO1  
LO1  
LO2  
V
MODEN  
MIXEN  
CC  
DMODE  
+
MX 10  
MX  
21  
FE PACKAGE  
20-LEAD PLASTIC TSSOP  
PIN 21 = GND (BACKSIDE)  
TJMAX = 150°C, θJA = 38°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
2
LT5503  
ELECTRICAL CHARACTERISTICS  
(I/Q Modulator)  
VCC1 = 3VDC, 2.4GHz matching, MODEN = High, GC1 = GC2 = Low, TA = 27ºC, MODRFIN = 2.45GHz at –16dBm, [I – IB] and [Q – QB] =  
100kHz CW signal at 1VP-P differential, Q leads I by 90°, unless otherwise noted. (Test circuit shown in Figure 2.) (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GHz  
RF Carrier Input (MODRFIN)  
2
Frequency Range  
1.2 to 2.7  
1.3:1  
Input VSWR  
Input Power  
Z = 50Ω  
O
–20 to -10  
dBm  
MHz  
+
+
Baseband Inputs (BI , BI , BQ , BQ )  
Frequency Bandwidth (3dB)  
Differential Input Voltage for 1dB Compressed Output  
DC Common-Mode Voltage  
Differential Input Resistance  
Input Capacitance  
120  
1
V
P-P  
Internally Biased  
1.4  
18  
VDC  
kΩ  
pF  
0.8  
±0.2  
±1  
Gain Error  
dB  
Phase Error  
DEG  
Modulated RF Carrier Output (MODRFOUT)  
Output Power, Max Gain  
Output VSWR  
–6  
–3  
1.5:1  
–34  
–32  
–3  
dBm  
Z = 50Ω  
O
Image Suppression  
26  
24  
dBc  
dBc  
Carrier Suppression  
Output 1dB Compression  
Output 3rd Order Intercept  
Output 2rd Order Intercept  
Broadband Noise  
dBm  
f = 100kHz, f = 120kHz  
I
2
dBm  
Q
f = 100kHz, f = 120kHz  
I
16  
dBm  
Q
20MHz Offset  
–142  
dBm/Hz  
VGA Control Logic (GC2, GC1)  
Switching Time  
100  
2
ns  
µA  
Input Current  
Input Low Voltage  
0.4  
VDC  
VDC  
dB  
Input High Voltage  
1.7  
Output Power Attenuation  
Output Power Attenuation  
Output Power Attenuation  
Modulator Enable (MODEN) Low = Off, High = On  
Turn ON/OFF Time  
GC2 = Low, GC1 = High  
GC2 = High, GC1 = Low  
GC2 = High, GC1 = High  
4.5  
9
dB  
13.5  
dB  
1
µs  
µA  
Input Current  
105  
Enable  
V
– 0.4  
VDC  
VDC  
CC  
Disable  
0.4  
Modulator Power Supply Requirements  
Supply Voltage  
1.8  
5.25  
38  
VDC  
mA  
µA  
Modulator Supply Current  
Modulator Shutdown Current  
MODEN = High  
MODEN = Low  
29  
25  
3
LT5503  
(Mixer)  
ELECTRICAL CHARACTERISTICS  
VCC2 = 3VDC, 2.4GHz matching, MIXEN = High, DMODE = Low (LO2 ÷ 2 mode), TA = 27ºC, LO2IN = 750MHz at –18dBm, LO1IN =  
2075MHz at –12dBm. MIXRFOUT measured at 2450MHz, unless otherwise noted. (Test circuit shown in Figure 2.) (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
dBm  
MHz  
dBm  
MHz  
Mixer 2nd LO Input (LO2IN)  
Frequency Range  
Input VSWR  
50 to 1000  
1.4:1  
Z = 50Ω  
O
Input Power  
–20 to –12  
Mixer 1st LO Input (LO1IN)  
2
Frequency Range  
1400 to 2400  
1.5:1  
Input VSWR  
Z = 50Ω  
O
Input 3rd Order Intercept  
Mixer RF Output (MIXRFOUT)  
–30dBm/Tone, f = 200kHz  
–12  
2
Frequency Range  
1700 to 2700  
1.5:1  
Output VSWR  
Z = 50Ω  
O
Small-Signal Conversion Gain  
Output Power  
P
= –30dBm  
5
dB  
dBm  
LO1  
–14.7  
22  
–12.7  
29  
LO1 Suppression  
dBc  
Output 1dB Compression  
Broadband Noise  
–15  
dBm  
20MHz Offset  
–152  
dBm/Hz  
LO2 Divider Mode Control (DMODE) Low = f ÷ 2, High = f ÷ 1  
LO2  
LO2  
Input Current  
1
µA  
VDC  
VDC  
Input Low Voltage (÷2)  
Input High Voltage (÷1)  
Mixer Enable (MIXEN) Low = Off, High = On  
Turn ON/OFF Time  
0.4  
0.4  
V
V
– 0.4  
CC  
CC  
1
µs  
µA  
Input Current  
130  
Enable  
– 0.4  
VDC  
VDC  
Disable  
Mixer Power Supply Requirements  
Supply Voltage  
1.8  
5.25  
15.5  
VDC  
mA  
mA  
µA  
Supply Current (÷2 mode)  
Supply Current (÷1 mode)  
Shutdown Current  
DMODE = Low, MIXEN = High  
11.9  
10.8  
DMODE = High, MIXEN = High  
MIXEN = Low  
10  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: External component values on the final test circuit shown in  
Note 3: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
Figure 2 are optimized for operation in the 2.4GHz to 2.5GHz band.  
4
LT5503  
U W  
(I/Q Modulator)  
TYPICAL PERFOR A CE CHARACTERISTICS  
VCC1 = 3VDC, 2.4GHz matching, MODEN = high, GC1 = GC2 = low (max gain), TA = 27°C, MODRFIN = 2.45GHz at –16dBm, (I–IB) and  
(Q–QB) = 100kHz sine at 1VP-P differential, Q leads I by 90°, unless otherwise noted. (Test circuit shown in Figure 2.)  
