LT1761ES5-1.2#TRM [Linear]

暂无描述;
LT1761ES5-1.2#TRM
型号: LT1761ES5-1.2#TRM
厂家: Linear    Linear
描述:

暂无描述

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总20页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1761 Series  
100mA, Low Noise,  
LDO Micropower  
Regulators in SOT-23  
U
FEATURES  
DESCRIPTIO  
The LT®1761 series are micropower, low noise, low  
dropout regulators. With an external 0.01μF bypass  
capacitor, output noise drops to 20μVRMS over a 10Hz to  
100kHz bandwidth. Designed for use in battery-powered  
systems, the low 20μA quiescent current makes them an  
ideal choice. In shutdown, quiescent current drops to less  
than 0.1μA. The devices are capable of operating over an  
input voltage from 1.8V to 20V, and can supply 100mA of  
output current with a dropout voltage of 300mV. Quies-  
cent current is well controlled, not rising in dropout as it  
does with many other regulators.  
Low Noise: 20μVRMS (10Hz to 100kHz)  
Low Quiescent Current: 20μA  
Wide Input Voltage Range: 1.8V to 20V  
Output Current: 100mA  
Very Low Shutdown Current: < 0.1μA  
Low Dropout Voltage: 300mV at 100mA  
Fixed Output Voltages: 1.2V, 1.5V, 1.8V, 2V, 2.5V,  
2.8V, 3V, 3.3V, 5V  
Adjustable Output from 1.22V to 20V  
Stable with 1μF Output Capacitor  
Stable with Aluminum, Tantalum or  
Ceramic Capacitors  
The LT1761 regulators are stable with output capacitors  
as low as 1μF. Small ceramic capacitors can be used  
without the series resistance required by other regulators.  
Reverse Battery Protected  
No Reverse Current  
No Protection Diodes Needed  
Overcurrent and Overtemperature Protected  
Available in TinyU5-Lead SOT-23 Package  
Internal protection circuitry includes reverse battery pro-  
tection, current limiting, thermal limiting and reverse  
current protection. The device is available in fixed output  
voltages of 1.2V, 1.5V, 1.8V, 2V, 2.5V, 2.8V, 3V, 3.3V and  
5V, and as an adjustable device with a 1.22V reference  
voltage. The LT1761 regulators are available in the 5-lead  
SOT-23 package.  
APPLICATIO S  
Cellular Phones  
Pagers  
Battery-Powered Systems  
Frequency Synthesizers  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Wireless Modems  
U
TYPICAL APPLICATIO  
10Hz to 100kHz Output Noise  
5V Low Noise Regulator  
5V AT100mA  
20μV NOISE  
10μF  
IN  
OUT  
BYP  
V
RMS  
IN  
+
5.4V TO  
20V  
1μF  
0.01μF  
V
LT1761-5  
OUT  
20μV  
RMS  
100μV/DIV  
SHDN  
GND  
1761 TA01  
1761 G48  
1761sfc  
1
LT1761 Series  
ABSOLUTE AXI U RATI GS  
W W U W  
(Note 1)  
IN Pin Voltage........................................................ 20V  
OUT Pin Voltage .................................................... 20V  
Input to Output Differential Voltage ....................... 20V  
ADJ Pin Voltage ...................................................... 7V  
BYP Pin Voltage.................................................... 0.6V  
SHDN Pin Voltage................................................. 20V  
Output Short-Circuit Duration......................... Indefinite  
Operating Junction Temperature Range  
E Grade (Note 2)............................... 40°C to 125°C  
MP Grade (Note 2) ........................... 55°C to 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
TOP VIEW  
IN 1  
GND 2  
BYP 3  
5 OUT  
4 ADJ  
IN 1  
GND 2  
5 OUT  
4 ADJ  
IN 1  
GND 2  
5 OUT  
4 BYP  
SHDN 3  
SHDN 3  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
TJMAX = 150°C, θJA = 250°C/ W  
TJMAX = 150°C, θJA = 250°C/ W  
TJMAX = 150°C, θJA = 250°C/ W  
SEE THE APPLICATIONS INFORMATION SECTION.  
SEE THE APPLICATIONS INFORMATION SECTION.  
SEE THE APPLICATIONS INFORMATION SECTION.  
S5 PART  
MARKING  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
S5 PART  
MARKING  
S5 PART  
MARKING  
ORDER PART  
NUMBER  
LTGC  
LTGH  
LT1761ES5-1.2  
LT1761ES5-1.5  
LT1761ES5-1.8  
LT1761MPS5-1.8  
LT1761ES5-2  
LTCDS  
LTMT  
LTJM  
LTDCH  
LTJE  
LT1761ES5-BYP  
LT1761ES5-SD  
LT1761ES5-2.5  
LT1761ES5-2.8  
LT1761ES5-3  
LT1761ES5-3.3  
LT1761ES5-5  
LTGD  
LTLB  
LTGE  
LTGF  
LTGG  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
1761sfc  
2
LT1761 Series  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
= 100mA  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage (Notes 3, 11)  
I
1.8  
2.3  
V
LOAD  
Regulated Output Voltage  
(Note 4)  
LT1761-1.2  
LT1761-1.5  
LT1761-1.8  
LT1761-2  
V
= 2V, I  
= 1mA  
1.185  
1.170  
1.150  
1.2  
1.2  
1.2  
1.215  
1.230  
1.240  
V
V
V
IN  
LOAD  
2.3V < V < 20V, 1mA < I  
< 50mA  
IN  
IN  
LOAD  
LOAD  
2.3V < V < 20V, 1mA < I  
< 100mA  
V
= 2V, I  
= 1mA  
1.478  
1.457  
1.436  
1.5  
1.5  
1.5  
1.522  
1.538  
1.555  
V
V
V
IN  
LOAD  
2.5V < V < 20V, 1mA < I  
< 50mA  
< 50mA  
IN  
IN  
LOAD  
LOAD  
2.5V < V < 20V, 1mA < I  
V
= 2.3V, I  
= 1mA  
LOAD  
1.775  
1.750  
1.725  
1.8  
1.8  
1.8  
1.825  
1.845  
1.860  
V
V
V
IN  
2.8V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
IN  
IN  
LOAD  
LOAD  
2.8V < V < 20V, 1mA < I  
V
= 2.5V, I  
IN  
IN  
= 1mA  
LOAD  
1.970  
1.945  
1.920  
2
2
2
2.030  
2.045  
2.060  
V
V
V
IN  
3V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
LOAD  
LOAD  
3V < V < 20V, 1mA < I  
LT1761-2.5  
LT1761-2.8  
V
= 3V, I  
= 1mA  
2.465  
2.435  
2.415  
2.5  
2.5  
2.5  
2.535  
2.565  
2.575  
V
V
V
IN  
LOAD  
3.5V < V < 20V, 1mA < I  
< 50mA  
IN  
IN  
LOAD  
LOAD  
3.5V < V < 20V, 1mA < I  
< 100mA  
V
= 3.3V, I  
= 1mA  
LOAD  
2.762  
2.732  
2.706  
2.8  
2.8  
2.8  
2.838  
2.868  
2.884  
V
V
V
IN  
3.8V < V < 20V, 1mA < I  
3.8V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
IN  
LOAD  
LOAD  
IN  
LT1761-3  
V
= 3.5V, I  
IN  
IN  
= 1mA  
LOAD  
2.960  
2.930  
2.900  
3
3
3
3.040  
3.070  
3.090  
V
V
V
IN  
4V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
LOAD  
LOAD  
4V < V < 20V, 1mA < I  
LT1761-3.3  
V
= 3.8V, I  
= 1mA  
LOAD  
3.250  
3.230  
3.190  
3.3  
3.3  
3.3  
3.350  
3.370  
3.400  
V
V
V
IN  
4.3V < V < 20V, 1mA < I  
4.3V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
IN  
LOAD  
LOAD  
IN  
LT1761-5  
LT1761  
V
= 5.5V, I  
IN  
= 1mA  
LOAD  
4.935  
4.900  
4.850  
5
5
5
5.065  
5.100  
5.120  
V
V
V
IN  
6V < V < 20V, 1mA < I  
