LT3420-1_15 [Linear]

Photoflash Capacitor Chargers with Automatic Refresh;
LT3420-1_15
型号: LT3420-1_15
厂家: Linear    Linear
描述:

Photoflash Capacitor Chargers with Automatic Refresh

文件: 总20页 (文件大小:252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3420/LT3420-1  
Photoflash Capacitor  
Chargers with Automatic Refresh  
U
FEATURES  
DESCRIPTIO  
The LT®3420/LT3420-1 charge high voltage photoflash  
capacitorsquicklyandefficiently. Designedforuseinboth  
digital and film cameras, these devices use a flyback  
topology to achieve efficiencies up to four times better  
than competing flash modules. A unique adaptive off-time  
control algorithm* maintains current-limited continuous  
mode transformer operation throughout the entire charge  
cycle, eliminating the high inrush current often found in  
modules.  
Charges 220µF to 320V in 3.7 Seconds  
from 5V (LT3420)  
Charges 100µF to 320V in 3.5 Seconds  
from 5V (LT3420-1)  
Charges Any Size Photoflash Capacitor  
Supports Operation from Two AA Cells or Any  
Supply from 1.8V to 16V  
Controlled Peak Switch Current: 1.4A (LT3420)  
1.0A (LT3420-1)  
Controlled Input Current: 840mA (LT3420)  
450mA (LT3420-1)  
The LT3420/LT3420-1 output voltage sensing scheme*  
monitors the flyback voltage to indirectly regulate the  
output voltage, eliminating an output resistor divider or  
discrete zener diode. This feature allows the capacitor to  
be held at a fully charged state without excessive power  
consumption. Automatic refresh (which can be defeated)  
allows the capacitor to remain charged while consuming  
an average input current of about 2mA, at a user-defined  
refresh rate. A logic high on the CHARGE pin initiates  
charging, while the DONE pin signals that the capacitor is  
fully charged.  
Uses Standard Transformers  
Efficient Flyback Operation (>75% Typical)  
Adjustable Output  
Automatic Refresh  
Charge Complete Indicator  
No High Voltage Zener Diode Required  
No Output Voltage Divider Required  
Small 10-Lead MSOP Package  
Small 10-Lead (3mm × 3mm) DFN Package  
U
The LT3420/LT3420-1 are available in 10-Lead MSOP and  
(3mm × 3mm) DFN packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners. *Protected by U.S. Patents  
including 6518733.  
APPLICATIO S  
Digital Camera Flash Unit  
Film Camera Flash Unit  
High Voltage Power Supplies  
U
TYPICAL APPLICATIO  
T1  
1:10  
T1  
1:12  
V
(3mm TALL)  
BAT  
V
BAT  
320V  
320V  
1.8V TO 6V  
INPUT CURRENT  
450mA  
1.8V TO 6V  
INPUT CURRENT  
350mA  
5
8
4
5,6  
C1  
4.7µF  
C1  
4.7µF  
D1  
D1  
3
6
3,4  
51.1k  
1
60.4k  
2
3
6
SW  
2
3
R
FB  
6
SW  
SEC  
C3  
100µF  
330V  
C3  
220µF  
330V  
V
R
BAT  
FB  
V
BAT  
+
+
4
V
7
4
CC  
V
CC  
7
V
SEC  
CC  
V
2.5V TO 6V  
CC  
C2  
2.5V TO 10V  
C2  
PHOTOFLASH  
CAPACITOR  
PHOTOFLASH  
CAPACITOR  
4.7µF  
LT3420-1  
4.7µF  
LT3420  
9
9
CHARGE  
DONE  
CHARGE  
DONE  
CHARGE  
DONE  
CHARGE  
DONE  
1
1
8
8
R
REF  
R
REF  
GND  
C
GND  
T
C
T
10  
5
10  
5
2k  
2k  
0.1µF  
0.1µF  
C1, C2: 4.7µF, X5R or X7R, 6.3V  
C3: RUBYCON 100µF PHOTOFLASH CAPACITOR  
T1: KIJIMA MUSEN SBL-5.6S-2  
D1: VISHAY GSD2004S SOT-23  
DUAL DIODE. DIODES CONNECTED IN SERIES  
C1, C2: 4.7µF, X5R or X7R, 10V  
C3: RUBYCON 220µF PHOTOFLASH CAPACITOR  
T1: TDK SRW10EPC-U01H003 FLYBACK TRANSFORMER  
D1: VISHAY GSD2004S SOT-23  
DUAL DIODE. DIODES CONNECTED IN SERIES  
DANGER HIGH VOLTAGE  
OPERATION BY HIGH VOLTAGE  
TRAINED PERSONNEL ONLY  
3420 F02  
3420 F01  
Figure 1. High Charge Rate LT3420 Photoflash Circuit  
Figure 2. Small Size LT3420-1 Photoflash Circuit  
3420fb  
1
LT3420/LT3420-1  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
DONE Voltage .......................................................... 16V  
Current into DONE Pin .......................................... ±1mA  
Maximum Junction Temperature .......................... 125°C  
Operating Ambient Temperature Range  
VCC Voltage .............................................................. 16V  
VBAT Voltage ............................................................ 16V  
SW Voltage (Note 2)  
LT3420 ................................................................ 38V  
LT3420-1............................................................ 50V  
SEC Current ...................................................... ±200mA  
(Note 3) .............................................. 40°C to 85°C  
Storage Temperature Range ................. 40°C to 125°C  
Lead Temperature (Soldering, 10 sec)  
R
FB Current........................................................... ±3mA  
(For MS Package only) ..................................... 300°C  
R
REF Voltage ........................................................... 2.5V  
CHARGE Voltage...................................................... 16V  
CT Voltage .............................................................. 1.5V  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NUMBER  
TOP VIEW  
R
V
1
2
3
4
5
10  
9
C
T
REF  
R
1
2
3
4
5
10 C  
T
REF  
BAT  
FB  
CHARGE  
DONE  
SEC  
LT3420EDD  
LT3420EDD-1  
BAT  
LT3420EMS  
LT3420EMS-1  
V
9
8
7
6
CHARGE  
DONE  
SEC  
R
11  
8
FB  
R
V
GND  
V
7
CC  
CC  
SW  
GND  
6
SW  
DD PART  
MARKING  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
MS PART MARKING  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 125°C, θJA = 100°C/W, θJC = 45°C/W  
LTYH  
LTAJG  
(4-LAYER BOARD)  
LBJW  
LBJX  
TJMAX = 125°C, θJA = 43°C/W, θJC = 3°C/W  