Modulator Supply Current vs  
Supply Voltage  
MODEN Current vs Enable  
Voltage  
Modulator Shutdown Current vs  
Supply Voltage  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
100  
10  
1
220  
200  
180  
160  
140  
120  
100  
80  
MODEN = LOW  
MODEN = V  
CC1  
T
A
= 85°C  
T
A
= 85°C  
T
A
= 85°C  
T
A
= 27°C  
T
= 27°C  
A
T
A
= –40°C  
T
A
= 27°C  
T
= –40°C  
A
60  
T
= –40°C  
A
0.1  
40  
1.8  
4.6  
5.3  
2.5  
V
3.2  
3.9  
1.8  
4.6  
5.3  
2.5  
V
3.2  
3.9  
1.8  
5.3  
2.5  
3.2  
3.9  
4.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
MODEN VOLTAGE (V)  
CC1  
CC1  
5503 G01  
5503 G02  
5503 G03  
SSB Output Power vs  
I, Q Amplitude  
MODRFIN and MODRFOUT  
Baseband Frequency Response  
I/Q Amplitude = 1VP-P  
Return Loss 2.4GHz Matching  
0
–5  
0
–5  
0
–10  
–20  
–30  
–40  
3 VDC  
1.8 VDC  
5.25 VDC  
DESIRED  
SIDEBAND  
MODRFOUT  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
MODRFIN  
CARRIER  
IMAGE  
2450  
2650  
2050  
2850  
0.01  
0.1  
10  
2250  
1
0.1  
10  
1
I, Q DIFFERENTIAL INPUT VOLTAGE (V  
)
FREQUENCY (MHz)  
P-P  
I, Q INPUT FREQUENCY (MHz)  
5503 G06  
5503 G04  
5503 G05  
Typical SSB Spectrum  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
2450.0  
FREQUENCY (MHz)  
2449.6 2449.8  
2450.2 2450.4 2450.6  
5503 G07  
5
LT5503  
U W  
(I/Q Modulator)  
TYPICAL PERFOR A CE CHARACTERISTICS  
2.4GHz matching, MODEN = high, GC1 = GC2 = low (max gain), MODRFIN = 2.45GHz, (I–IB) and (Q–QB) = 100kHz sine at 1VP-P  
differential, Q leads I by 90°, unless otherwise noted. (Test circuit shown in Figure 2.)  
Image Suppression vs Input  
Power VCC1 = 1.8V  
Carrier Suppression vs Input Power  
VCC1 = 1.8V  
SSB Output Power vs Input Power  
VCC1 = 1.8V  
–20  
–30  
–40  
–50  
–20  
–30  
–40  
–50  
–2  
–4  
T
= 27°C  
A
–6  
T
= –40°C  
A
–8  
T
= 27°C  
A
T
= 27°C  
A
T
= 85°C  
A
–10  
–12  
–14  
–16  
–18  
–20  
T
= –40°C  
A
T
= –40°C  
A
T
= 85°C  
A
T
= 85°C  
A
–24 –22 –20 –18 –16 –14 –12 –10  
MODRFIN INPUT POWER (dBm)  
–24 –22 –20 –18 –16 –14 –12 –10  
MODRFIN INPUT POWER (dBm)  
–24 –22 –20 –18 –16 –14 –12 –10  
MODRFIN INPUT POWER (dBm)  
5503 G10  
5503 G08  
5503 G09  
SSB Output Power vs Input Power  
VCC1 = 3V  
Carrier Suppression vs Input Power  
VCC1 = 3V  
Image Suppression vs Input Power  
VCC1 = 3V  
–20  
–30  
–40  
–50  
0
–2  
–20  
–30  
–40  
–50  
T
= 27°C  
A
–4  
T
= –40°C  
A
–6  
T
A
= 27°C  
T
= 27°C  
A
–8  
T
= –40°C  
A
T
= –40°C  
T
= 85°C  
A
A
–10  
–12  
–14  
–16  
–18  
T
= 85°C  
A
T
A
= 85°C  
–24 –22 –20 –18 –16 –14 –12 –10  
MODRFIN INPUT POWER (dBm)  
–24 –22 –20 –18 –16 –14 –12 –10  
MODRFIN INPUT POWER (dBm)  
–24 –22 –20 –18 –16 –14 –12 –10  
MODRFIN INPUT POWER (dBm)  
5503 G13  
5503 G11  
5503 G12  
SSB Output Power vs Input Power  
VCC1 = 5.25V  
Carrier Suppression vs Input Power  
VCC1 = 5.25V  
Image Suppression vs Input Power  
VCC1 = 5.25V  
0
–2  
–20  
–20  
T
= 27°C  
A
T
= –40°C  
A
–4  
–6  
–30  
–40  
–50  
–30  
–40  
–50  
T
= 27°C  
A
T
= 27°C  
A
T
= 85°C  
A
–8  
T
= –40°C  
A
T
= –40°C  
A
–10  
–12  
–14  
–16  
–18  
T
= 85°C  
A
T
= 85°C  
A
–24 –22 –20 –18 –16 –14 –12 –10  
MODRFIN INPUT POWER (dBm)  
–24 –22 –20 –18 –16 –14 –12 –10  
MODRFIN INPUT POWER (dBm)  
–24 –22 –20 –18 –16 –14 –12 –10  
MODRFIN INPUT POWER (dBm)  
5503 G14  
5503 G16  
5503 G15  
6
LT5503  
U W  
(I/Q Modulator)  
TYPICAL PERFOR A CE CHARACTERISTICS  
VCC1 = 3VDC, MODEN = high, TA = 27°C, PMODRFIN = –16dBm, (I–IB) and (Q–QB) = 100kHz sine at 1VP-P differential, Q leads I by 90°,  
unless otherwise noted. (Test circuit shown in Figure 2.)  