6V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
LOAD  
LOAD  
IN  
ADJ Pin Voltage  
(Note 3, 4)  
V
= 2V, I  
= 1mA  
1.205  
1.190  
1.170  
1.220  
1.220  
1.220  
1.235  
1.250  
1.260  
V
V
V
IN  
LOAD  
2.3V < V < 20V, 1mA < I  
2.3V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
IN  
LOAD  
LOAD  
IN  
Line Regulation  
LT1761-1.2  
LT1761-1.5  
LT1761-1.8  
LT1761-2  
LT1761-2.5  
LT1761-2.8  
LT1761-3  
LT1761-3.3  
LT1761-5  
LT1761 (Note 3) ΔV = 2V to 20V, I  
ΔV = 2V to 20V, I  
= 1mA  
= 1mA  
1
1
1
1
1
1
1
1
1
1
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
IN  
LOAD  
ΔV = 2V to 20V, I  
IN  
LOAD  
ΔV = 2.3V to 20V, I  
= 1mA  
IN  
LOAD  
ΔV = 2.5V to 20V, I  
= 1mA  
IN  
LOAD  
ΔV = 3V to 20V, I  
IN  
= 1mA  
IN  
LOAD  
ΔV = 3.3V to 20V, I  
= 1mA  
= 1mA  
= 1mA  
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
ΔV = 3.5V to 20V, I  
IN  
ΔV = 3.8V to 20V, I  
IN  
ΔV = 5.5V to 20V, I  
IN  
= 1mA  
IN  
LOAD  
1761sfc  
3
LT1761 Series  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Load Regulation  
LT1761-1.2  
V
V
V
V
= 2.3V, ΔI  
= 2.3V, ΔI  
= 2.3V, ΔI  
= 2.3V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
1
6
mV  
mV  
mV  
mV  
IN  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
12  
12  
50  
1
LT1761-1.5  
LT1761-1.8  
LT1761-2  
V
V
V
V
= 2.5V, ΔI  
= 2.5V, ΔI  
= 2.5V, ΔI  
= 2.5V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 50mA  
10  
14  
20  
35  
30  
55  
mV  
mV  
mV  
mV  
IN  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
V
V
V
V
= 2.8V, ΔI  
= 2.8V, ΔI  
= 2.8V, ΔI  
= 2.8V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
10  
15  
20  
35  
30  
60  
mV  
mV  
mV  
mV  
IN  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
V
V
V
V
= 3V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
10  
15  
20  
35  
35  
65  
mV  
mV  
mV  
mV  
IN  
IN  
IN  
IN  
LOAD  
= 3V, ΔI  
= 3V, ΔI  
= 3V, ΔI  
LOAD  
LOAD  
LOAD  
LT1761-2.5  
LT1761-2.8  
LT1761-3  
V
V
V
V
= 3.5V, ΔI  
= 3.5V, ΔI  
= 3.5V, ΔI  
= 3.5V, ΔI  
= 1mA to 50mA  
10  
20  
20  
35  
40  
80  
mV  
mV  
mV  
mV  
IN  
IN  
IN  
IN  
LOAD  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
LOAD  
LOAD  
LOAD  
V
V
V
V
= 3.8V, ΔI  
= 3.8V, ΔI  
= 3.8V, ΔI  
= 3.8V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
10  
20  
20  
38  
40  
86  
mV  
mV  
mV  
mV  
IN  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
V
V
V
V
= 4V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
10  
20  
20  
40  
40  
90  
mV  
mV  
mV  
mV  
IN  
IN  
IN  
IN  
LOAD  
= 4V, ΔI  
= 4V, ΔI  
= 4V, ΔI  
LOAD  
LOAD  
LOAD  
LT1761-3.3  
LT1761-5  
V
V
V
V
= 4.3V, ΔI  
= 4.3V, ΔI  
= 4.3V, ΔI  
= 4.3V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
10  
20  
20  
40  
40  
mV  
mV  
mV  
mV  
IN  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
100  
V
V
V
V
= 6V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
15  
25  
30  
60  
65  
mV  
mV  
mV  
mV  
IN  
IN  
IN  
IN  
LOAD  
= 6V, ΔI  
= 6V, ΔI  
= 6V, ΔI  
LOAD  
LOAD  
LOAD  
150  
LT1761 (Note 3) V = 2.3V, ΔI  
= 1mA to 50mA  
1
1
6
mV  
mV  
mV  
mV  
IN  
LOAD  
V
V
V
= 2.3V, ΔI  
= 2.3V, ΔI  
= 2.3V, ΔI  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
12  
12  
50  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
Dropout Voltage  
I
I
= 1mA  
= 1mA  
0.10  
0.17  
0.24  
0.30  
0.15  
0.19  
V
V
LOAD  
LOAD  
V
= V  
IN  
OUT(NOMINAL)  
(Notes 5, 6, 11)  
I
I
= 10mA  
= 10mA  
0.22  
0.29  
V
V
LOAD  
LOAD  
I
I
= 50mA  
= 50mA  
0.28  
0.38  
V
V
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
0.35  
0.45  
V
V
LOAD  
LOAD  
1761sfc  
4
LT1761 Series  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GND Pin Current  
I
I
I
I
I
= 0mA  
= 1mA  
= 10mA  
= 50mA  
= 100mA  
20  
55  
230  
1
45  
100  
400  
2
μA  
μA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
IN  
OUT(NOMINAL)  
(Notes 5, 7)  
μA  
mA  
mA  
2.2  
4
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10μF, C  
= 0.01μF, I  
= 100mA, BW = 10Hz to 100kHz  
20  
30  
μV  
OUT  
BYP  
LOAD  
RMS  
(Notes 3, 8)  
100  
2
nA  
V
V
= Off to On  
= On to Off  
0.8  
0.65  
V
V
OUT  
OUT  
0.25  
SHDN Pin Current  
(Note 9)  
V
V
= 0V  
= 20V  
0
1
0.5  
3
μA  
μA  
SHDN  
SHDN  
Quiescent Current in Shutdown  
Ripple Rejection (Note 3)  
V
V
= 6V, V  
= 0V  
SHDN  
0.01  
65  
0.1  
μA  
IN  
– V  
= 1.5V (Avg), V  
= 0.5V , f  
P-P RIPPLE  
= 120Hz,  
= 5%  
55  
dB  
IN  
OUT  
RIPPLE  
I
= 50mA  
LOAD  
Current Limit  
V
V
= 7V, V  
= 0V  
200  
mA  
mA  
IN  
IN  
OUT  
OUT(NOMINAL)  
= V  
+ 1V or 2.3V (Note 12), ΔV  
110  
OUT  
Input Reverse Leakage Current  
V
= 20V, V  
= 0V  
OUT  
1
mA  
IN  
Reverse Output Current  
(Note 10)  
LT1761-1.2  
LT1761-1.5  
LT1761-1.8  
LT1761-2  
LT1761-2.5  
LT1761-2.8  
LT1761-3  
LT1761-3.3  
LT1761-5  
LT1761 (Note 3) V  
V
= 1.2V, V < 1.2V  
10  
10  
10  
10  
10  
10  
10  
10  
10  
5
20  
20  
20  
20  
20  
20  
20  
20  
20  
10  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
V
V
V
V
V
V
V
V
= 1.5V, V < 1.5V  
IN  
= 1.8V, V < 1.8V  
IN  
= 2V, V < 2V  
IN  
= 2.5V, V < 2.5V  
IN  
= 2.8V, V < 2.8V  
IN  
= 3V, V < 3V  
IN  
= 3.3V, V < 3.3V  
IN  
= 5V, V < 5V  
IN  
= 1.22V, V < 1.22V  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to: V – V  
.
IN  
DROPOUT  
Note 7: GND pin current is tested with V = V  
or V = 2.3V  
IN  
IN  
OUT(NOMINAL)  
Note 2: The LT1761 regulators are tested and specified under pulse load  
conditions such that T T . The LT1761E is 100% production tested at  
(whichever is greater) and a current source load. This means the device is  
tested while operating in its dropout region or at the minimum input  
voltage specification. This is the worst-case GND pin current. The GND pin  
current will decrease slightly at higher input voltages.  
J
A
T = 25°C. Performance at 40°C and 125°C is assured by design,  
A
characterization and correlation with statistical process controls. The  
LT1761MP is 100% tested and guaranteed over the 55°C to 125°C  
temperature range.  
Note 3: The LT1761 (adjustable versions) are tested and specified for  
these conditions with the ADJ pin connected to the OUT pin.  