EXPOSED PAD IS GND (PIN 11)  
AND MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VBAT = 3.3V, VCHARGE = VCC unless otherwise noted. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2.5  
UNITS  
Minimum Operating Voltage, V  
2.2  
V
V
CC  
Maximum Operating Voltage, V  
16  
CC  
V
UVLO Hysteresis  
40  
mV  
V
CC  
Minimum V  
Voltage  
Voltage  
1.6  
1.8  
16  
BAT  
Maximum V  
V
BAT  
V
UVLO Hysteresis  
Threshold Voltage  
275  
mV  
BAT  
R
0.98  
0.975  
1.00  
1.02  
1.025  
V
V
REF  
R
Pin Bias Current  
V
V
= 0V, Switching  
2
4
µA  
REF  
RREF  
= V – 0.2V (Note 4)  
RFB  
BAT  
Quiescent Current  
V
V
= 1.1V, Not Switching  
90  
130  
1
µA  
µA  
RREF  
Quiescent Current in Shutdown  
= 0V, V = 3.3V  
0.01  
CHARGE  
IN  
3420fb  
2
LT3420/LT3420-1  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VBAT = 3.3V, VCHARGE = VCC unless otherwise noted. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Primary Side Current Limit  
LT3420 (Note 5)  
LT3420-1 (Note 5)  
1.20  
0.75  
1.4  
0.9  
1.60  
1.05  
A
A
Secondary Side Current Limit  
Leakage Blanking Pulse Width  
LT3420 (Note 5)  
LT3420-1 (Note 5)  
20  
5
40  
15  
50  
25  
mA  
mA  
LT3420  
LT3420-1  
200  
0
ns  
ns  
Refresh Timer Charge/Discharge Current  
Refresh Timer Upper Threshold  
Refresh Timer Lower Threshold  
V
= 0.75V  
1.5  
0.9  
2.5  
1.0  
0.5  
3.5  
1.1  
µA  
V
CT  
0.45  
0.55  
V
Switch V  
LT3420, SW = 1A (Note 5)  
LT3420-1, SW = 0.5A (Note 5)  
220  
130  
340  
230  
mV  
mV  
CESAT  
Switch Leakage Current  
V
= 38V (LT3420), V = 50V (LT3420-1)  
0.01  
1
µA  
V
SW  
SW  
CHARGE Input Voltage High  
CHARGE Input Voltage Low  
CHARGE Pin Bias Current  
1.5  
0.2  
V
V
V
= 3V  
= 0V  
4.5  
0.01  
15  
0.1  
µA  
µA  
CHARGE  
CHARGE  
DONE Output Signal High  
DONE Output Signal Low  
100k from V to DONE  
3.3  
V
CC  
33µA into DONE Pin  
100  
200  
mV  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls.  
Note 2: Rated breakdown with LT3420 in power delivery mode and power  
Note 4: Bias current flows out of R pin.  
FB  
switch off.  
Note 5: Current limit and V  
guaranteed by design and/or correlation  
CESAT  
Note 3: The LT3420/LT3420-1 are guaranteed to meet performance  
specifications from 0°C to 70°C. Specifications over the –40°C to 85°C  
to static test for DD package.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Graphs apply to both the LT3420 and LT3420-1 unless otherwise noted.  
Output Voltage in Refresh Mode,  
LT3420  
Output Voltage in Refresh Mode,  
LT3420  
Charge Time, LT3420  
335  
330  
325  
320  
315  
310  
305  
300  
295  
335  
330  
325  
320  
315  
310  
305  
300  
295  
10  
FIGURE 1 CIRCUIT  
UNLESS OTHERWISE  
NOTED.  
V
CHARGED  
OUT  
FROM  
50V TO 320V  
8
6
4
2
0
T
= 25°C  
A
C
= 220µF  
OUT  
C
= 100µF  
OUT  
FIGURE 1 CIRCUIT  
FIGURE 1 CIRCUIT  
V
V
T
= V  
CC  
BAT  
= 25°C  
IN  
V
V
= 3.3V  
= 3.3V  
= V  
IN  
CC  
BAT  
A
6
2
3
4
5
–25  
0
25  
50  
75  
125  
–50  
100  
3.0 3.5 4.0 4.5 5.0 5.5 6.0  
(V)  
2.5  
V
(V)  
TEMPERATURE (°C)  
V
IN  
BAT  
3420 G03  
3420 G01  
3420 G02  
3420fb  
3
LT3420/LT3420-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Graphs apply to both the LT3420 and LT3420-1 unless otherwise noted.  
Output Voltage in Refresh Mode,  
LT3420-1  
Output Voltage in Refresh Mode,  
LT3420-1  
Charge Time, LT3420-1  
335  
330  
325  
320  
315  
310  
305  
300  
295  
335  
330  
325  
320  
315  
310  
305  
300  
295  
10  
8
FIGURE 2 CIRCUIT  
CHARGED  
V
OUT  
FROM 50V TO 320V  
= 25°C  
T
A
6
C
= 100µF  
OUT  
4
C
= 40µF  
OUT  
FIGURE 2 CIRCUIT  
2
FIGURE 2 CIRCUIT  
V
V
A
= V  
CC  
BAT  
= 25°C  
IN  
V
V
= 3.3V  
BAT  
CC  
= V  
IN  
= 3.3V  
T
0
–25  
0
25  
50  
75  
125  
–50  
100  
3.0 3.5 4.0 4.5 5.0  
(V)  
6.0  
2.5  
5.5  
4
2
3
5
6
TEMPERATURE (°C)  
V
IN  
V
(V)  
BAT  
3420 G04  
3420 G05  
3420 G06  
Charge Pin Input Current  
Primary Current Limit, LT3420  
Secondary Current Limit, LT3420  
1.7  
1.5  
1.3  
1.1  
0.9  
60  
55  
50  
45  
40  
35  
30  
25  
20  
10  
8
T
= 25°C  
A
6
4
2
0
–50  
–25  
25  
50  
75  
100  
0
125  
–25  
0
25  
50  
75  
125  
6
–50  
100  
2
3
4
5
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CHARGE PIN VOLTAGE (V)  
3420 G08  
3420 G09  
3420 G07  
Efficiency of Figure 1 Circuit,  
LT3420  
Primary Current Limit, LT3420-1  
Secondary Current Limit, LT3420-1  
1.2  
1.1  
1.0  
0.9  
0.8  
90  
80  
70  
60  
50  
40  
35  
30  
25  
20  
15  
10  
5
T
= 25°C  
A
V
= 5V  
IN  
V
= 3.3V  
IN  
V
= V  
= V  
BAT IN  
CC  
–25  
25  
50  
75  
100  
–50  
50  
150  
250  
350  
0
125  
100  
200  
(V)  
300  
–25  
0
25  
50  
75  
125  
–50  
100  
TEMPERATURE (°C)  
V
TEMPERATURE (°C)  
OUT  
3420 G11  
3420 G10  
3420 G12  
3420fb  
4
LT3420/LT3420-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Graphs apply to both the LT3420 and LT3420-1 unless otherwise noted.  
Efficiency for Figure 2 Circuit,  
LT3420-1  
Input Current, LT3420  
Input Current, LT3420-1  
90  
80  
70  
60  
50  
40  
1000  
900  
800  
700  
600  
500  
600  
T
= 25°C  
FIGURE 1 CIRCUIT  
FIGURE 2 CIRCUIT  
A
V
T
= V  
= 3.3V  
V
T
= V  
= 3.3V  
CC  
A
BAT  
CC  
A
BAT  
= 25°C  
550  
500  
450  
400  
350  
300  
= 25°C  
V
= 5V  
IN  
V
= 3.3V  
IN  
V
= V  
= V  
BAT IN  
CC  
50  
150  
250  
350  
50  
150  
250  
350  
100  
200  
(V)  
300  
100  
200  
(V)  
300  
50  
150  
200  