Output Power vs Frequency  
1.2GHz Matching  
Carrier Feedthrough vs Frequency  
1.2GHz Matching  
SSB Image vs Frequency  
1.2GHz Matching  
0
–2  
–30  
–40  
–50  
–60  
–30  
–40  
–50  
–60  
GC2, GC1 = 00  
GC2, GC1 = 00  
01  
–4  
GC2, GC1 = 00  
01  
–6  
01  
–8  
10  
11  
–10  
–12  
–14  
–16  
–18  
–20  
10  
11  
10  
11  
1000  
1100  
1200  
1300  
1400  
1000  
1100  
1200  
1300  
1400  
1000  
1100  
1200  
1300  
1400  
MODRFIN FREQUENCY (MHz)  
MODRFIN FREQUENCY (MHz)  
MODRFIN FREQUENCY (MHz)  
5503 G17  
5503 G18  
5503 G19  
Output Power vs Frequency  
1.9GHz Matching  
Carrier Feedthrough vs Frequency  
1.9GHz Matching  
SSB Image vs Frequency  
1.9GHz Matching  
2
0
–30  
–40  
–50  
–60  
–30  
–40  
–50  
–60  
GC2, GC1 = 00  
01  
GC2, GC1 = 00  
01  
GC2, GC1 = 00  
01  
–2  
–4  
–6  
10  
11  
–8  
10  
11  
10  
11  
–10  
–12  
–14  
–16  
–18  
1650  
1750  
1850  
1950  
2050  
2150  
1650  
1750  
1850  
1950  
2050  
2150  
1650  
1750  
1850  
1950  
2050  
2150  
MODRFIN FREQUENCY (MHz)  
MODRFIN FREQUENCY (MHz)  
MODRFIN FREQUENCY (MHz)  
5503 G20  
5503 G22  
5503 G21  
Output Power vs Frequency  
2.4GHz Matching  
Carrier Feedthrough vs Frequency  
2.4GHz Matching  
SSB Image vs Frequency  
2.4GHz Matching  
–30  
–40  
–50  
–60  
–30  
–40  
–50  
–60  
0
–2  
GC2, GC1 = 00  
GC2, GC1 = 00  
GC2, GC1 = 00  
01  
–4  
01  
–6  
10  
11  
01  
–8  
10  
11  
–10  
–12  
–14  
–16  
–18  
10  
11  
2250  
2350  
2450  
2550  
2650  
2250  
2350  
2450  
2550  
2650  
2250  
2350  
2450  
2550  
2650  
MODRFIN FREQUENCY (MHz)  
MODRFIN FREQUENCY (MHz)  
MODRFIN FREQUENCY (MHz)  
5503 G25  
5503 G23  
5503 G24  
7
LT5503  
U W  
(Mixer)  
TYPICAL PERFOR A CE CHARACTERISTICS  
2.4GHz matching, MIXEN = high, DMODE = low (LO2 ÷ 2 mode), LO2IN = 750MHz at –18dBm, LO1IN = 2075MHz. MIXRFOUT measured  
at 2450MHz, unless otherwise noted. (Test circuit shown in Figure 2.)  
Mixer Shutdown Current vs Supply  
Voltage  
Mixer Supply Current vs Supply  
Mixer Supply Current vs Supply  
Voltage (LO2 ÷ 2 Mode)  
Voltage (LO2 ÷ 1 Mode)  
14  
13  
12  
11  
10  
9
100  
10  
1
14  
13  
12  
11  
10  
9
DMODE = HIGH  
MIXEN = LOW  
T
= 85°C  
A
T
= 27°C  
T
= 85°C  
A
A
T
A
= 27°C  
T
A
= 85°C  
T
= –40°C  
A
T
= –40°C  
A
T
= 27°C  
A
T
= –40°C  
A
8
0.1  
8
1.8  
2.5  
V
3.2  
3.9  
4.6  
5.3  
1.8  
2.5  
V
3.2  
3.9  
4.6  
5.3  
1.8  
2.5  
V
3.2  
3.9  
4.6  
5.3  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
CC2  
SUPPLY VOLTAGE (V)  
CC2  
CC2  
5503 G27  
5503 G28  
5503 G26  
RF Output Power vs LO1 Input  
Power (VCC2 = 5.25V)  
RF Output Power vs LO1 Input  
Power (VCC2 = 1.8V)  
RF Output Power vs LO1 Input  
Power (VCC2 = 3V)  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
T
= –40°C  
A
T
= –40°C  
T
= –40°C  
A
A
T
A
= 27°C  
T
A
= 27°C  
T
= 27°C  
A
T
A
= 85°C  
T
A
= 85°C  
T
= 85°C  
A
–21 –18  
–21 –18  
–30 –27 –24  
–15 –12 –9 –6  
–21 –18  
–15 –12  
–30 –27 –24  
–15 –12 –9 –6  
–30  
–9 –6  
–27 –24  
LO1IN POWER (dBm)  
LO1IN POWER (dBm)  
LO1IN POWER (dBm)  
1195 G30  
1195 G29  
1195 G31  
LO1 Feedthrough vs LO1 Input  
Power (VCC2 = 5.25V)  
LO1 Feedthrough vs LO1 Input  
Power (VCC2 = 1.8V)  
LO1 Feedthrough vs LO1 Input  
Power (VCC2 = 3V)  
–20  
–25  
–30  
–35  
–40  
–20  
–25  
–30  
–35  
–40  
–20  
–25  
–30  
–35  
–40  
T
= –40°C  
A
T
A
= 85°C  
T
= 85°C  
T
= 27°C  
A
T
= 85°C  
A
A
T
= 27°C  
A
T
= 27°C  
A
T
= –40°C  
A
T
= –40°C  
A
–21 –18  
–15 –12 –9 –6  
–21 –18  
–30 –27 –24  
–30 –27 –24  
–15 –12 –9 –6  
–21 –18  
–30 –27 –24  
–15 –12 –9 –6  
LO1IN POWER (dBm)  
LO1IN POWER (dBm)  
LO1IN POWER (dBm)  
1195 G34  
1195 G33  
1195 G32  
8
LT5503  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(Mixer)  
VCC2 = 3VDC, MIXEN = high, DMODE = low (LO2 ÷ 2mode), TA = 27°C, unless otherwise noted. (Test circuit shown in Figure 2.)  