Note 4: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply for  
all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 8: ADJ pin bias current flows into the ADJ pin.  
Note 9: SHDN pin current flows into the SHDN pin.  
Note 10: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 11: For the LT1761, LT1761-1.2, LT1761-1.5, LT1761-1.8 and  
LT1761-2 dropout voltage will be limited by the minimum input voltage  
specification under some output voltage/load conditions. See the curve of  
Minimum Input Voltage in the Typical Performance Characteristics.  
Note 12: To satisfy requirements for minimum input voltage, current limit  
Note 5: To satisfy requirements for minimum input voltage, the LT1761  
(adjustable version) is tested and specified for these conditions with an  
external resistor divider (two 250k resistors) for an output voltage of  
2.44V. The external resistor divider will add a 5μA DC load on the output.  
is tested at V = V  
+ 1V or V = 2.3V, whichever is greater.  
IN  
OUT(NOMINAL)  
IN  
1761sfc  
5
LT1761 Series  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Typical Dropout Voltage  
Dropout Voltage  
Guaranteed Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
T 125°C  
J
T
= 125°C  
J
I
= 100mA  
L
T 25°C  
J
I
= 50mA  
= 10mA  
L
T
= 25°C  
J
I
L
I
= 1mA  
L
0
–50  
0
0
0
25  
50  
75 100 125  
–25  
40  
40  
50 60 70 80 90 100  
0
10 20 30  
50 60 70 80 90 100  
0
10 20 30  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
1761 G01.1  
1761 G00  
1761 G01  
LT1761-1.2  
Output Voltage  
LT1761-1.5  
Output Voltage  
Quiescent Current  
1.528  
1.521  
1.514  
1.507  
1.500  
1.493  
1.486  
1.479  
1.472  
40  
35  
30  
25  
20  
15  
10  
5
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
I
= 1mA  
V
= 6V  
L
IN  
L
I = 1mA  
L
R
= (250k FOR LT1761-BYP, -SD)  
I
L
= 0 (5μA FOR LT1761-BYP, -SD)  
V
SHDN  
= V  
IN  
V
= 0V  
50  
SHDN  
0
–50  
–25  
0
25  
50  
75  
125  
–25  
0
25  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
100  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1761 G51  
1761 G03  
1761 G05  
LT1761-2.5  
Output Voltage  
LT1761-1.8  
Output Voltage  
LT1761-2  
Output Voltage  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.04  
2.03  
2.02  
2.01  
2.00  
1.99  
1.98  
1.97  
1.96  
I
= 1mA  
I = 1mA  
L
I
= 1mA  
L
L
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1761 G06  
1761 G08  
1761 G07  
1761sfc  
6
LT1761 Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT1761-2.8  
Output Voltage  
LT1761-3  
Output Voltage  
LT1761-3.3  
Output Voltage  
2.84  
2.83  
2.82  
2.81  
2.80  
2.79  
2.78  
2.77  
2.76  
3.360  
3.345  
3.330  
3.315  
3.300  
3.285  
3.270  
3.255  
3.240  
3.060  
3.045  
3.030  
3.015  
3.000  
2.985  
2.970  
2.955  
2.940  
I
= 1mA  
I = 1mA  
L
I
= 1mA  
L
L
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
–25  
0
25  
50  
75  
125  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1761 G52  
1761 G11  
1761 G09  
LT1761-5  
Output Voltage  
LT1761-BYP, LT1761-SD  
ADJ Pin Voltage  
LT1761-1.2  
Quiescent Current  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
250  
225  
200  
175  
150  
125  
100  
75  
I
= 1mA  
L
I = 1mA  
L
T
= 25°C  
= ∞  
J
L
R
50  
V
V
= V  
IN  
SHDN  
25  
= 0V  
8
SHDN  
0
–25  
0
25  
50  
75  
125  
–50  
100  
–25  
0
25  
50  
75  
125  
–50  
100  
0
1
2
3
4
5
6
7
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
1761 G12  
1761 G10  
1761 G10b  
LT1761-1.5  
Quiescent Current  
LT1761-1.8  
Quiescent Current  
LT1761-2  
Quiescent Current  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
T
= 25°C  
= ∞  
T
= 25°C  
= ∞  
T
= 25°C  
R = ∞  
L
J
L
J
L
J
R
R
50  
50  
50  
V
V
= V  
IN  
V
V
= V  
V
V
= V  
IN  
SHDN  
SHDN  
IN  
SHDN  
25  
25  
25  
= 0V  
8
= 0V  
8
= 0V  
8
SHDN  
SHDN  
SHDN  
0
0
0
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1761 G53  
1761 G18  
1761 G19  
1761sfc  
7
LT1761 Series  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
LT1761-2.5  
Quiescent Current  
LT1761-2.8  
Quiescent Current  
LT1761-3  
Quiescent Current  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
T
= 25°C  
= ∞  
T
= 25°C  
R = ∞  
L
T
= 25°C  
= ∞  
J
L
J
J
L
R
R
50  
50  
50  
V
= V  
IN  
V
= V  
IN  
V
= V  
IN  
SHDN  
SHDN  
SHDN  
25  
25  
25  
V
= 0V  
8
V
= 0V  
8
V
= 0V  
8
SHDN  
SHDN  
SHDN  
0
0
0
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1761 G13  
1761 G54  
1761 G14  
LT1761-3.3  
Quiescent Current  
LT1761-5  
Quiescent Current  
LT1761-BYP, LT1761-SD  
Quiescent Current  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
30  
25  
20  
15  
10  
5
T = 25°C  
T
= 25°C  
= ∞  
T
= 25°C  
R = ∞  
L
J
R
J
L
J
= 250k  
R
L
L
I
= 5μA  
V
= V  
IN  
SHDN  
50  
50  
V
V
= V  
V
= V  
IN  
SHDN  
IN  
SHDN  
25  
25  
V
= 0V  
= 0V  
8
V
= 0V  
8
SHDN  
SHDN  
SHDN  
0
0
0
0
2
4
6
8
10 12 14 16 18 20  
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1761 G17  
1761 G16  
1761 G15  
LT1761-1.8  
GND Pin Current  
LT1761-1.2  
GND Pin Current  
LT1761-1.5  
GND Pin Current  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
T = 25°C  
T = 25°C  
J
T
= 25°C  
J
J
*FOR V  
= 1.2V  
*FOR V  
= 1.8V  
*FOR V  
= 1.5V  
OUT  
OUT  
OUT  
R
L
= 12Ω  
R
L
= 18Ω  
L
R
L
= 15Ω  
L
L
I
= 100mA*  
I
= 100mA*  
I
= 100mA*  
R
L
= 24Ω  
L
R = 36Ω  
L
R
L
= 30Ω  
L
I
= 50mA*  
I
= 50mA*  
L
I
= 50mA*  
R
L
= 1.2k  
L
R
L
= 1.8k  
R
I
= 1.5k  
L
L
L
R
L
= 120Ω  
R
L
= 180Ω  
L
R
L
= 150Ω  
L
L
I
= 1mA*  
I
= 1mA*  
= 1mA*  
I
= 10mA*  
I
= 10mA*  
I
= 10mA*  
4
4
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
4
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1761 G17b  
1761 G02  
1761 G55  
1761sfc  
8
LT1761 Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT1761-2  
GND Pin Current  
LT1761-2.5  
GND Pin Current  
LT1761-2.8  
GND Pin Current  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
T = 25°C  
T
= 25°C  
T = 25°C  
J
J
J
*FOR V  
= 2.5V  
*FOR V  
= 2.8V  
*FOR V  
= 2V  
OUT  
OUT  
OUT  
R
L
= 25Ω  
L
R
L
= 28Ω  
L
I
= 100mA  
I
= 100mA  
R
L
= 20Ω  
L
I
= 100mA*  
R
L
= 50Ω  
R
L
= 56Ω  
L
L
R
L
= 40Ω  
L
I
= 50mA*  
I
= 50mA*  
I
= 50mA*  
R
L
= 2.5k  
R
L
= 2k  