(V)  
250  
300  
350  
100  
V
V
V
OUT  
OUT  
OUT  
3420 G13  
3420 G14  
3420 G15  
Quiescent Current in Refresh Mode  
V
CC Minimum Operating Voltage  
VBAT Minimum Operating Voltage  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
140  
120  
100  
80  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
ENABLE VOLTAGE  
IS HYSTERETIC  
T
= 25°C  
ENABLE VOLTAGE  
IS HYSTERETIC  
A
+
V
+
V
V
V
60  
–25  
0
25  
50  
75  
125  
–50  
100  
–25  
0
25  
50  
75  
125  
4.0  
5.5  
7.0  
(V)  
8.5  
–50  
100  
2.5  
10  
TEMPERATURE (°C)  
V
TEMPERATURE (°C)  
CC  
3420 G17  
3420 G16  
3420 G18  
3420fb  
5
LT3420/LT3420-1  
U
U
U
PI FU CTIO S  
RREF (Pin 1):Reference Resistor Pin. Place a resistor (R2)  
GND (Pin 5): Ground. Tie directly to local ground plane.  
from the RREF pin to GND. 2k is recommended.  
SW (Pin 6): Switch Pin. This is the collector of the internal  
NPN power switch. Minimize the metal trace area con-  
nected to this pin to minimize EMI.  
VBAT (Pin 2): Battery Voltage Input. This pin should be  
connected to the power supply or battery, which supplies  
power to transformer T1. Must be locally bypassed.  
SEC (Pin 7): Transformer Secondary Pin. Tie one end of  
the transformer secondary to this pin. Take care to use the  
correct phasing of the transformer (Refer to Figures 1  
and 2).  
RFB (Pin 3): Feedback Resistor Pin. Place a resistor (R1)  
from the SW pin to the RFB pin. Set R1 according to the  
following formula:  
DONE (Pin 8): Done Output Pin. Open collector NPN  
output. DONE is pulled low whenever the chip is delivering  
power to the output and goes high when power delivery  
stops.  
R2  
R1=  
R1=  
(1.4 •RSEC)+ N(VOUT + 2VD)  
(LT3420)  
[
]
N2  
R2  
N2  
(RSEC)+N(VOUT + 2V )  
(LT3420-1)  
[
]
D
CHARGE (Pin 9):Charge Pin. Drive CHARGE high (1.5V or  
more) to commence charging of the output capacitor.  
Drive to 0.2V or less to put the part in shutdown mode.  
VOUT : Desired Output Voltage  
N: Transformer Turns Ratio  
CT (Pin10):RefreshTimerCapacitorPin.Placeacapacitor  
from the CT pin to GND to set the refresh timer sample rate  
according to the following formula:  
RSEC: Transformer Secondary Resistance  
VD: Diode Forward Voltage Drop  
CT = 2.5 • 10–6 • tREFRESH  
R2: Resistor from the RREF Pin to GND. 2k is a Typical  
Choice  
tREFRESH: Desired Refresh Period in Seconds.  
VCC (Pin 4): Input Supply Pin. Must be locally bypassed  
with a 4.7µF or larger ceramic capacitor.  
EXPOSEDPAD(Pin11)(DDPackageonly):GND.Mustbe  
soldered to local ground plane on PCB.  
3420fb  
6
LT3420/LT3420-1  
W
BLOCK DIAGRA S  
T1  
1:12  
V
BAT  
V
OUT  
D1  
C1  
SECONDARY  
PRIMARY  
R1  
R2  
DONE  
8
SW  
R
FB  
V
BAT  
R
REF  
2
3
1
6
+
C4  
PHOTOFLASH  
CAPACITOR  
D3  
R
Q
Q1  
S
REFRESH  
TIMER  
10  
CT  
C3  
Q5  
Q3  
DRIVER  
A1  
+
ONE-  
SHOT  
Q2  
0.014  
20mV  
BLOCK  
ENABLE  
+
Q
Q
R
MASTER  
LATCH  
Q4  
5
7
+
+
S
GND  
SEC  
A3  
A2  
0.25Ω  
10mV  
1V  
REFERENCE  
+
ONE-  
9
4
CHARGE  
SHOT  
POWER DELIVERY BLOCK  
CHIP  
ENABLE  
V
CC  
V
CC  
LT3420  
C2  
3420 F03  
Figure 3. Block Diagram, LT3420  
T1  
1:10  
V
BAT  
V
OUT  
D1  
C1  
SECONDARY  
PRIMARY  
R1  
R2  
DONE  
SW  
R
FB  
V
BAT  
R
REF  
8
2
3
1
6
+
C4  
PHOTOFLASH  
CAPACITOR  
D3  
R
Q
Q1  
S
REFRESH  
TIMER  
10  
CT  
Q5  
Q3  
DRIVER  
A1  
C3  
+
ONE-  
SHOT  
Q2  
0.02  
20mV  
BLOCK  
ENABLE  
+
Q
Q
MASTER  
LATCH  
Q4  
5
7
+
+
R
S
GND  
SEC  
A3  
A2  
0.66Ω  
10mV  
1V  
REFERENCE  
+
ONE-  
9
4
CHARGE  
SHOT  
POWER DELIVERY BLOCK  
CHIP  
ENABLE  
V
V
CC  
CC  
LT3420-1  
C2  
3420 F04  
Figure 4. Block Diagram, LT3420-1  
3420fb  
7
LT3420/LT3420-1  
U
OPERATIO  
Overview  
(highlowhigh). The low to high transition on the  
CHARGE pin fires a one-shot that sets the master latch,  
putting the part in charging mode. Bringing CHARGE low  
puts the part in shutdown. The refresh timer can be  
programmed to wait indefinitely by simply grounding the  
CT pin. In this configuration, the LT3420 will only reenter  
the charging mode by toggling the CHARGE pin.  
The following text focuses on the operation of the LT3420.  
The operation of the LT3420-1 is nearly identical with the  
differences discussed at the end of this section.  
The LT3420 uses an adaptive on-time/off-time control  
scheme to provide excellent efficiency and precise control  
of switching currents. Please refer to Figure 3 for the fol-  
lowingoverviewofthepart’soperation.Atanygiveninstant, Power Delivery Block  
the master latch determines which mode the LT3420 is in:  
The power delivery block consists of all circuitry enclosed  
“charging” or “refresh”. In charging mode, the circuitry  
enclosed by the smaller dashed box is enabled, providing  
power to charge photoflash capacitor C1. The output volt-  
ageismonitoredviatheflybackpulseontheprimaryofthe  
transformer.Whenthetargetoutputvoltageisreached,the  
chargingmodeisterminatedandthepartenterstherefresh  
mode.Inrefreshmode,thepowerdeliveryblockisdisabled,  
reducing quiescent current, while the refresh timer is en-  
abled. The refresh timer simply generates a user program-  
mable delay, after which the part reenters the charging  
mode. Once in the charging mode, the LT3420 will again  
provide power to the output until the target voltage is  
reached.Figure5isanoscillographphotoshowingboththe  
initial charging of the photoflash capacitor and the subse-  