RF Output Power and LO1  
Small-Signal Conversion Gain  
and IIP3 1.9GHz Matching  
LO1IN and MIXRFOUT Return Loss  
1.9GHz Matching  
Feedthrough 1.9GHz Matching  
–12  
–14  
–16  
–18  
–20  
–22  
0
0
–5  
6
4
–3  
OUTPUT  
POWER  
–10  
–20  
–30  
–40  
–50  
–6  
SMALL-SIGNAL  
CONVERSION  
GAIN  
–10  
–15  
–20  
–25  
–30  
2
–9  
MIXRFOUT  
LO1IN  
0
–12  
–15  
–18  
LO1  
FEEDTHROUGH  
IIP3  
–2  
LO2IN = 480MHz AT –18dBm  
LO2IN = 480MHz AT –18dBm  
LO1IN = f –240MHz AT –12dBm  
LO1IN = f –240MHz AT –30dBm/TONE  
RF  
RF  
–4  
1650  
1750  
1850  
1950  
2050  
2150  
1900  
2300 2500  
2100  
1100 1300 1500 1700  
1650  
1750  
1850  
1950  
2050  
2150  
RF OUTPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
RF OUTPUT FREQUENCY (MHz)  
5503 G35  
5503 G37  
5503 G36  
RF Output Power and LO1  
Small-Signal Conversion Gain  
and IIP3 2.4GHz Matching  
LO1 and MIXRFOUT Return Loss  
2.4GHz Matching  
Feedthrough 2.4GHz Matching  
–12  
–14  
–16  
–18  
–20  
–22  
0
0
–5  
6
4
–3  
OUTPUT  
POWER  
–10  
–20  
–30  
–40  
–50  
SMALL-SIGNAL  
CONVERSION  
GAIN  
–6  
–10  
–15  
–20  
–25  
–30  
2
–9  
LO1  
FEEDTHROUGH  
MIXRFOUT  
LO1  
IIP3  
0
–12  
–15  
–18  
–2  
LO2IN = 750MHz AT –18dBm  
LO2IN = 750MHz AT –18dBm  
LO1IN = f –375MHz AT –12dBm  
LO1IN = f –375MHz AT –30dBm/TONE  
RF  
RF  
–4  
2250  
2350  
2450  
2550  
2650  
2250  
2650 2850  
2450  
1450 1650 1850 2050  
2250  
2350  
2450  
2550  
2650  
RF OUTPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
RF OUTPUT FREQUENCY (MHz)  
5503 G38  
5503 G40  
5503 G39  
MIXEN Input Current vs Enable  
Voltage (MIXEN = VCC2  
)
300  
270  
240  
210  
180  
150  
120  
90  
T
= 85°C  
A
T
= –40°C  
A
T
= 27°C  
A
60  
30  
1.8  
5.3  
2.5  
3.2  
3.9  
4.6  
MIXEN VOLTAGE (V)  
5503 G41  
9
LT5503  
U
U
U
PI FU CTIO S  
BQ(Pin1):NegativeBasebandInputPinoftheModulator  
Q-Channel. This pin is internally biased to 1.4V, but can  
alsobeoverdrivenwithanexternalDCvoltagegreaterthan  
1.4V, but less than VCC – 0.4V.  
MIXEN (Pin 12): Mixer Enable Pin. When the input voltage  
is higher than VCC – 0.4V, the mixer circuits supplied  
through pins 8, 10, 11 and 15 are enabled. When the input  
voltage is less than 0.4V, these circuits are disabled.  
BQ+ (Pin 2): Positive Baseband Input Pin of Modulator Q-  
Channel. This pin is internally biased to 1.4V, but can also  
be overdriven with an external DC voltage greater than  
1.4V, but less than VCC – 0.4V.  
MODEN (Pin 13): Modulator Enable Pin. When the input  
voltage is higher than VCC – 0.4V, the modulator circuits  
supplied through pins 5, 6, 16 and 17 are enabled. When  
the input voltage is less than 0.4V, these circuits are  
disabled.  
GC1 (Pin 3): Gain Control Pin. This pin is the least  
significant bit of the four-step modulator gain control.  
LO2(Pin14): Mixer2ndLOInputPin. Thispinisinternally  
biased and should be AC-coupled. An external matching  
network is not required, but can be used for improved  
matching to a 50source.  
MODIN (Pin 4): Modulator Carrier Input Pin. This pin is  
internally biased and should be AC-coupled. An external  
matching network is required for a 50source.  
VCCLO2 (Pin 15): Power Supply Pin for the Mixer LO2  
Circuits. This pin should be externally connected to the  
other VCC pins and decoupled with 1000pF and 0.1µF  
capacitors.  
VCCMOD (Pin 5): Power Supply Pin for the I/Q Modulator.  
This pin should be externally connected to the other VCC  
pins and decoupled with 1000pF and 0.1µF capacitors.  
VCCRF (Pin 6): Power Supply Pin for the I/Q Modulator  
Input RF Buffer and Phase Shifter. This pin should be  
externally connected to the other VCC pins and decoupled  
with 1000pF and 0.1µF capacitors.  