R = 2.8k  
L
I = 1mA*  
L
L
L
R
L
= 250Ω  
R
L
= 200Ω  
R
= 280Ω  
L
L
L
I
= 1mA*  
I
= 1mA*  
I
= 10mA*  
I
= 10mA*  
I
= 10mA*  
L
4
4
0
1
2
3
5
6
7
8
9
10  
4
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1761 G20  
1761 G04  
1761 G56  
LT1761-3  
GND Pin Current  
LT1761-3.3  
GND Pin Current  
LT1761-5  
GND Pin Current  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
T = 25°C  
T = 25°C  
J
J
T = 25°C  
J
*FOR V  
OUT  
= 3V  
*FOR V  
= 3.3V  
OUT  
*FOR V = 5V  
OUT  
R
L
= 50Ω  
L
I
= 100mA  
R
L
= 30Ω  
L
R
L
= 33Ω  
L
I
= 100mA*  
I
= 100mA*  
R
L
= 100Ω  
L
R
L
= 66Ω  
L
R
L
= 60Ω  
I
= 50mA*  
L
I
= 50mA*  
I
= 50mA*  
R
L
= 5k  
= 1mA*  
L
R
L
= 3k  
= 1mA*  
R = 3.3k  
L
L
R
= 500Ω  
= 10mA*  
R
L
= 300Ω  
R
L
= 330Ω  
L
L
L
I
I
I
= 1mA*  
L
I
L
I
= 10mA*  
I
= 10mA*  
4
4
5
4
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
6
7
8
9
10  
0
1
2
3
6
7
8
9
10  
5
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1761 G21  
1761 G22  
1761 G23  
SHDN Pin Threshold  
(On-to-Off)  
LT1761-BYP, LT1761-SD  
GND Pin Current  
GND Pin Current vs ILOAD  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
I
= 1mA  
L
V
= V  
+ 1V  
OUT(NOMINAL)  
T = 25°C  
IN  
J
*FOR V  
= 1.22V  
OUT  
R
L
= 12.2Ω  
L
I
= 100mA*  
R
L
= 24.4Ω  
L
I
= 50mA*  
R
L
= 1.22k  
L
R
L
= 122Ω  
L
I
= 1mA*  
I
= 10mA*  
40  
50 60 70 80 90 100  
0
10 20 30  
4
–50  
0
25  
50  
75  
125  
0
1
2
3
5
6
7
8
9
10  
–25  
100  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
1761 G25  
1761 G24  
1761 G26  
1761sfc  
9
LT1761 Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
SHDN Pin Threshold  
(Off-to-On)  
SHDN Pin Input Current  
SHDN Pin Input Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 20V  
SHDN  
I
= 100mA  
L
I
= 1mA  
L
–50  
0
25  
50  
75 100 125  
–50  
–25  
0
25  
50  
75 100 125  
–25  
4
0
1
2
3
5
6
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
1761 G27  
1761 G29  
1761 G28  
Current Limit  
Current Limit  
ADJ Pin Bias Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
V
T
= 0V  
V
V
= 7V  
OUT  
OUT  
J
IN  
= 25°C  
= 0V  
0
0
–50  
0
25  
50  
75 100 125  
0
1
2
3
4
5
6
7
–50  
–25  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
1761 G30  
1761 G31  
1761 G32  
Reverse Output Current  
Reverse Output Current  
Input Ripple Rejection  
80  
70  
60  
50  
40  
30  
20  
10  
0
25.0  
22.5  
100  
V
V
V
= 0V  
T = 25°C  
IN  
CURRENT FLOWS  
INTO OUTPUT PIN  
LT1761-BYP  
LT1761-SD  
IN  
I
= 100mA  
J
L
V
= 1.22V (LT1761-BYP, -SD)  
= 1.2V (LT1761-1.2)  
= 1.5V (LT1761-1.5)  
= 1.8V (LT1761-1.8)  
= 2V (LT1761-2)  
OUT  
OUT  
90 V = 0V  
= V  
+
IN  
OUT(NOMINAL)  
LT1761-BYP  
LT1761-5  
1V + 50mV  
C
RIPPLE  
RMS  
V
80  
70  
60  
50  
40  
30  
20  
10  
0
20.0 OUT  
= 0  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
BYP  
LT1761-1.2  
V
= V  
OUT  
ADJ  
17.5  
15.0  
12.5  
10.0  
7.5  
(LT1761-BYP,-SD)  
= 2.5V (LT1761-2.5)  
= 2.8V (LT1761-2.8)  
= 3V (LT1761-3)  
LT1761-1.5  
LT1761-1.8  
LT1761-2  
C
= 10μF  
OUT  
= 3.3V (LT1761-3.3)  
= 5V (LT1761-5)  
LT1761-2.5  
LT1761-2.8  
LT1761-3  
LT1761-BYP,-SD  
5.0  
C
OUT  
= 1μF  
LT1761-1.2,-1.5,-1.8,-2,  
-2.5,-2.8,-3,-3.3,-5  
LT1761-3.3  
2.5  
LT1761-5  
0
–50  
10  
100  
1k  
10k  
100k  
1M  
4
0
1
2
3
5
6
7
8
9
10  
0
25  
50  
75 100 125  
–25  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
1761 G35  
1761 G33  
1761 G34  
1761sfc  
10  
LT1761 Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT1761-5  
Input Ripple Rejection  
LT1761-BYP, LT1761-SD  
Minimum Input Voltage  
Input Ripple Rejection  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
C
= 0.01μF  
BYP  
C
= 1000pF  
BYP  
I
= 100mA  
L
I
= 50mA  
L
C
BYP  
= 100pF  
V
= V  
+
I
= 100mA  
= V  
IN  
OUT (NOMINAL)  
P-P  
L
IN  
1V + 0.5V RIPPLE  
V
+
OUT(NOMINAL)  
AT f = 120Hz  
1V + 50mV  
RIPPLE  
RMS  
I
= 50mA  
C
= 10μF  
L
OUT  
10  
100  
1k  
10k  
100k  
1M  
–25  
0
25  
50  
75  
125  
–50  
0
25  
50  
75  
125  
–50  
100  
100  
–25  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1761 G36  
1761 G37  
1761 G38  
Load Regulation  
ΔIL = 1mA to 50mA  
Load Regulation  
ΔIL = 1mA to 100mA  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
LT1761-BYP, -SD, -1.2  
LT1761-1.5  
LT1761-BYP, -SD, -1.2  
LT1761-1.5  
LT1761-1.8  
LT1761-2  
–5  
–10  
–15  
–20  
–25  
30  
–35  
–40  
LT1761-1.8  
LT1761-2  
LT1761-2.5  
LT1761-2.8  
LT1761-3  
LT1761-2.5  
LT1761-2.8  
LT1761-3  
LT1761-3.3  
LT1761-3.3  
LT1761-5  
LT1761-5  
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1761 G39  
1761 G40  
RMS Output Noise vs  
Bypass Capacitor  
Output Noise Spectral Density  
Output Noise Spectral Density  
140  
120  
100  
80  
10  
10  
C
L
= 10μF  
OUT  
LT1761-5  
LT1761-3.3  
LT1761-3  
LT1761-2.8  
LT1761-2.5  
I
= 100mA  
LT1761-3.3  
f = 10Hz TO 100kHz  
LT1761-2.8,-3  
LT1761-2.5  
LT1761-5  
LT1761-5  
C
= 1000pF  
BYP  
1
1
0.1  
C
= 100pF  
BYP  
LT1761-BYP,  
-SD, 1.2  
60  
LT1761-BYP  
LT1761-1.5  
0.1  
LT1761-1.8  
LT1761-2  
C
BYP  
= 0.01μF  
40  
LT1761-1.8, -2  
100  
C
C
L
= 10μF  
= 0  
= 100mA  
OUT  
BYP  
20  
C
L
= 10μF  
LT1761-1.5  
OUT  
LT1761-BYP, -1.2  
I = 100mA  
I
0
0.01  
0.01  
10  
1k  
10k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
C
(pF)  
BYP  
1761 G43  
1761 G41  
1761 G42  
1761sfc  
11  
LT1761 Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT1761-5  
10Hz to 100kHz Output Noise  
CBYP = 100pF  
LT1761-5  
10Hz to 100kHz Output Noise  
CBYP = 0  
RMS Output Noise vs  
Load Current (10Hz to 11kHz)  
160  
140  
120  
100  
80  
C
= 10μF  
OUT  
C
= 0  
BYP  
C
= 0.01μF  
BYP  
LT1761-5  
VOUT  
100μV/DIV  
VOUT  
100μV/DIV  
LT1761-BYP  
LT1761-5  
60  
40  
1ms/DIV  
COUT = 10μF  
IL = 100mA  
1ms/DIV  
20  
C
OUT = 10μF  
LT1761-BYP  
10 100  
1761 G46  
IL = 100mA  
1761 G45  
0
0.01  
0.1  
1
LOAD CURRENT (mA)  
1761 G44  
LT1761-5  
LT1761-5  
10Hz to 100kHz Output Noise  
10Hz to 100kHz Output Noise  
CBYP = 1000pF  
CBYP = 0.01μF  
VOUT  
100μV/DIV  
VOUT  
100μV/DIV  
1ms/DIV  
1ms/DIV  
COUT = 10μF  
IL = 100mA  
COUT = 10μF  
IL = 100mA  
1761 G47  
1761 G48  
LT1761-5 Transient Response  
CBYP = 0  
LT1761-5 Transient Response  