quent refresh action. The upper waveform is the output  
voltage. The middle waveform is the voltage on the CT pin.  
The lower waveform shows the input current. The mode of  
the part is indicated below the photo.  
by the smaller dashed box in Figure 3. This circuit block  
contains all elements needed for charging and output  
voltage detection. To better understand the circuit opera-  
tion, follow the subsequent description of one cycle of  
operation and refer to Figure 6. Assume that initially there  
is no current in the primary or secondary of the trans-  
former, so the output of comparator A1 is low, while that  
of A2 is high (note the small offset voltages at the inputs  
of A1 and A2). The SR latch is thus set and the power NPN  
switch, Q1, is turned on. Current increases linearly in the  
primaryofthetransformerataratedeterminedbytheVBAT  
voltage and the primary inductance of the transformer. As  
the current builds up, the voltage across the 14mΩ  
resistor increases. When this voltage exceeds the 20mV  
offset voltage of A1, the output of A1 goes high, resetting  
the SR latch and turning off Q1. The current needed to  
reset the latch is approximately 1.4A (~20mV/14m).  
When Q1 turns off, the secondary side current quickly  
jumps from zero current to the primary side current di-  
vided by N (the turns ratio of transformer T1). In this ex-  
ample, the peak secondary current is 116mA (1.4A/12).  
Diode D1 now conducts, providing power to the output.  
Since a positive voltage exists across the secondary wind-  
ing of the transformer, the secondary current decreases  
linearly at a rate determined by the secondary inductance  
andtheoutputvoltage(neglectingthediodevoltagedrop).  
When the secondary side current drops below 40mA  
(10mV/0.25), the output of A2 goes high, setting the SR  
latch and turning on Q1. The initial primary current is sim-  
ply the minimum secondary current times N, in this case  
0.48A (40mA • 12) . Q1 will now remain on until the pri-  
mary current again reaches 1.4A. This cycle of operation  
repeatsitself, automaticallyadjustingtheOnandOfftimes  
The user can defeat the refresh timer and force the part  
into charging mode by toggling the CHARGE pin  
V
OUT  
100V/DIV  
V
CT  
1V/DIV  
I
IN  
1A/DIV  
MODE  
REFRESH  
SHUTDOWN CHARGING  
1s/DIV  
3420 F05  
Figure 5. Demonstrating 3 Operating Modes of LT3420:  
Shutdown, Charging and Refresh of Photoflash Capacitor  
3420fb  
8
LT3420/LT3420-1  
U
OPERATIO  
I
I
SW  
SW  
1A/DIV  
1A/DIV  
I
I
SEC  
SEC  
200mA/DIV  
200mA/DIV  
V
V
SW  
SW  
20V/DIV  
20V/DIV  
3420 F06a  
3420 F06b  
2µs/DIV  
2µs/DIV  
Figure 6a. Switching Waveforms with  
VOUT = 100V, VCC = VBAT = 3.3V  
Figure 6b. Switching Waveforms with  
VOUT = 300V, VCC = VBAT = 3.3V  
of Q1 so that the peak current of Q1 is 1.4A and the mini-  
mum secondary current is 40mA (typical values).  
C3, from its initial voltage towards 1V. When the voltage  
onC3reaches1V,thepolarityofthecurrentsourcechanges  
and2.5µAdischargesC3. WhenthevoltageonC3reaches  
0.5V,therefreshtimersendsasetpulsetothemasterlatch,  
which puts the LT3420 into the charging mode.  
The previously described charging cycle must be halted  
when the output voltage reaches the desired value. The  
LT3420 monitors the output voltage via the flyback pulse  
on the SW pin. When Q1 turns off, the secondary side  
conducts current turning on diode D1. Since the diode is  
conductingandtheSECpinisatnearlyground,thevoltage  
across the secondary is nearly equal to VOUT. The voltage  
across the primary is therefore close to VOUT/N. A current  
proportional to VOUT/N flows through R1 and into the RFB  
pin. The current flows out of the RREF pin through a resis-  
tor creating a ground referred voltage. When this voltage  
exceeds an internal 1V reference voltage, the output of  
comparatorA3goeshighwhichresetsthemasterlatch.The  
Q output of the master latch goes low, disabling the entire  
power delivery block and enabling the refresh timer.  
Interface/Control  
The CHARGE pin serves two functions. The first is to  
enable or shutdown the part depending on the level of the  
pin (high = enable, low =shutdown). The second is to  
force the part into the charging mode (lowhigh transi-  
tion). The LT3420 also has a DONE pin, which signals  
whether or not the part is done charging the photoflash  
capacitor. The DONE pin is an open collector NPN switch  
(Q5) so an external pull-up resistor is needed. Whenever  
the part is in charging mode, DONE will be low. DONE will  
go high when the charging mode is complete. Both the  
CHARGE and DONE pins can be easily interfaced to a  
microprocessor in a digital or film camera.  
Leakage Spike Blanking  
Another function of the LT3420 is leakage spike blanking  
when the power switch, Q1, turns off. Right after Q1 turns  
off, a one-shot turns on Q2 for 200ns (typ). With Q2 on,  
comparator A3 is disabled. This function may prevent A3  
from false tripping on the leakage inductance spike on the  
SW pin. In practice, the PNP transistor Q3 filters out the  
leakage spike.  
LT3420-1 Differences  
The LT3420-1 has different primary and secondary cur-  
rent limit levels. The primary current limit level of the  
LT3420-1 is 1A (typ) and the secondary current limit is  
15mA (typ). The LT3420-1 has no leakage spike blanking  
which causes no problems since the PNP transistor, Q3,  
providesadequatefiltering.Finally,thebreakdownvoltage  