VCCVGA (Pin 16): Power Supply Pin for the Modulator  
Variable Gain Amplifier. This pin should be externally  
connected to the other VCC pins through a 47resistor  
and decoupled with a good high frequency capacitor (2pF  
typical) placed close to the pin.  
LO1 (Pin 7): Mixer 1st LO Input Pin. This pin is internally  
biased and should be AC-coupled. An external matching  
network is required for a 50source.  
MODOUT (Pin 17): Modulator RF Output Pin. This pin  
must be externally biased to VCC through a bias choke. An  
external matching network is required to match to 50.  
VCCLO1 (Pin 8): Power Supply Pin for the Mixer LO1  
Circuits. This pin should be externally connected to the  
other VCC pins and decoupled with 1000pF and 0.1µF  
capacitors.  
GC2 (Pin 18): Gain Control Pin. This pin is the most  
significant bit of the four-step modulator gain control.  
BI+ (Pin19):PositiveBasebandInputPinoftheModulator  
I-Channel.Thispinisinternallybiasedto1.4V,butcanalso  
be overdriven with an external DC voltage greater than  
1.4V, but less than VCC – 0.4V.  
BI(Pin 20): Negative Baseband Input Pin of the Modula-  
tor I-Channel. This pin is internally biased to 1.4V, but can  
alsobeoverdrivenwithanexternalDCvoltagegreaterthan  
1.4V, but less than VCC – 0.4V.  
DMODE (Pin 9): Mixer 2nd LO Divider Mode Control Pin.  
Low = divide-by-2, High = divide-by-1.  
MX+ (Pin 10): Mixer Positive RF Output Pin. This pin must  
be connected to VCC through an external matching net-  
work.  
MX(Pin11):MixerNegativeRFOutputPin.Thispinmust  
be connected to VCC through an external matching net-  
work.  
GROUND (Backside Contact): Circuit Ground Return for  
the Entire IC.  
10  
LT5503  
W
BLOCK DIAGRA  
+
+
BQ  
2
BQ  
1
BI  
20  
BI  
19  
V-I  
V-I  
V
MOD  
5
CC  
16  
17  
V
VGA  
CC  
VGA  
MODOUT  
V
RF  
6
4
CC  
18 GC2  
CONTROL  
LOCIC  
90°  
RF  
BUFFER  
0°  
3
GC1  
MODIN  
MODULATOR BIAS CIRCUITS  
MIXER BIAS CIRCUITS  
13 MODEN  
12 MIXEN  
V
LO1  
LO1  
8
7
CC  
LO1  
BUFFER  
15  
14  
V LO2  
CC  
÷2  
LIM  
LIM  
LO2  
÷1  
21  
10  
11  
9
5503 BD  
+
GND  
(BACKSIDE)  
MX MX  
DMODE  
11  
LT5503  
TEST CIRCUIT  
(BACKSIDE)  
21  
C17  
1µF  
C18  
1µF  
GND
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
+
Q
I
I
BQ  
BQ  
B
BI  
BI  
B
+
Q
C15  
C16  
1µF  
1µF  
3
GC1  
GC2  
GC1  
GC2  
C2  
L2  
C3  
L3  
MODRFOUT  
4
MODRFIN  
MODIN  
MODOUT  
L1  
C23  
R1  
R2  
47Ω  
C10  
C20  
5
V
CC1  
V
V
MOD  
V
VGA  
CC  
CC  
CC  
C1  
2.2pF  
C19  
0.01µF  
V
C7  
CC1  
6
RF  
V
LO2  
CC  
1000pF  
C4  
C22  
1000pF  
L4  
7
LO1IN  
LO1  
LO2  
C11  
LO2IN  
8
V
LO1  
MODEN  
MIXEN  
MODEN  
MIXEN  
CC  
C14  
100pF  
9
C43  
8.2pF  
DMODE  
DMODE  
10  
+
MX  
MX  
C12  
1000pF  
L6  
L5  
C13  
8.2pF  
V
CC2  
C21  
0.01µF  
C5  
C6  
4
2
3
5
1
T1  
C9  
NOTE: V  
MODULATOR AND UPMIXER  
SECTIONS RESPECTIVELY.  
AND V  
POWER THE  
CC2  
CC1  
MIXRFOUT  
5503 F02  
Application Dependent Component Values  
1.2GHz Matching  
(Modulator Only) 1.9GHz Matching 2.4GHz Matching  
L1  
33nH  
12nH  
12nH  
39pF  
2.7pF  
n/a  
22nH  
5.6nH  
4.7nH  
15pF  
18nH  
2.7nH  
2.7nH  
8.2pF  
1.2pF  
1.5pF  
390Ω  
8.2pF  
2.2pF  
2.7pF  
1.2pF  
4.7nH  
2.2nH  
L2  
L3  
C2, C3, C7  
C10  
C23  
R1  
1.8pF  
1.5pF  
390Ω  
15pF  
240Ω  
n/a  
C4  
C5, C6  
C9  
n/a  
1.8pF  
15pF  
n/a  
C11  
L4  
n/a  
2.2pF  
6.8nH  
5.6nH  
n/a  
L5,L6  
T1  
n/a  
n/a  
LDB15C101A1900 LDB15C500A2400  
Figure 2. Test Schematic for 1.2GHz, 1.9GHz and 2.4GHz Applications  
12  
LT5503  
W U U  
APPLICATIO S I FOR ATIO  
U
TheLT5503consistsofadirectquadraturemodulatorand bandpass filter loss. The balanced output from the modu-  
a mixer. The mixer operates over the range of 1.7GHz to lator is applied to a variable gain amplifier (VGA) that  
2.7GHz, and the modulator operates with an output range provides a single-ended output. Note that the modulator  
of 1.2GHz to 2.7GHz. The LT5503 is designed specifically can also be used independently of the mixer, freeing the  
for high accuracy digital modulation with supply voltages mixer to be used anywhere in the system. In this case,  
aslowas1.8V.ItissuitableforIEEE802.11bwirelesslocal MODRFINwillbedrivenfromanexternalfrequencysource.  
area network (WLAN), MMDS and wireless local loop  
Modulator Baseband  
(WLL) transmitters.  