CBYP = 0.01μF  
V
C
C
= 6V  
IN  
IN  
V
C
C
= 6V  
IN  
IN  
0.04  
0.02  
0
0.2  
0.1  
= 10μF  
= 10μF  
= 10μF  
OUT  
= 10μF  
OUT  
0
–0.02  
–0.04  
–0.1  
–0.2  
100  
50  
0
100  
50  
0
80  
0
20 40 60  
100 120 140 160 180 200  
800  
TIME (μs)  
0
400  
1200  
1600  
2000  
TIME (μs)  
1761 G50  
1761 G49  
1761sfc  
12  
LT1761 Series  
U
U
U
PI FU CTIO S  
IN (Pin 1): Input. Power is supplied to the device through  
the IN pin. A bypass capacitor is required on this pin if the  
device is more than six inches away from the main input  
filter capacitor. In general, the output impedance of a  
battery rises with frequency, so it is advisable to include a  
bypass capacitor in battery-powered circuits. A bypass  
capacitor in the range of 1μF to 10μF is sufficient. The  
LT1761 regulators are designed to withstand reverse  
voltages on the IN pin with respect to ground and the OUT  
pin. In the case of a reverse input, which can happen if a  
battery is plugged in backwards, the device will act as if  
there is a diode in series with its input. There will be no  
reverse current flow into the regulator and no reverse  
voltage will appear at the load. The device will protect both  
itself and the load.  
function if the SHDN pin is not connected. For the  
LT1761-BYP, the SHDN pin is internally connected to VIN.  
BYP (Pins 3/4, Fixed/-BYP Devices): Bypass. The BYP  
pin is used to bypass the reference of the LT1761 regula-  
tors to achieve low noise performance from the regulator.  
The BYP pin is clamped internally to 0.6V (one VBE) from  
ground. A small capacitor from the output to this pin will  
bypass the reference to lower the output voltage noise. A  
maximumvalueof0.01μFcanbeusedforreducingoutput  
voltage noise to a typical 20μVRMS over a 10Hz to 100kHz  
bandwidth. If not used, this pin must be left unconnected.  
ADJ (Pin 4, Adjustable Devices Only): Adjust Pin. For the  
adjustable LT1761, this is the input to the error amplifier.  
This pin is internally clamped to 7V. It has a bias current  
of30nAwhichflowsintothepin(seecurveofADJPinBias  
Current vs Temperature in the Typical Performance Char-  
acteristicssection).TheADJpinvoltageis1.22Vreferenced  
to ground and the output voltage range is 1.22V to 20V.  
GND (Pin 2): Ground.  
SHDN (Pin 3, Fixed/-SD Devices): Shutdown. The SHDN  
pin is used to put the LT1761 regulators into a low power  
shutdown state. The output will be off when the SHDN pin  
is pulled low. The SHDN pin can be driven either by 5V  
logic or open-collector logic with a pull-up resistor. The  
pull-up resistor is required to supply the pull-up current of  
the open-collector gate, normally several microamperes,  
and the SHDN pin current, typically 1μA. If unused, the  
SHDN pin must be connected to VIN. The device will not  
OUT (Pin 5): Output. The output supplies power to the  
load. A minimum output capacitor of 1μF is required to  
prevent oscillations. Larger output capacitors will be  
required for applications with large transient loads to limit  
peak voltage transients. See the Applications Information  
section for more information on output capacitance and  
reverse output characteristics.  
1761sfc  
13  
LT1761 Series  
W U U  
U
APPLICATIO S I FOR ATIO  
TheLT1761seriesare100mAlowdropoutregulatorswith  
micropowerquiescentcurrentandshutdown.Thedevices  
are capable of supplying 100mA at a dropout voltage of  
300mV. Output voltage noise can be lowered to 20μVRMS  
over a 10Hz to 100kHz bandwidth with the addition of a  
0.01μFreferencebypasscapacitor. Additionally, therefer-  
ence bypass capacitor will improve transient response of  
the regulator, lowering the settling time for transient load  
conditions. The low operating quiescent current (20μA)  
drops to less than 1μA in shutdown. In addition to the low  
quiescentcurrent, theLT1761regulatorsincorporatesev-  
eral protection features which make them ideal for use in  
battery-powered systems. The devices are protected  
against both reverse input and reverse output voltages. In  
battery backup applications where the output can be held  
up by a backup battery when the input is pulled to ground,  
the LT1761-X acts like it has a diode in series with its  
output and prevents reverse current flow. Additionally, in  
dual supply applications where the regulator load is  
returned to a negative supply, the output can be pulled  
below ground by as much as 20V and still allow the device  
to start and operate.  
pinbiascurrent.Notethatinshutdowntheoutputisturned  
off and the divider current will be zero. Curves of ADJ  
Pin Voltage vs Temperature and ADJ Pin Bias Current  
vs Temperature appear in the Typical Performance  
Characteristics.  
The adjustable device is tested and specified with the ADJ  
pin tied to the OUT pin for an output voltage of 1.22V.  
Specifications for output voltages greater than 1.22V will  
be proportional to the ratio of the desired output voltage to  
1.22V: VOUT/1.22V. For example, load regulation for an  
output current change of 1mA to 100mA is –1mV typical  
at VOUT = 1.22V. At VOUT = 12V, load regulation is:  
(12V/1.22V)(–1mV) = 9.8mV  
Bypass Capacitance and Low Noise Performance  
The LT1761 regulators may be used with the addition of a  
bypass capacitor from VOUT to the BYP pin to lower output  
voltage noise. A good quality low leakage capacitor is rec-  
ommended. This capacitor will bypass the reference of the  
regulator, providing a low frequency noise pole. The noise  
pole provided by this bypass capacitor will lower the out-  
put voltage noise to as low as 20μVRMS with the addition  
ofa0.01μFbypasscapacitor.Usingabypasscapacitorhas  
theaddedbenefitofimprovingtransientresponse.Withno  
bypass capacitor and a 10μF output capacitor, a 10mA to  
100mA load step will settle to within 1% of its final value  
in less than 100μs. With the addition of a 0.01μF bypass  
capacitor, the output will stay within 1% for a 10mA to  
100mA load step (see LT1761-5 Transient Response in  
Typical Performance Characteristics section). However,  
regulator start-up time is inversely proportional to the size  
of the bypass capacitor, slowing to 15ms with a 0.01μF  