of the SW pin of the LT3420-1 is higher at 50V.  
Refresh Timer  
When the refresh timer is enabled, a 2.5µA current source  
is switched on, charging up the external timing capacitor,  
3420fb  
9
LT3420/LT3420-1  
W U U  
U
APPLICATIO S I FOR ATIO  
COMPONENT SELECTION  
Transformer Primary Inductance  
A flyback transformer needs to store substantial amounts  
of energy in the core during each switching cycle. The  
transformer, therefore, will generally require an air gap.  
The use of an air gap in the core makes the energy storage  
ability, or inductance, much more stable with temperature  
and variations in the core material. Most core manufactur-  
ers will supply standard sizes of air gaps with a given type  
of core, resulting in different AL values. AL is the induc-  
tance of a particular core per square turns of winding. To  
get a certain inductance, simply divide the desired induc-  
tance by the AL value and take the square root of the result  
to find the number of turns needed on the primary of the  
transformer.  
Choosing the Right Transformer  
The flyback transformer plays a key role in any LT3420/  
LT3420-1 application. A poorly designed transformer can  
result in inefficient operation. Linear Technology Corpora-  
tionhasworkedwithanumberoftransformermanufactur-  
ers to develop specific transformers for use with the  
LT3420/LT3420-1. These predesigned transformers are  
sufficient for a large majority of the applications that may  
be encountered. In some cases, the reader may choose to  
designhisowntransformerormaysimplybecuriousabout  
the issues involved in designing the transformer. The fol-  
lowing is a brief discussion of the issues relating to trans-  
former design.  
The LT3420/LT3420-1 detect the output voltage via the  
flyback pulse on the SW pin. Since this can only occur  
while the power switch is off, an important criteria is that  
the value of the primary inductance of the transformer be  
larger than a certain minimum value. The switch off time  
should be 500ns or larger for the LT3420 and 350ns or  
larger for the LT3420-1. The minimum inductance can be  
calculated with the following formula:  
Transformer Turns Ratio  
The turns ratio for the transformer, N, should be high  
enough so that the absolute maximum voltage rating for  
the NPN power switch is not exceeded. When the power  
switch turns off, the voltage on the collector of the switch  
(SW Pin) will “fly” up to the output voltage divided by N  
plus the battery voltage (neglecting the voltage drop  
across the rectifying diodes). This voltage should not  
exceed the 38V (LT3420) or 50V (LT3420-1) breakdown  
rating of the power switch.  
500 10–9 VOUT  
N (1.4 – 0.04N)  
350 10–9 VOUT  
N (1.0 – 0.015N)  
LPRI  
LPRI  
(LT3420)  
(LT3420 1)  
Choose the minimum N by the following formula.  
VOUT  
38 – VBAT  
VOUT  
VOUT: Target Output Voltage  
N: Transformer Turns Ratio  
NMIN  
NMIN  
(LT3420)  
(LT3420 1)  
Transformer Leakage Inductance  
50 – VBAT  
The leakage inductance of the transformer must be care-  
fully minimized for both proper and efficient operation of  
thepart.TheDCvoltageratingoftheSWpinontheLT3420  
is 38V while on the LT3420-1 it is 50V. These ratings are  
for DC blocking voltages only and additional precautions  
For an LT3420 design, a 5V battery voltage and a 330V  
outputresultsinaNMINof10soaturnsratioof10orgreater  
should be used.  
3420fb  
10  
LT3420/LT3420-1  
W U U  
APPLICATIO S I FOR ATIO  
U
must be taken into account for the dynamic blocking  
voltagecapabilitiesoftheLT3420/LT3420-1.Thedynamic  
blocking voltage capability of both parts is 38V.  
Note also the magnitude of the initial current spike in the  
primary of the transformer labeled “C” when the power  
switch turns on. If the leakage inductance is lowered to a  
verylowlevel, theinternalcapacitancesofthetransformer  
will be high. This will result in the initial spike of current in  
the primary becoming excessively high. The level of “C”  
should be kept to 4A or less in a typical design for both the  
LT3420andLT3420-1. Pleasenotethatbyinsertingaloop  
of wire in the primary to measure the primary current, the  
leakage inductance of the primary will be made artificially  
high. This may result in erroneous voltage measurements  
on the SW pin.  
Table1summarizesthevariousbreakdownvoltagesofthe  
SW pin for both parts.  
Table 1. SW Pin Voltage Ratings  
PART  
SW PIN DC RATING  
SW PIN DYNAMIC RATING  
LT3420  
LT3420-1  
38V  
50V  
38V  
38V  
Figure 7 shows what to examine in a new transformer  
design to determine if the specifications for the SW pin are  
met.  
The measurements shown in Figure 7 should be made  
with both VOUT and VBAT at the maximum levels for the  
given application. This results in the highest voltage and  
current stress on the SW pin.  
The first leakage inductance spike labeled “A” must not  
exceed the dynamic rating of the SW pin. If it does exceed  
the rating, then the transformer leakage inductance must  
be lowered. The flyback waveform after the initial spike  
labeled “B” must not exceed the DC rating of the SW pin.  
If it does exceed the rating, then the turns ratio of the  
transformermustbelowered. Inmeasuringthevoltageon  
the SW pin, care must be taken in minimizing the ground  
loop of the voltage probe. Careless probing will result in  
inaccurate readings.  