The baseband I and Q inputs (BI+/BIand BQ+/BQ) are  
internally biased to 1.4V to maximize the input signal  
rangeatlowsupplyvoltage.Thisbiasvoltageisstableover  
temperature, and increases by approximately 50mV at the  
maximum supply voltage. The modulator I and Q inputs  
have very wide bandwidth (120MHz typical), making the  
LT5503 suitable for even the most wideband modulation  
applications. For best carrier suppression and lowest  
distortion, differential input drive should be used. Single-  
ended drive is possible too, with the unused inputs AC-  
coupled to ground.  
A dual-conversion RF system requires two local oscilla-  
tors to convert signals between the baseband and RF  
domains (see Figure 3). The LT5503’s double-balanced  
mixer can be used to generate the LT5503 modulator’s  
high frequency carrier input (MODRFIN) by mixing the  
systems 1st and 2nd local oscillators (LO1 and LO2). In  
this case, a bandpass filter is required to select the desired  
mixer output for the modulator input. The mixer’s RF  
differential output produces –12dBm typically at 2.45GHz  
and the modulator MODIN pin requires –16dBm, driven  
single-ended. This allows approximately 4dB margin for  
LT5502  
I
A/D  
90°  
÷2  
LNA  
0°  
Q
A/D  
2ND LO  
1ST LO  
LT5503  
÷2  
90°  
VGA  
0°  
÷1  
I
D/A  
D/A  
Q
5503 F03  
Figure 3. Example System Block Diagram for a Dual Conversion System  
13  
LT5503  
W U U  
U
APPLICATIO S I FOR ATIO  
AC-Coupled Baseband. Figure 4 shows the simplified  
circuit schematic of a high-pass AC-coupled baseband  
interface.  
Figure 5 shows a simplified circuit schematic for interfac-  
ing the LT5503’s baseband inputs to the outputs of a D/A  
converter. OIP and OIN are the positive and negative  
baseband outputs, respectively, of the converter’s  
I-channel. Similarly, OQP and OQN are the positive and  
negativebasebandoutputs,respectively,oftheconverter’s  
Q-channel.  
C
C
C
C
+
CPL  
CPL  
CPL  
CPL  
LT5503  
BI  
I
0.8pF  
0.8pF  
0.8pF  
0.8pF  
18k  
BI  
I
B
+
LT5503  
I
I
I
I
INPUT  
INPUT  
INPUT  
BI  
OIP  
OIN  
+
BQ  
BQ  
0.8pF  
0.8pF  
0.8pF  
0.8pF  
18k  
Q
BI  
18k  
D/A  
Q
B
+
BQ  
OQP  
OQN  
5505 F04  
18k  
Figure 4. AC-Coupled Baseband Interface  
INPUT BQ  
With approximately 18k of differential input resistance,  
the suggested minimum AC-coupling capacitor can be  
determined using the following equation:  
5505 F05  
Figure 5. DC-Coupled Baseband Interface  
Modulator RF Input (MODRFIN)  
1
CCPL  
=
The modulator RF input buffer is driven single-ended. An  
internal active balun circuit produces balanced signals to  
drive the integrated phase shifter. Limiters following the  
phase shifter output accommodate a wide range of  
MODRFIN power, resulting in minimal degradation of  
modulation gain/phase accuracy performance or carrier  
feedthrough. This pin is easily matched to a 50source  
with the simple lowpass network shown in Figure 2. This  
pin is internally biased, therefore an AC-coupling capaci-  
tor is required.  
(18103 π fC)  
wherefC isthe3dBcut-offfrequencyofthebasebandinput  
signal.  
A larger capacitor may be used where the settling time of  
charginganddischargingtheAC-couplingcapacitorisnot  
critical.  
DC-CoupledBaseband. Thebasebandinputsinternalbias  
voltage can be overdriven with an external bias circuit.  
This facilitates direct interfacing to a D/A converter for  
faster transient response. In this case, the LT5503’s  
baseband inputs are DC biased by the converter. The  
optimal VBIAS is 1.4V, independent of VCC. In general, the  
maximum VBIAS should be less than VCC – 0.4V. The DC  
load on each converter output can be approximated using  
the following equation where IINPUT is the current flowing  
into a modulator input:  
Modulator VGA (Variable Gain Amp)  
The VGA has two digital selection lines to provide a  
nominal 0dB, 4.5dB, 9dB and 13.5dB attenuation from the  
maximummodulatoroutputpowersetting. Thelogictable  
is shown below:  
GC2  
Attenuation  
Low  
0dB  
High  
9dB  
V
BIAS 1.4V  
GC1  
Low  
High  
I
=
INPUT  
9kΩ  
4.5dB  
13.5dB  
14  
LT5503  
W U U  
APPLICATIO S I FOR ATIO  
U
Pin 16 should be connected externally to VCC through a  
low value series resistor (47typical). To assure proper  
output power control, a good, local high frequency AC  
ground for Pin 16 is essential. The MODOUT port of the  
VGA is an open collector configuration. An inductor with  
high self resonance frequency is required to connect  
Pin 17 to VCC as a DC return path, and as a part of the  
output matching network. Additional matching compo-  
nents are required to drive a 50load as shown in  
Figure 2.TheamplifierisdesignedtooperateinClassAfor  
low distortion performance. The typical output 1dB com-  
pression point (P1dB) is –3dBm at 2.45GHz. When the  
Mixer LO2 Port  
The mixer LO2 port is designed to operate in the 50MHz to  
1000MHzrange. Thefirststageisalimitingamplifier. This  
stage produces the correct output levels to drive the  
internal divider circuit reliably, with LO2 input levels down  
to –20dBm. The output of the divider then drives another  
stage, which in turn switches the nonlinear inputs of the  
double-balanced mixer. Note that the mixer output will  
produce broadband noise if the LO2 signal level is too low.  