bypass capacitor and 10μF output capacitor.  
Adjustable Operation  
The adjustable version of the LT1761 has an output  
voltage range of 1.22V to 20V. The output voltage is set by  
theratiooftwoexternalresistorsasshowninFigure1.The  
device servos the output to maintain the ADJ pin voltage  
at 1.22V referenced to ground. The current in R1 is then  
equalto1.22V/R1andthecurrentinR2isthecurrentinR1  
plus the ADJ pin bias current. The ADJ pin bias current,  
30nA at 25°C, flows through R2 into the ADJ pin. The  
output voltage can be calculated using the formula in  
Figure 1. The value of R1 should be no greater than 250k  
to minimize errors in the output voltage caused by the ADJ  
IN  
OUT  
ADJ  
V
OUT  
R2  
R1  
V
= 1.22V 1+  
+ I  
(
R2  
+
)(  
)
OUT  
ADJ  
V
IN  
R2  
R1  
LT1761  
GND  
V
= 1.22V  
ADJ  
I
= 30nA AT 25°C  
ADJ  
OUTPUT RANGE = 1.22V TO 20V  
1761 F01  
Figure 1. Adjustable Operation  
1761sfc  
14  
LT1761 Series  
W U U  
APPLICATIO S I FOR ATIO  
U
bypass capacitor or larger, a 3.3μF output capacitor is  
recommended. The shaded region of Figure 2 defines the  
region over which the LT1761 regulators are stable. The  
minimumESRneededisdefinedbytheamountofbypass  
capacitance used, while the maximum ESR is 3Ω.  
Output Capacitance and Transient Response  
The LT1761 regulators are designed to be stable with a  
wide range of output capacitors. The ESR of the output  
capacitor affects stability, most notably with small  
capacitors. A minimum output capacitor of 1μF with an  
ESR of 3Ω or less is recommended to prevent oscilla-  
tions. The LT1761-X is a micropower device and output  
transient response will be a function of output capaci-  
tance. Larger values of output capacitance decrease the  
peakdeviationsandprovideimprovedtransientresponse  
for larger load current changes. Bypass capacitors, used  
to decouple individual components powered by the  
LT1761-X, will increase the effective output capacitor  
value. With larger capacitors used to bypass the refer-  
ence (for low noise operation), larger values of output  
capacitors are needed. For 100pF of bypass capacitance,  
2.2μF of output capacitor is recommended. With a 330pF  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
dielectricsusedarespecifiedwithEIAtemperaturecharac-  
teristiccodesofZ5U, Y5V, X5RandX7R. TheZ5UandY5V  
dielectrics are good for providing high capacitances in a  
small package, but they tend to have strong voltage and  
temperature coefficients as shown in Figures 3 and 4.  
When used with a 5V regulator, a 16V 10μF Y5V capacitor  
can exhibit an effective value as low as 1μF to 2μF for the  
DC bias voltage applied and over the operating tempera-  
ture range. The X5R and X7R dielectrics result in more  
stable characteristics and are more suitable for use as the  
output capacitor. The X7R type has better stability across  
temperature, while the X5R is less expensive and is avail-  
able in higher values. Care still must be exercised when  
using X5R and X7R capacitors; the X5R and X7R codes  
only specify operating temperature range and maximum  
capacitancechangeovertemperature.Capacitancechange  
due to DC bias with X5R and X7R capacitors is better than  
Y5VandZ5Ucapacitors,butcanstillbesignificantenough  
to drop capacitor values below appropriate levels. Capaci-  
tor DC bias characteristics tend to improve as component  
case size increases, but expected capacitance at operating  
voltage should be verified.  
4.0  
3.5  
3.0  
STABLE REGION  
2.5  
2.0  
C
= 0  
1.5  
1.0  
0.5  
0
BYP  
C
= 100pF  
BYP  
C
= 330pF  
BYP  
C
> 3300pF  
BYP  
1
3
6 9 10  
7 8  
2
4
5
OUTPUT CAPACITANCE (μF)  
1761 F02  
Figure 2. Stability  
40  
20  
20  
0
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
X5R  
X5R  
0
–20  
–20  
–40  
–60  
–80  
–100  
–40  
Y5V  
–60  
Y5V  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
1761 F04  
1761 F03  
Figure 3. Ceramic Capacitor DC Bias Characteristics  
Figure 4. Ceramic Capacitor Temperature Characteristics  
1761sfc  
15  
LT1761 Series  
U
W U U  
APPLICATIONS INFORMATION  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or  
microphone works. For a ceramic capacitor the stress  
can be induced by vibrations in the system or thermal  
transients. The resulting voltages produced can cause  
appreciable amounts of noise, especially when a ceramic  
capacitor is used for noise bypassing. A ceramic capaci-  
tor produced Figure 5’s trace in response to light tapping  
from a pencil. Similar vibration induced behavior can  
masquerade as increased output voltage noise.  
The LT1761 series regulators have internal thermal limit-  
ing designed to protect the device during overload condi-  
tions. For continuous normal conditions, the maximum  
junction temperature rating of 125°C must not be  
exceeded. It is important to give careful consideration to  
allsourcesofthermalresistancefromjunctiontoambient.  
Additional heat sources mounted nearby must also be  
considered.  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
Thermal Considerations  
The following table lists thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with one ounce  
copper.  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components:  
Table 1. Measured Thermal Resistance  
COPPER AREA  
THERMAL RESISTANCE  
1. Output current multiplied by the input/output voltage  
differential: (IOUT)(VIN – VOUT), and  
TOPSIDE*  
2500mm2  
1000mm2  
225mm2  
100mm2  
50mm2  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
125°C/W  
125°C/W  
130°C/W  
135°C/W  
150°C/W  
2. GND pin current multiplied by the input voltage:  
(IGND)(VIN).  
The ground pin current can be found by examining the  
GND Pin Current curves in the Typical Performance Char-  
acteristics section. Power dissipation will be equal to the  
sum of the two components listed above.  
*Device is mounted on topside.  
LT1761-5  
C
OUT = 10μF  
CBYP = 0.01μF  
ILOAD = 100mA  
VOUT  
500μV/DIV  
100ms/DIV  
1761 F05  
Figure 5. Noise Resulting from Tapping on a Ceramic Capacitor  
1761sfc  
16  
LT1761 Series  
W U U  
U
APPLICATIO S I FOR ATIO  
Calculating Junction Temperature  
Protection Features  
Example: Given an output voltage of 3.3V, an input voltage  
rangeof4Vto6V, anoutputcurrentrangeof0mAto50mA  
and a maximum ambient temperature of 50°C, what will  
the maximum junction temperature be?  
The LT1761 regulators incorporate several protection  
featureswhichmakethemidealforuseinbattery-powered  
circuits. In addition to the normal protection features  
associated with monolithic regulators, such as current  
limiting and thermal limiting, the devices are protected  
against reverse input voltages, reverse output voltages  
and reverse voltages from output to input.  
The power dissipated by the device will be equal to:  
IOUT(MAX)(VIN(MAX) – VOUT) + IGND(VIN(MAX)  
)
where,  
Current limit protection and thermal overload protection  
are intended to protect the device against current overload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
IOUT(MAX) = 50mA  
VIN(MAX) = 6V  
IGND at (IOUT = 50mA, VIN = 6V) = 1mA  
So,  
The input of the device will withstand reverse voltages of  
20V. Currentflowintothedevicewillbelimitedtolessthan  
1mA (typically less than 100μA) and no negative voltage  
will appear at the output. The device will protect both itself  
and the load. This provides protection against batteries  
which can be plugged in backward.  
P = 50mA(6V – 3.3V) + 1mA(6V) = 0.14W  
The thermal resistance will be in the range of 125°C/W to  
150°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
The output of the LT1761-X can be pulled below ground  
without damaging the device. If the input is left open  
circuitorgrounded,theoutputcanbepulledbelowground  
by 20V. For fixed voltage versions, the output will act  
like a large resistor, typically 500kΩ or higher, limiting  
current flow to typically less than 100μA. For adjustable  
versions, the output will act like an open circuit; no  
current will flow out of the pin. If the input is powered by  
a voltage source, the output will source the short-circuit  
current of the device and will protect itself by thermal  
limiting. In this case, grounding the SHDN pin will turn  
off the device and stop the output from sourcing the  
short-circuit current.  
0.14W(150°C/W) = 21.2°C  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
TJMAX = 50°C + 21.2°C = 71.2°C  
The ADJ pin of the adjustable device can be pulled above  
or below ground by as much as 7V without damaging the  
device. If the input is left open circuit or grounded, the ADJ  
pin will act like an open circuit when pulled below ground  
and like a large resistor (typically 100k) in series with a  
diode when pulled above ground.  
In situations where the ADJ pin is connected to a resistor  
divider that would pull the ADJ pin above its 7V clamp  
voltage if the output is pulled high, the ADJ pin input  
current must be limited to less than 5mA. For example, a  
resistor divider is used to provide a regulated 1.5V output  
1761sfc  
17  
LT1761 Series  
W U U  
U
APPLICATIO S I FOR ATIO  
fromthe1.22Vreferencewhentheoutputisforcedto20V. circuit. Current flow back into the output will follow the  
The top resistor of the resistor divider must be chosen to curve shown in Figure 6.  
limitthecurrentintotheADJpintolessthan5mAwhenthe  
When the IN pin of the LT1761-X is forced below the OUT  
ADJ pin is at 7V. The 13V difference between output and  
pin or the OUT pin is pulled above the IN pin, input current  
ADJpindividedbythe5mAmaximumcurrentintotheADJ  
will typically drop to less than 2μA. This can happen if the  
input of the device is connected to a discharged (low  
pin yields a minimum top resistor value of 2.6k.  
In circuits where a backup battery is required, several voltage) battery and the output is held up by either a  
different input/output conditions can occur. The output backup battery or a second regulator circuit. The state of  
voltage may be held up while the input is either pulled to the SHDN pin will have no effect on the reverse output  
ground, pulledtosomeintermediatevoltageorisleftopen current when the output is pulled above the input.  
100  
T = 25°C  
IN  
CURRENT FLOWS  
INTO OUTPUT PIN  
LT1761-BYP  
LT1761-SD  
J
90 V = 0V  
80  
70  
60  
50  
40  
30  
20  
10  
0
LT1761-1.2  
V
= V  
OUT  
ADJ  
(LT1761-BYP,-SD)  
LT1761-1.5  
LT1761-1.8  
LT1761-2  
LT1761-2.5  
LT1761-2.8  
LT1761-3  
LT1761-3.3  
LT1761-5  
4
0
1
2
3
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
1761 F06  
Figure 6. Reverse Output Current  
1761sfc  
18  
LT1761 Series  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302 REV B  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
1761sfc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of circuits as described herein will not infringe on existing patent rights.  
19  
LT1761 Series  
RELATED PARTS  
PART NUMBER  
LT1120  
DESCRIPTION  
COMMENTS  
125mA Low Dropout Regulator with 20μA I  
Includes 2.5V Reference and Comparator  
Q
LT1121  
150mA Micropower Low Dropout Regulator  
30μA I , SOT-223 Package  
Q
LT1129  
700mA Micropower Low Dropout Regulator  
50μA Quiescent Current  
LT1175  
500mA Negative Low Dropout Micropower Regulator  
300mA Low Dropout Micropower Regulator with Shutdown  
45μA I , 0.26V Dropout Voltage, SOT-223 Package  
Q
LT1521  
15μA I , Reverse Battery Protection  
Q
LT1529  
3A Low Dropout Regulator with 50μA I  
500mV Dropout Voltage  
Q
LT1762 Series  
LT1763 Series  
LTC1928  
LT1962 Series  
LT1963  
150mA, Low Noise, LDO Micropower Regulator  
500mA, Low Noise, LDO Micropower Regulator  
Doubler Charge Pump with Low Noise Linear Regulator  
300mA, Low Noise, LDO Micropower Regulator  
1.5A, Low Noise, Fast Transient Response LDO  
3A, Low Noise, Fast Transient Response LDO  
25μA Quiescent Current, 20μV  
30μA Quiescent Current, 20μV  
Noise  
Noise  
RMS  
RMS  
Low Output Noise: 60μV  
(100kHz BW)  
RMS  
30μA Quiescent Current, 20μV  
Noise  
RMS  
40μV  
40μV  
, SOT-223 Package  
RMS  
LT1764  
, 340mV Dropout Voltage  
RMS  
LTC3404  
High Efficiency Synchronous Step-Down Switching Regulator  
Burst ModeTM Operation, Monolithic, 100% Duty Cycle  
Burst Mode is a trademark of Linear Technology Corporation.  
1761sfc  
LT 0507 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LT1761ES5-1.2-PBF

100mA, Low Noise, LDO Micropower Regulators in TSOT-23
Linear

LT1761ES5-1.2-TR

100mA, Low Noise, LDO Micropower Regulators in TSOT-23
Linear

LT1761ES5-1.2-TRPBF

100mA, Low Noise, LDO Micropower Regulators in TSOT-23
Linear

LT1761ES5-1.5

100mA, Low Noise, LDO Micropower Regulators in SOT-23
Linear

LT1761ES5-1.5#PBF

LT1761 - 100mA, Low Noise, LDO Micropower Regulators in TSOT-23; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1761ES5-1.5#TR

LT1761 - 100mA, Low Noise, LDO Micropower Regulators in TSOT-23; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1761ES5-1.5#TRM

LT1761 - 100mA, Low Noise, LDO Micropower Regulators in TSOT-23; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1761ES5-1.5#TRMPBF

LT1761 - 100mA, Low Noise, LDO Micropower Regulators in TSOT-23; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LT1761ES5-1.5-PBF

100mA, Low Noise, LDO Micropower Regulators in TSOT-23
Linear

LT1761ES5-1.5-TR

100mA, Low Noise, LDO Micropower Regulators in TSOT-23
Linear

LT1761ES5-1.5-TRPBF

100mA, Low Noise, LDO Micropower Regulators in TSOT-23
Linear