Transformer Secondary Capacitance  
The total capacitance of the secondary should be mini-  
mizedforbothefficientandproperoperationoftheLT3420/  
LT3420-1. Since the secondary of the transformer under-  
goes large voltage swings (approaching 600VP-P), any  
capacitance on the secondary can severely affect the  
MUST BE LESS THAN 4A  
FOR BOTH THE LT3420  
AND LT3420-1  
“C”  
I
PRI  
0A  
MUST BE LESS THAN 38V  
FOR THE LT3420  
MUST BE LESS THAN 50V  
FOR THE LT3420-1  
“B”  
“A”  
MUST BE LESS THAN 38V  
FOR BOTH THE LT3420  
AND LT3420-1  
V
SW  
0V  
3420 F07  
Figure 7. New Transformer Design Check (Not to Scale)  
3420fb  
11  
LT3420/LT3420-1  
U
W U U  
APPLICATIO S I FOR ATIO  
efficiency of the circuit. In addition, the effective capaci-  
tance on the primary is largely dominated by the actual  
secondary capacitance. This is simply a result of any  
secondary capacitance being multiplied by N2 when re-  
flected to the primary. Since N is generally 10 or higher, a  
small capacitance of 10pF on the secondary is 100 times  
larger, or 1.0nF, on the primary. This capacitance forms a  
resonantcircuitwiththeprimaryleakageinductanceofthe  
transformer. As such, both the primary leakage induc-  
tance and secondary side capacitance should be mini-  
mized.  
DIODE SELECTION  
The rectifying diode(s) should be low capacitance type  
with sufficient reverse voltage and forward current rat-  
ings. The peak reverse voltage that the diode(s) will see is  
approximately:  
VPK-R VOUT +(N • VBAT) 1.65  
(
)
The peak current of the diode is simply:  
1.4A  
N
1.0A  
N
IPK-SEC  
IPK-SEC  
=
=
(LT3420)  
Table 2 shows various predesigned transformers along  
with relevant parameters. Contact the individual trans-  
former manufacturer for additional information or  
customization.  
(LT3420 1)  
For the circuit of Figure 1 with VBAT of 3.3V, VPK-R is 590V  
and IPK-SEC is 116mA. Table 3 shows various diodes that  
canworkwiththeLT3420/LT3420-1.Thesearechosenfor  
low capacitance and high reverse blocking voltage. Use  
theappropriatenumberofdiodestoachievethenecessary  
reverse breakdown voltage.  
Table 2a. Predesigned Transformers, LT3420  
TURNS  
L
SIZE  
PART  
RATIO (µH) LxWxH (mm) VENDOR  
SRW10EPC  
-U01H003  
1:12  
1:12  
1:12  
24 10.9x10.8x5.2 TDK  
(847) 803-6100  
www.components.tdk.com  
6375-T108  
SBL-6.4  
15 10.8x9.5x3.6 Sumida  
Table 3  
(847) 956-0666  
www.sumida.com  
MAX REVERSE CAPACITANCE  
VOLTAGE (V)  
PART  
(pF)  
VENDOR  
17.5 10.3x6.4x5.2 Kijima Musen  
852-2489-8266  
GSD2004S  
(Dual diode)  
2x300  
5
Vishay  
(402) 563-6866  
www.vishay.com  
kijimahk@netvigator.com  
BAS21  
250  
1.5  
5
Philips Semiconductor  
(800) 234-7381  
Table 2b. Predesigned Transformers, LT3420-1  
(Single diode)  
TURNS  
L
SIZE  
www.philips.com  
PART  
RATIO (µH) LxWxH (mm) VENDOR  
MMBD3004S  
2x300  
Diodes Inc.  
(805) 446-4800  
www.diodes.com  
SBL-5.6S-2  
1:10  
15  
5.6x8.5x3.0 Kijima Musen  
852-2489-8266  
kijimahk@netvigator.com  
LDT565630T 1:10.2 14.5 5.8x5.8x3.0 TDK  
-002  
(847) 803-6100  
www.components.tdk.com  
3420fb  
12  
LT3420/LT3420-1  
W U U  
APPLICATIO S I FOR ATIO  
U
CAPACITOR SELECTION  
and significant voltage coefficients. A much more accu-  
rate, and easier, method is to measure the efficiency as a  
function of the output voltage. In place of the photoflash  
capacitor, use a smaller, high quality capacitor, reducing  
errorsassociatedwiththenon-idealphotoflashcapacitor.  
Using an adjustable load, the output voltage can be set  
anywhere between ground and the maximum output  
voltage. The efficiency is measured as the output power  
(VOUT • IOUT) divided by the input power (VIN • IIN). This  
method also provides a good means to compare various  
charging circuits since it removes the variability of the  
photoflash capacitor from the measurement. The total  
efficiencyofthecircuit,charginganidealcapacitor,would  
bethetimeaverageofthegivenefficiencycurve,overtime  
as VOUT changes.  
The VBAT and VCC decoupling capacitors should be multi-  
layerceramictypewithX5RorX7Rdielectric. Thisinsures  
adequate decoupling across wide ambient temperature  
ranges. A good quality ceramic capacitor is also recom-  
mended for the timing capacitor on the CT pin. Avoid Y5V  
or Z5U dielectrics.  
Selectively Disabling the LT3420/LT3420-1  
The LT3420/LT3420-1 can be disabled at any time, even  
duringthechargephase. Thismaybeusefulwhenadigital  
camera enters a sensitive data acquisition phase. Figure 8  
illustrates this feature. Midway through the charge cycle,  
the CHARGE pin is brought low, which disables the part.  
Afterthesensitivedataoperationiscomplete,theCHARGE  
pin is brought high and the charging operation continues.  
Adjustable Input Current  
With many types of modern batteries, the maximum  
allowable current that can be drawn from the battery is  
limited. This is generally accomplished by active circuitry  
or a polyfuse. Different parts of a digital camera may  
require high currents during certain phases of operation  
and very little at other times. A photoflash charging circuit  
should be able to adapt to these varying currents by  
drawing more current when the rest of the camera is  
drawing less, and vice-versa. This helps to reduce the  
chargetimeofthephotoflashcapacitor,whileavoidingthe  
Measuring Efficiency  
Measuring the efficiency of a circuit designed to charge  
large capacitive loads is a difficult issue, particularly with  
photoflash capacitors. The ideal way to measure the  
efficiency of a capacitor charging circuit would be to find  
the energy delivered to the output capacitor (0.5 • C • V2)  
and divide it by the total input energy. This method does  
not work well here because photoflash capacitors are far  
from ideal. Among other things, they have relatively high  
leakage currents, large amounts of dielectric absorption,  
V
OUT  
50V/DIV  
CHARGE  
NO  
CHARGE  
5V/  
DIV  
V
CHARGE  
3420 F08  
0.5s/DIV  
Figure 8. Halting the Charge Cycle at Any Time  
3420fb  
13  
LT3420/LT3420-1  
W U U  
U
APPLICATIO S I FOR ATIO  
risk of drawing too much current from the battery. The  
input current to the LT3420/LT3420-1 circuit can be  
adjusted by driving the CHARGE pin with a PWM (pulse  
width modulation) signal. The microprocessor can adjust  
the duty cycle of the PWM signal to achieve the desired  
level of input current. Many schemes exist to achieve this  
function. Once the target output voltage is reached, the  
PWM signal should be halted to avoid overcharging the  
photoflash capacitor, since the signal at the CHARGE pin  
overrides the refresh timer.  
1kHz. When ON is logic high, the circuit is enabled and the  
CHARGE pin is driven by the PWM signal. When the target  
output voltage is reached, DONE goes high while CHARGE  
is also high. The output of A1 goes high, which forces  
CHARGE high regardless of the PWM signal. The part is  
now in the Refresh mode. Once the refresh period is over,  
the DONE pin goes low, allowing the PWM signal to drive  
the CHARGE pin once again. This function can be easily  
implemented in a microcontroller. Figure 10 shows the  
input current for the LT3420 and LT3420-1 as the duty  
cycle of the PWM signal is varied.  
A simple method to achieve adjustable input current is  
shown in Figure 9. The PWM signal has a frequency of  
DONE  
CHARGE  
A1  
1kHz PWM  
SIGNAL  
A2  
TO  
LT3420  
A3  
CIRCUIT  
3420 F09  
ON  
Figure 9. Simple Logic for Adjustable Input Current  
800  
600  
LT3420  
400  
LT3420-1  
200  
0
10  
30  
50  
70  
90  
DUTY CYCLE (%)  
3420 F10  
Figure 10. Input Current as Duty Cycle is Varied  
3420fb  
14  
LT3420/LT3420-1  
W U U  
APPLICATIO S I FOR ATIO  
U
BOARD LAYOUT  
necessary to meet the breakdown specifications for the  
circuit board. If the Photoflash capacitor is placed far  
from the LT3420/LT3420-1 circuit, place a small (20nF-  
50nF) ceramic capacitor with sufficient voltage rating  
close to the part. This insures adequate bypassing.  
Remember that LETHAL VOLTAGES ARE PRESENT in  
this circuit. Use caution when working with the circuit.  
The high voltage operation of the LT3420/LT3420-1  
demands careful attention to board layout. You will not  
get advertised performance with careless layout. Fig-  
ures 11 and 12 show the recommended component  
placement. Keep the area for the high voltage end of the  
secondary as small as possible. Note the larger than  
minimum spacing for all high voltage nodes. This is  
CHARGE DONE  
R2  
C3  
PHOTOFLASH  
CAPACITOR  
V
CC  
+
C2  
R1  
T1  
GND  
C1  
V
OUT  
D1B  
D1A  
V
BAT  
3420 F11  
Figure 11. Suggested Layout (MS10 Package)  
CHARGE DONE  
R2  
C3  
PHOTOFLASH  
CAPACITOR  
V
CC  
+
C2  
R1  
T1  
GND  
C1  
V
OUT  
D1B  
D1A  
V
BAT  
3420 F12  
Figure 12. Suggested Layout (DD Package)  
3420fb  
15  
LT3420/LT3420-1  
U
TYPICAL APPLICATIO S  
Professional Charger uses Multiple LT3420 Circuits in Parallel to Charge Large Photoflash Capacitors Quickly  
D1  
V
BAT  
320V  
1.8V TO 6V  
5, 6  
8
C1  
4.7µF  
+
650µF*  
350V  
PHOTOFLASH  
CAPACITOR  
T1  
1:12  
3, 4  
R1  
1
DANGER HIGH VOLTAGE  
OPERATION BY HIGH VOLTAGE  
TRAINED PERSONEL ONLY  
52.3k  
2
3
6
V
R
FB  
SW  
BAT  
V
4
CC  
7
V
SEC  
CC  
2.5V TO 10V  
C2  
MASTER  
4.7µF  
9
LT3420  
CHARGER  
CHARGE  
CHARGE  
DONE  
1
8
R
REF  
GND  
C
T
R2  
2k  
10  
5
C3  
0.1µF  
D2  
V
BAT  
8
C4  
5, 6  
4.7µF  
T2  
1:12  
3, 4  
2
3
6
1
7
V
R
SW  
BAT  
FB  
4
V
V
SEC  
CC  
CC  
C5  
R3  
R4  
4.7µF  
9
SLAVE**  
LT3420  
100k 100k  
CHARGER  
CHARGE  
DONE  
1
8
R
REF  
GND  
C
T
Q1  
2N3904  
10  
5
D3  
V
BAT  
5, 6  
8
T3  
1:12  
C6  
4.7µF  
3, 4  
2
3
6
1
7
V
R
SW  
BAT  
FB  
4
V
V
SEC  
CC  
CC  
C7  
4.7µF  
SLAVE**  
CHARGER  
LT3420  
9
CHARGE  
DONE  
C1, C2, C4, C5, C6, C7: 4.7µF, X5R or X7R, 10V  
T1-T3: TDK SRW10EPC-U01H003 FLYBACK TRANSFORMER  
D1-D3: VISHAY GSD2004S SOT-23  
1
8
R
REF  
GND  
C
T
DUAL DIODE. DIODES CONNECTED IN SERIES  
Q1: 2N3904 OR EQUIVALENT  
10  
5
*
CAN CHARGE ANY SIZE PHOTOFLASH CAPACITOR  
3420 TA01  
** USE AS MANY SLAVE CHARGERS AS NEEDED.  
3420fb  
16  
LT3420/LT3420-1  
U
TYPICAL APPLICATIO S  
LT3420 Photoflash Charging Circuit Uses Small Transformer  
DANGER HIGH VOLTAGE  
OPERATION BY HIGH VOLTAGE  
TRAINED PERSONEL ONLY  
T1*  
1:12  
V
BAT  
300V  
1.8V TO 5V  
3
5
1
C1  
D1  
4.7µF  
2
R1  
47.5k  
3
2
6
C4  
220µF  
330V  
V
R
SW  
BAT  
FB  
+
4
V
7
CC  
V
SEC  
CC  
2.5V TO 10V  
C2  
PHOTOFLASH  
CAPACITOR  
4.7µF  
LT3420  
9
CHARGE  
DONE  
CHARGE  
DONE  
1
8
R
REF  
GND  
C
T
10  
5
R2  
2k  
C3  
0.1µF  
C1: 4.7µF, X5R or X7R, 6.3V  
C2: 4.7µF, X5R or X7R, 10V  
C4: RUBYCON 220µF PHOTOFLASH CAPACITOR  
D1: VISHAY GSD2004S SOT-23  
3420 TA02  
DUAL DIODE. DIODES CONNECTED IN SERIES  
T1: KIJIMA MUSEN SBL-6.4  
* MAXIMUM AMBIENT TEMPERATURE OF 60°C DICTATED BY TRANSFORMER  