The input amplifier is designed for a good match over the  
entire frequency range. The only requirement (Figure 2) is  
an external AC-coupling capacitor.  
differentialbasebandinputvoltagesarehigherthan1VP-P  
,
Mixer Output Ports (MX+/MX)  
the VGA operates in Class AB mode, and the distortion  
performance of the modulator is degraded. The logic  
controlinputsdonotdrawcurrentwhentheyarelow.They  
draw about 2µA each when high.  
The mixer output is a differential open collector configura-  
tion. Bias current is supplied to these two pins through the  
center tap of a balun as shown in Figure 2. Simple lowpass  
matchingisusedtotransformeachlegofthemixeroutput  
to 25for the balun’s 50input impedance.  
Mixer LO1 Port  
The mixer LO1 input port is the linear input to the mixer.  
It consists of an active balun amplifier designed to operate  
over the 1.4GHz to 2.4GHz frequency range. There is a  
linear relationship between LO1 input power and  
MIXRFOUTpowerforLO1inputlevelsuptoapproximately  
–20dBm. After that, the mixer output begins to compress.  
When operated in the recommended –14dBm to –8dBm  
input power range, the mixer is well compressed, which in  
turn creates a stable output level for the modulator input.  
As shown in Figure 2, a simple lowpass matching network  
is required to match this pin to 50. This pin is internally  
biased, therefore an AC-coupling capacitor is required.  
The balun approach provides the highest output power  
and best LO1 suppression, but is not absolutely neces-  
sary. It is also possible to match each output to 50and  
couple power from one output. The unused output should  
be terminated in the same characteristic impedance. In  
this case, output power is approximately 2dB lower and  
LO1 suppression degrades to approximately 15dBc. A  
schematic for this approach is shown in Figure 6 where  
inductors LB+ and LBsupply bias current to the mixer’s  
differential outputs, and resistor RTERM terminates the  
unused output.  
+
10  
11  
1.9GHz  
5.6nH  
1.8pF  
15pF  
2.4GHz  
2.7nH  
0.68pF  
8.2pF  
MX  
MX  
L5,L6  
C5, C6  
C9  
L6  
L5  
V
CC  
+
LB  
LB  
R
TERM  
C5  
C6  
51Ω  
C9  
C
BYPASS  
MIXRFOUT  
5503 F06  
Figure 6. 50Mixer Output Matching Without a Balun  
15  
LT5503  
W U U  
U
APPLICATIO S I FOR ATIO  
EVALUATION BOARD  
RF Layout Tips:  
Figure 7 shows the circuit schematic of the evaluation  
board. The MODRFIN, MODRFOUT and MIXRFOUT ports  
are matched to 50at 2.45GHz. The LO1IN port is  
matched to 50at 2.1GHz and the LO2IN port is internally  
matched.  
• Use 50impedance transmission lines up to the  
matching networks, use of a ground plane is a must.  
• Keep the matching networks as close to the pins as  
possible.  
• Surface mount 0402 outline (or smaller) parts are  
recommended to minimize parasitic inductances and  
capacitances.  
A 390resistor is used to reduce the quality factor (Q) of  
the modulator output and deliver an output power of  
–3dBm typically. A lower value resistor may be used if the  
desired output power is lower. For example, the output  
power will be 3dB lower if a 200resistor is used.  
• Isolate the MODOUT pin from the LO2 input by putting  
the LO2 transmission line on the bottom side of the  
board.  
Inductors with high self-resonance frequency should be  
used for L1 to L6.  
• Theonlygroundconnectionisthroughtheexposedpad  
on the bottom of the package. This exposed pad must  
be soldered to the board in such a way to get complete  
RF contact.  
Forsimplerevaluationinalabenvironment, theevaluation  
board includes op amps to convert single-ended I and Q  
input signals to differential . The op amp configuration has  
a voltage gain of two; therefore the peak baseband input  
voltage should be halved to maintain the same RF output  
power. The op amp configuration shown will maintain  
acceptable differential balance up to 10MHz typically. It is  
also possible to bypass the op amps and drive the  
modulator’s differential inputs directly by connecting to  
the four oversized vias on the board (V1, V2, V3 and V4).  
• Low impedance RF ground connections are essential  
and can only be obtained by one or more vias tying  
directly into the ground plane.  
• VCC lines must be decoupled with low impedance,  
broadband capacitors to prevent instability.  
• Separate power supply lines should be used to isolate  
the MODIN signal and other stray signals from the  
MODOUT line. If possible, power planes should be  
used.  
Figure7alsoshowsatableofmatchingnetworkvaluesfor  
designs centered at 1.9GHz and1.2GHz.  
Figure 8 shows the evaluation board with connectors and  
ICs. Figure 9 shows the test set-up with the upconverting  
mixer and IQ modulator connected in a transmit configu-  
ration. Refer to the demo boardDC365A Quick Start Guide  
for detailed testing information.  
• Avoid use of long traces whenever possible. Long RF  
traces in particular can lead to signal radiation and  
degraded isolation, as well as higher losses.  