Efficiency  
90  
V
= V  
= V  
BAT IN  
CC  
80  
70  
60  
50  
40  
V
= 5V  
IN  
V
= 3.3V  
IN  
50  
150  
200  
(V)  
250  
300  
350  
100  
V
OUT  
3420 TA03  
3420fb  
17  
LT3420/LT3420-1  
U
PACKAGE DESCRIPTIO  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
0.889  
(.035  
±
±
0.127  
.005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
0.50  
(.0197)  
BSC  
0.305  
±
±
0.038  
(.0120  
.0015)  
10 9  
8
7 6  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4 5  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
MSOP (MS) 0603  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3420fb  
18  
LT3420/LT3420-1  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
R = 0.115  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.38 ± 0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
(DD10) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3420fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT3420/LT3420-1  
U
TYPICAL APPLICATIO  
LT3420-1 Photoflash Circuit Uses Tiny (3mm Tall) Transformer  
T1  
1:10.2  
V
BAT  
320V  
1.8V TO 6V  
4
1
5
C1  
4.7µF  
D1  
Charge Time  
8
10  
8
V
CHARGED  
OUT  
DANGER HIGH VOLTAGE  
OPERATION BY HIGH VOLTAGE  
TRAINED PERSONEL ONLY  
FROM 50V TO 320V  
60.4k  
2
3
6
SW  
C3  
100µF  
330V  
V
R
BAT  
FB  
+
4
V
7
CC  
6
V
SEC  
CC  
2.5V TO 6V  
C2  
C
= 100µF  
OUT  
PHOTOFLASH  
CAPACITOR  
4.7µF  
LT3420-1  
9
4
CHARGE  
DONE  
CHARGE  
DONE  
1
8
R
REF  
C
= 40µF  
OUT  
GND  
C
2
T
10  
5
2k  
0.1µF  
0
4
2
3
5
6
C1, C2: 4.7µF, X5R or X7R, 6.3V  
V
(V)  
3420 TA04  
BAT  
C3: RUBYCON 100µF PHOTOFLASH CAPACITOR  
T1: TDK LDT565630T-002 FLYBACK TRANSFORMER  
D1: VISHAY GSD2004S SOT-23  
3420 TA05  
DUAL DIODE. DIODES CONNECTED IN SERIES  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC®3400/LTC3400B 600mA (I ), 1.2MHz, Synchronous Step-Up  
V
I
= 0.85V to 5V, V  
= 5V, I = 19µA/300µA,  
SW  
IN  
OUT(MAX) Q  
DC/DC Converters  
= <1µA, ThinSOTTM Package  
SD  
LTC3401/LTC3402  
LTC3405/LTC3405A  
LTC3406/LTC3406B  
LTC3407  
1A/2A (I ), 3MHz, Synchronous Step-Up  
DC/DC Converters  
V
= 0.5V to 5V, V  
= 6V, I = 38µA, I = <1µA,  
SW  
IN  
OUT(MAX) Q SD  
MS Package  
300mA (I ), 1.5MHz, Synchronous Step-Down  
95% Efficiency, V = 2.7V to 6V, V  
= 0.8V , I = 20µA,  
Q
OUT  
IN  
OUT(MIN)  
DC/DC Converters  
I
= <1µA, ThinSOT Package  
SD  
600mA (I ), 1.5MHz, Synchronous Step-Down  
95% Efficiency, V = 2.5V to 5.5V, V  
= 0.6V, I = 20µA,  
Q
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
DC/DC Converters  
I
= <1µA, ThinSOT Package  
SD  
Dual 600mA (I ), 1.5MHz, Synchronous Step-Down  
95% Efficiency, V = 2.5V to 5.5V, V  
= 0.6V, I = 40µA,  
Q
OUT  
IN  
DC/DC Converter  
I
= <1µA, ThinSOT Package  
SD  
LTC3411  
1.25A (I ), 4MHz, Synchronous Step-Down  
95% Efficiency, V = 2.5V to 5.5V, V  
= 0.8V, I = 60µA,  
Q
OUT  
IN  
DC/DC Converter  
I
= <1µA, MS Package  
SD  
LTC3425  
5A (I ), 8MHz, Multiphase Synchronous Step-Up  
95% Efficiency, V = 0.5V to 4.5V, V  
= 5.25V, I = 12µA,  
Q
SW  
IN  
DC/DC Converter  
I
= <1µA, QFN Package  
SD  
LTC3440/LTC3441  
LT3464  
600mA/1A (I ), 2MHz/1MHz, Synchronous Buck-Boost  
95% Efficiency, V = 2.5V to 5.5V, V  
= 2.5V, I = 25µA,  
Q
OUT  
IN  
DC/DC Converters  
I
= <1µA, MS Package  
SD  
85mA (I ), Constant Off-Time, High Efficiency  
V
= 2.3V to 10V, V  
= 34V, I = 25µA, I = <0.5µA,  
Q SD  
SW  
IN  
OUT(MAX)  
Step-Up DC/DC Converter with Integrated Schottky  
ThinSOT Package  
and Output Disconnect  
LTC3467  
1.1A (I ), 1.3MHz, High Efficiency Step-Up  
DC/DC Converter  
V
= 2.4V to 16V, V  
= 40V, I = 1.2mA, I = <1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
ThinSOT Package  
LTC3468/LTC3468-1/ Photoflash Capacitor Charger in ThinSOT  
LTC3468-2  
Fast Photoflash Charge Times; 4.6sec for LT3468, 5.5sec for  
LT3468-1, 5.7sec for LT3468-2  
ThinsSOT is a trademark of Linear Technology Corporation.  
3420fb  
LT/LT 0305 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LT3420EDD

LT3420 - Photoflash Capacitor Chargers with Automatic Refresh; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3420EDD#PBF

LT3420 - Photoflash Capacitor Chargers with Automatic Refresh; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3420EDD#TR

LT3420 - Photoflash Capacitor Chargers with Automatic Refresh; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3420EDD#TRPBF

LT3420 - Photoflash Capacitor Chargers with Automatic Refresh; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3420EDD-1

LT3420 - Photoflash Capacitor Chargers with Automatic Refresh; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3420EDD-1#PBF

LT3420 - Photoflash Capacitor Chargers with Automatic Refresh; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3420EDD-1#TRPBF

LT3420 - Photoflash Capacitor Chargers with Automatic Refresh; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3420EMS

Photoflash Capacitor Chargers with Automatic Refresh
Linear

LT3420EMS#PBF

LT3420 - Photoflash Capacitor Chargers with Automatic Refresh; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3420EMS#TR

LT3420 - Photoflash Capacitor Chargers with Automatic Refresh; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3420EMS#TRPBF

LT3420 - Photoflash Capacitor Chargers with Automatic Refresh; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3420EMS-1

Photoflash Capacitor Chargers with Automatic Refresh
Linear