16  
LT5503  
W U U  
APPLICATIO S I FOR ATIO  
U
E4  
V
CC4  
V
CC4  
C33  
C34  
C27  
0.01µF  
C29  
0.01µF  
C32  
C28  
4.7µF  
4.7µF  
J1  
J4  
4.7µF  
4.7µF  
5
5
8
8
I-IN  
+
Q-IN  
+
7
7
R14  
U2-1  
U3-1  
R3  
R13  
510Ω  
1%  
R15  
R16  
510Ω  
1%  
R12  
56Ω  
1%  
510Ω  
LT1807  
LT1807  
56Ω  
510Ω  
1%  
1%  
1%  
R18  
R17  
510Ω  
4
4
6
6
510Ω  
1%  
1%  
C16  
1µF  
C15  
1µF  
R28  
49.9Ω  
R25  
49.9Ω  
C35, 39pF  
C36, 39pF  
C38, 1pF  
C37, 1pF  
R20  
R19  
510Ω  
1%  
C41  
1µF  
OPT  
C42  
V
V
CC4  
CC4  
R22  
10k  
1%  
510Ω  
2
3
2
1µF  
+
1%  
R21  
10k  
1%  
OPT  
1
1
U2-2  
LT1807  
U3-2  
LT1807  
C18  
C17  
R26  
49.9Ω  
R27  
49.9Ω  
1µF  
V3  
V1  
+
1µF  
R23  
10k  
1%  
LT5503  
R24  
10k  
1%  
3
C40  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
C39  
1
2
3
4
5
6
7
8
9
+
+
BQ  
BQ  
BI  
4.7µF  
4.7µF  
V2  
V4  
BI  
*C2  
J5  
*L2  
GC1  
MODRFOUT  
GC2  
*C3  
J2  
*L3  
*C23  
*L1  
*R1  
MODRFIN  
MODIN  
MODOUT  
R2  
47Ω  
*C10  
E1  
J3  
V
V
V
MOD  
V
VGA  
CC1  
CC  
CC  
CC  
V
CC1  
C20  
RF  
V
LO2  
V
1000pF  
CC  
CC2  
C14  
100pF  
*C4  
J6  
*L4  
LO2IN  
LO1IN  
LO1  
LO2  
C1  
2.2pF  
C19  
0.01µF  
C22  
1000pF  
*C7  
V
V
LO1  
CC2  
MODEN  
MIXEN  
CC  
C43  
8.2pF  
*C11  
E3  
R29  
10Ω  
DMODE  
C12  
1000pF  
V
CC3  
C24  
4.7µF  
C45  
0.1µF  
10  
+
MX  
MX  
GND  
21  
R5  
20k  
R4  
2.7k  
R6  
20k  
R7  
20k  
R8  
2.7k  
SW1  
*L6  
*L5  
1
12  
11  
10  
9
8
7
2
3
4
5
6
*Application Dependent Component Values  
1.2GHz Matching  
(Modulator Only) 1.9GHz Matching 2.4GHz Matching  
*C5  
*C6  
E2  
L1  
L2  
L3  
33nH  
12nH  
12nH  
39pF  
2.7pF  
n/a  
240  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
22nH  
5.6nH  
4.7nH  
15pF  
1.8pF  
1.5pF  
390Ω  
15pF  
1.8pF  
15pF  
2.2pF  
6.8nH  
5.6nH  
18nH  
2.7nH  
2.7nH  
8.2pF  
1.2pF  
1.5pF  
390Ω  
8.2pF  
2.2pF  
2.7pF  
1.2pF  
4.7nH  
2.2nH  
V
CC2  
C21  
C13  
0.01µF  
8.2pF  
4
1
2
3
5
C2, C3, C7  
C10  
C23  
R1  
C4  
C5, C6  
C9  
C11  
L4  
L5,L6  
T1  
J7  
*C9  
MIXER  
OUT  
T1  
5503 F07  
n/a  
LDB15C101A1900 LDB15C500A2400  
Figure 7. Evaluation Circuit Schematic for 1.2GHz, 1.9GHz and 2.4GHz Applications  
17  
LT5503  
W U U  
U
APPLICATIO S I FOR ATIO  
QIN  
IIN  
V
CC4  
GND  
V
CC1  
LT1807  
V1  
LT1807  
V4  
V3  
V2  
MODRFIN  
MODRFOUT  
LT5503  
IC  
LO1IN  
LO2IN  
1
2
3
4
5
6
GND  
V
CC2  
V
CC3  
5503 F08  
MIXRFOUT  
Figure 8. LT5503 Evaluation Board Layout  
18  
LT5503  
W U U  
APPLICATIO S I FOR ATIO  
U
+
POWER SUPPLY 4  
DUAL SIGNAL  
GENERATOR  
0°  
+
90°  
POWER SUPPLY 1  
QIN  
IIN  
V
CC4  
GND  
SPECTRUM  
ANALYZER  
LT1807  
V1  
LT1807  
V4  
MODRFIN  
V3  
V2  
MODRFOUT  
SIGNAL  
GENERATOR 1  
SIGNAL  
GENERATOR 1  
LT5503  
IC  
1
LO1IN  
LO2IN  
2
3
4
5
6
V
CC3  
V
GND  
CC2  
+
POWER SUPPLY 3  
+
MIXRFOUT  
POWER SUPPLY 2  
EXTERNAL 3dB  
ATTENUATOR PAD,  
OR 2.45GHz BPF  
5503 F09  
Figure 9. Test Set-Up for Upconverting Mixer and  
I/Q Modulator Transmit Chain Measurements.  
19  
LT5503  
U
PACKAGE DESCRIPTIO  
FE Package  
20-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
6.40 – 6.60*  
(.252 – .260)  
5.2  
(.205)  
20 1918 17 16 15 14 1312 11  
3.0  
(.118)  
6.25 – 6.50  
(.246 – .256)  
5
7
8
1
2
3
4
6
9 10  
1.15  
(.0453)  
MAX  
4.30 – 4.48**  
(.169 – .176)  
0° – 8°  
.65  
(.0256)  
BSC  
.50 – .70  
.105 – .180  
.05 – .15  
(.020 – .028)  
(.0041 – .0071)  
(.002 – .006)  
.18 – .26  
(.0071 – .0102)  
FE20 TSSOP 0501  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT5502  
400MHz Quadrature IF Demodulator with RSSI  
5503i LT/TP 1001 1.5K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 2001  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY