LT1677CN8#TR [Linear]

暂无描述;
LT1677CN8#TR
型号: LT1677CN8#TR
厂家: Linear    Linear
描述:

暂无描述

运算放大器
文件: 总16页 (文件大小:243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Final Electrical Specifications  
LT1677  
Low Noise, Rail-to-Rail  
Precision Op Amp  
February 2000  
U
FEATURES  
DESCRIPTIO  
The LT®1677 features the lowest noise performance avail-  
able for a rail-to-rail operational amplifier: 3.2nV/Hz  
wideband noise, 1/f corner frequency of 13Hz and 70nV  
peak-to-peak 0.1Hz to 10Hz noise. Low noise is combined  
with outstanding precision: 20µV offset voltage and  
0.2µV/°C drift, 130dB common mode and power supply  
rejection and 7.2MHz gain bandwidth product. The com-  
mon mode range exceeds the power supply by 100mV.  
Rail-to-Rail Input and Output  
100% Tested Low Voltage Noise:  
3.2nV/Hz Typ at 1kHz  
4.5nV/Hz Max at 1kHz  
Offset Voltage: 60µV Max  
Low VOS Drift: 0.2µV/°C Typ  
Low Input Bias Current: 20nA Max  
Wide Supply Range: 3V to ±15V  
High AVOL: 4V/µV Min, RL = 1k  
The voltage gain of the LT1677 is extremely high, especially  
with a single supply: 20 million driving a 1k load.  
High CMRR: 109dB Min  
High PSRR: 108dB Min  
In the design, processing and testing of the device, particular  
attention has been paid to the optimization of the entire  
distribution of several key parameters. Consequently, the  
specifications of even the lowest cost grade have been  
spectacularly improved compared to competing rail-to-rail  
amplifiers.  
Gain Bandwidth Product: 7.2MHz  
Slew Rate: 2.5V/µs  
Operating Temperature Range: 40°C to 85°C  
U
APPLICATIO S  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Low Noise Signal Processing  
Microvolt Accuracy Threshold Detection  
Strain Gauge Amplifiers  
Tape Head Preamplifiers  
Direct Coupled Audio Gain Stages  
Infrared Detectors  
U
TYPICAL APPLICATIO  
Precision High Side Current Sense  
SOURCE  
R
IN  
1k  
2
3
+
7
LT1677  
4
R
LINE  
0.1  
6
ZETEX  
BC856B  
V
OUT  
R
OUT  
V
R
OUT  
LOAD  
OUT  
20k  
= R  
LINE  
I
R
LOAD  
IN  
= 2V/AMP  
1677 TA01  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
1
LT1677  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
Supply Voltage ...................................................... ±22V  
Input Voltages (Note 2) ............ 0.3V Beyond Either Rail  
Differential Input Current (Note 2) ..................... ±25mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
Operating Temperature Range  
LT1677C (Note 4) ............................. 40°C to 85°C  
LT1677I ............................................. 40°C to 85°C  
Specified Temperature Range  
LT1677C (Note 5) ............................. 40°C to 85°C  
LT1677I ............................................. 40°C to 85°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
TOP VIEW  
NUMBER  
V
V
OS  
V
V
OS  
OS  
OS  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
TRIM  
–IN  
TRIM  
TRIM  
TRIM  
–IN  
+
+
+
V
+
V
LT1677CS8  
LT1677IS8  
LT1677CN8  
LT1677IN8  
+IN  
OUT  
NC  
OUT  
NC  
+IN  
V
V
S8 PART MARKING  
S8 PACKAGE  
N8 PACKAGE  
8-LEAD PDIP  
8-LEAD PLASTIC SO  
1677  
1677I  
TJMAX = 150°C, θJA = 130°C/ W  
TJMAX = 150°C, θJA = 190°C/ W  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = ±15V, VCM = VO = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
20  
150  
1.5  
60  
400  
5
µV  
µV  
mV  
OS  
V
V
= 14V to 15.1V  
= –13.3V to –15.1V  
CM  
CM  
V  
Time  
Long Term Input Voltage Stability  
Input Bias Current  
0.3  
µV/Mo  
OS  
I
±2  
0.16  
0.4  
±20  
0.4  
nA  
µA  
µA  
B
V
V
= 14V to 15.1V  
= –13.3V to –15.1V  
CM  
CM  
1.5  
I
Input Offset Current  
3
5
20  
15  
25  
200  
nA  
nA  
nA  
OS  
V
V
= 14V to 15.1V  
= –13.3V to –15.1V  
CM  
CM  
e
Input Noise Voltage  
0.1Hz to 10Hz (Note 7)  
70  
33  
100  
nV  
nV  
nV  
n
P-P  
P-P  
P-P  
V
V
= 15V  
= –15V  
CM  
CM  
Input Noise Voltage Density  
V
V
V
= 0V, f = 10Hz  
5.2  
25  
7
nV/Hz  
nV/Hz  
nV/Hz  
CM  
CM  
CM  
O
= 15V, f = 10Hz  
O
= –15V, f = 10Hz  
O
V
V
V
= 0V, f = 1kHz (Note 8)  
3.2  
17  
5.3  
4.5  
nV/Hz  
nV/Hz  
nV/Hz  
CM  
CM  
CM  
O
= 15V, f = 1kHz  
O
= –15V, f = 1kHz  
O
2
LT1677  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = ±15V, VCM = VO = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
UNITS  
i
Input Noise Current Density  
f = 10Hz  
O
1.2  
0.3  
pA/Hz  
pA/Hz  
n
O
f = 1kHz  
V
Input Voltage Range  
Input Resistance  
Input Capacitance  
±15.1  
±15.2  
V
CM  
R
Common Mode  
2
GΩ  
IN  
IN  
C
3.8  
4.2  
pF  
pF  
V = ±2.5V  
S
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
V
= –13.3V to 14.0V  
109  
74  
130  
95  
dB  
dB  
CM  
CM  
= ±15.1V  
V = ±1.7V to ±18V  
V = 2.7V to 40V, V = V = 1.7V  
106  
108  
130  
125  
dB  
dB  
S
S
CM  
O
A
R 10k, V = ±14V  
7
4
0.4  
25  
20  
0.7  
V/µV  
V/µV  
V/µV  
VOL  
L
L
L
O
R 1k, V = ±13.5V  
O
R 600, V = ±10V  
O
V
= 5V or 3V, V = 0V, V = 1.7V,  
CC  
EE  
CM  
R to GND, V  
L
= 0.5V to:  
OUT  
R 10k, V – 0.5V  
2
1.5  
10  
4
V/µV  
V/µV  
L
CC  
R 1k, V – 0.7V  
L
CC  
V
V
Output Voltage Swing Low  
Output Voltage Swing High  
Above V  
OL  
OH  
EE  
I
I
I
= 0.1mA  
= 2.5mA  
= 10mA  
80  
110  
300  
170  
250  
500  
mV  
mV  
mV  
SINK  
SINK  
SINK  
Below V  
CC  
I
I
I
= 0.1mA  
= 2.5mA  
= 10mA  
110  
190  
500  
170  
300  
700  
mV  
mV  
mV  
SOURCE  
SOURCE  
SOURCE  
I
Output Short-Circuit Current (Note 3)  
Slew Rate  
25  
1.7  
4.5  
35  
2.5  
mA  
V/µs  
MHz  
%
SC  
SR  
R 10k (Note 9)  
L
GBW  
THD  
Gain Bandwidth Product  
Total Harmonic Distortion  
Settling Time  
f = 100kHz  
O
7.2  
R = 2k, A = 1, f = 1kHz, V = 10V  
P-P  
0.0006  
L
V
O
O
t
10V Step 0.1%, A = +1  
5
6
µs  
µs  
S
V
10V Step 0.01%, A = +1  
V
R
O
Open-Loop Output Resistance  
Closed-Loop Output Resistance  
I
= 0  
OUT  
V
80  
1
A = 100, f = 10kHz  
I
Supply Current  
2.75  
3.5  
mA  
S
3
LT1677  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the temperature range of  
0°C < TA < 70°C. VS = ±15V, VCM = VO = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
30  
180  
1.8  
120  
550  
6
µV  
µV  
mV  
OS  
V
V
= 14.0V to 14.8V  
= –13.3V to –15V  
CM  
CM  
V  
Temp  
Average Input Offset Drift  
Input Bias Current  
SO-8  
N8 (Note 10)  
0.40  
0.20  
2
0.5  
µV/°C  
µV/°C  
OS  
I
±3  
0.19  
0.43  
±35  
0.6  
nA  
µA  
µA  
B
V
V
= 14.0V to 14.8V  
= –13.3V to –15V  
CM  
CM  
–2  
I
Input Offset Current  
2
90  
90  
20  
220  
350  
nA  
nA  
nA  
OS  
V
V
= 14.0V to 14.8V  
= –13.3V to –15V  
CM  
CM  
V
Input Voltage Range  
–15  
14.8  
V
CM  
CMRR  
Common Mode Rejection Ratio  
V
V
= –13.3V to 14.0V  
= –15V to 14.8V  
106  
73  
126  
93  
dB  
dB  
CM  
CM  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±1.7V to ±18V  
V = 2.8V to 40V, V = V = 1.7V  
S
104  
106  
127  
122  
dB  
dB  
S
CM  
O
A
R 10k, V = ±14V  
4
2
0.3  
20  
10  
0.5  
V/µV  
V/µV  
V/µV  
VOL  
L
O
R 1k, V = ±13.5V  
L
O
R 600, V = ±10V  
L
O
V
V
= 5V or 3V, V = 0V, V = 1.7V,  
EE CM  
CC  
= 0.4V to:  
OUT  
R 10k, V – 0.5V  
3
0.5  
8
4
V/µV  
V/µV  
L
CC  
R 1k, V – 0.7V  
L
CC  
V
V
Output Voltage Swing Low  
Output Voltage Swing High  
Above V  
EE  
OL  
OH  
I
I
I
= 0.1mA  
= 2.5mA  
= 10mA  
85  
160  
400  
200  
320  
600  
mV  
mV  
mV  
SINK  
SINK  
SINK  
Below V  
CC  
= 0.1mA  
= 2.5mA  
= 10mA  
I
I
I
140  
230  
580  
200  
350  
800  
mV  
mV  
mV  
SOURCE  
SOURCE  
SOURCE  
I
Output Short-Circiut Current (Note 3)  
Slew Rate  
20  
27  
2.3  
6.2  
3.0  
mA  
V/µs  
MHz  
mA  
SC  
SR  
R 10k (Note 9)  
1.5  
L
GBW  
Gain Bandwidth Product  
Supply Current  
f = 100kHz  
O
I
3.9  
S
4
LT1677  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the temperature range of  
40°C < TA < 85°C. VS = ±15V, VCM = VO = 0V unless otherwise noted. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
45  
200  
2
180  
650  
6.5  
µV  
µV  
mV  
OS  
V
V
= 14.0V to 14.7V  
= –13.3V to –15V  
CM  
CM  
V  
Temp  
Average Input Offset Drift  
Input Bias Current  
SO-8  
N8 (Note 10)  
0.40  
0.20  
2.0  
0.5  
µV/°C  
µV/°C  
OS  
I
±7  
0.25  
0.45  
±50  
0.75  
nA  
µA  
µA  
B
V
V
= 14.0V to 14.7V  
= –13.3V to –15V  
CM  
CM  
2.3  
–15  
I
Input Offset Current  
6
100  
100  
40  
250  
400  
nA  
nA  
nA  
OS  
V
V
= 14.0V to 14.7V  
= –13.3V to –15V  
CM  
CM  
V
Input Voltage Range  
14.7  
V
CM  
CMRR  
Common Mode Rejection Ratio  
V
V
= –13.3V to 14.0V  
= –15V to 14.7V  
105  
72  
124  
91  
dB  
dB  
CM  
CM  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±1.7V to ±18V  
V = 3.1V to 40V, V = V = 1.7V  
S
103  
105  
125  
120  
dB  
dB  
S
CM  
O
A
R 10k, V = ±14V  
3
1.5  
0.2  
17  
8
0.35  
V/µV  
V/µV  
V/µV  
VOL  
L
O
R 1k, V = ±13.5V  
L
O
R 600, V = ±10V  
L
O
V
V
= 5V or 3V, V = 0V, V = 1.7V,  
EE CM  
CC  
= 0.5V to:  
OUT  
R 10k, V – 0.5V  
2
0.2  
15  
2
V/µV  
V/µV  
L
CC  
R 1k, V – 0.7V  
L
CC  
V
V
Output Voltage Swing Low  
Output Voltage Swing High  
Above V  
EE  
OL  
OH  
I
I
I
= 0.1mA  
= 2.5mA  
= 10mA  
90  
175  
450  
230  
350  
650  
mV  
mV  
mV  
SINK  
SINK  
SINK  
Below V  
CC  
= 0.1mA  
= 2.5mA  
= 10mA  
I
I
I
150  
250  
600  
250  
375  
850  
mV  
mV  
mV  
SOURCE  
SOURCE  
SOURCE  
I
Output Short-Circuit Current (Note 3)  
Slew Rate  
18  
25  
2.0  
5.8  
3.1  
mA  
V/µs  
MHz  
mA  
SC  
SR  
R 10k (Note 9)  
1.2  
L
GBW  
Gain Bandwidth Product  
Supply Current  
f = 100kHz  
O
I
4.0  
S
meet specified performance from –40°C to 85°C but is not tested or QA  
sampled at these temperatures. The LT1677I is guaranteed to meet the  
extended temperature limits.  
Note 6: Typical parameters are defined as the 60% yield of parameter  
distributions of individual amplifier; i.e., out of 100 LT1677s, typically 60  
op amps will be better than the indicated specification.  
Note 7: See the test circuit and frequency response curve for 0.1Hz to  
10Hz tester in the Applications Information section of the LT1677 data  
sheet.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 2: The inputs are protected by back-to-back diodes. Current limiting  
resistors are not used in order to achieve low noise. If differential input  
voltage exceeds ±1.4V, the input current should be limited to 25mA. If the  
common mode range exceeds either rail, the input current should be  
limited to 10mA.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum.  
Note 8: Noise is 100% tested.  
Note 9: Slew rate is measured in A = 1; input signal is ±7.5V, output  
Note 4: The LT1677C and LTC1677I are guaranteed functional over the  
Operating Temperature Range of 40°C to 85°C.  
V
measured at ±2.5V.  
Note 10: This parameter is not 100% tested.  
Note 5: The LT1677C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1677C is designed, characterized and expected to  
5
LT1677  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Voltage Noise vs Frequency  
Current Noise vs Frequency  
Voltage Noise vs Temperature  
10  
7
6
5
4
3
2
100  
10  
1
V
T
= ±15V  
= 25°C  
V
V
= ±15V  
CM  
S
A
S
= 0V  
1/f CORNER 10Hz  
10Hz  
1kHz  
V
< –13.5V  
CM  
V
> 14.5V  
CM  
1/f CORNER 8.5Hz  
1/f CORNER 180Hz  
1
V
CM  
V
< –14.5V  
V
CM  
CM  
–13.5V TO 14.5V  
–13.5V TO 14.5V  
1/f CORNER 90Hz  
1/f CORNER 13Hz  
V
= ±15V  
= 25°C  
S
A
1/f CORNER 60Hz  
100  
V
> 14.5V  
CM  
T
0.1  
10  
1000  
10000  
–50  
0
25  
50  
75  
125  
–25  
100  
0.1  
1
10  
FREQUENCY (Hz)  
100  
1000  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1677 G04  
1677 G03  
1677 G05  
Offset Voltage Shift  
vs Common Mode  
VOS vs Temperature of  
Representative Units  
Input Bias Current Over the  
Common Mode Range  
140  
120  
100  
80  
2.5  
2.0  
250  
800  
600  
V
V
= ±15V  
S
V
= ±15V  
= 25°C  
S
A
= 0V  
200  
150  
100  
50  
CM  
T
SO-8  
N8  
1.5  
V
IS REFERRED  
CM  
OS  
400  
TO V = 0V  
1.0  
V
CM  
= –13.6V  
V
CM  
= 15.15V  
60  
200  
0.5  
40  
INPUT BIAS CURRENT  
= 14.3V  
0
0
0
20  
V
CM  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–50  
–100  
–150  
–200  
–250  
0
–200  
–400  
–600  
–800  
V
CM  
= –15.3V  
–20  
–40  
–60  
–80  
V
T
= ±1.5V TO ±15V  
= 25°C  
S
A
5 TYPICAL PARTS  
–55  
–35 –15  
5
25 45 65 85 105 125  
–1.0  
V
1.0 2.0 –0.8 –0.4  
V
0.4  
0
4
–16 –12 –8 –4  
8
12 16  
EE  
CC  
TEMPERATURE (°C)  
COMMON MODE INPUT VOLTAGE (V)  
V
– V (V) – V (V)  
V
CM  
CM  
EE  
CC  
1677 G11  
1677 G08  
1677 G06  
Distribution of Input Offset  
Voltage Drift (N8)  
Long-Term Stability of Four  
Representative Units  
Common Mode Range  
vs Temperature  
5
4
20  
18  
16  
14  
12  
10  
8
2.5  
2.0  
250  
200  
150  
100  
50  
V
= ±15V  
V
= ±2.5V TO ±15V  
S
A
S
T
= –40°C TO 85°C  
120 PARTS  
(2 LOTS)  
3
1.5  
125°C  
2
1.0  
25°C  
–55°C  
1
0.5  
–55°C  
0
0
0
–1  
–2  
–3  
–4  
–5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–50  
–100  
–150  
–200  
–250  
V
IS REFERRED 125°C  
OS  
6
TO V = 0V  
CM  
25°C  
4
2
0
0
100 200 300 400 500 600  
TIME (HOURS)  
700 800  
900  
–0.25 –0.15 –0.05 0.05 0.15 0.25 0.35 0.45  
INPUT OFFSET VOLTAGE DRIFT (µV/°C)  
1677 G02  
–1.0  
V
1.0 2.0 –0.8 –0.4  
V
0.4  
EE  
CC  
V
– V (V)  
EE  
V
– V (V)  
CM CC  
CM  
1677 G13  
1677 G09  
6
LT1677  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Supply Rejection Ratio  
vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
Supply Current vs Supply Voltage  
4
3
2
1
160  
140  
120  
100  
80  
160  
140  
120  
100  
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
EM  
S
A
S
A
V
= 0V  
T
= 125°C  
= 25°C  
A
T
A
NEGATIVE SUPPLY  
80  
60  
POSITIVE SUPPLY  
T
= –55°C  
60  
A
40  
40  
20  
0
20  
0
0
±5  
±10  
±15  
±20  
10  
100  
FREQUENCY (Hz)  
10k 100k 1M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1
1k  
SUPPLY VOLTAGE (V)  
1677 G14  
1677 G28  
1677 G15  
Overshoot vs Load Capacitance  
Voltage Gain vs Frequency  
Gain, Phase Shift vs Frequency  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
180  
140  
100  
60  
V
T
= ±15V  
V
V
T
= ±15V  
S
V
= ±15V  
= 25°C  
S
S
A
= 25°C  
= 0V  
A
T
CM  
R
= 10k TO 2k  
= 25°C  
L
A
C
= 10pF  
L
V
= 0V  
CM  
RISING  
EDGE  
V
= V  
CC  
V
CM  
= V  
EE  
CM  
FALLING  
EDGE  
20  
–10  
–20  
–20  
10  
100  
CAPACITANCE (pF)  
1000  
0.1  
1
10  
100  
0.01  
1
100  
10k  
1M  
100M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
1677 G30  
1677 G17  
1677 G16  
PM, GBWP, SR vs Temperature  
Large-Signal Transient Response  
Small-Signal Transient Response  
70  
60  
50  
3
V
S
C
L
= ±15V  
= 15pF  
PHASE  
10V  
50mV  
0
8
7
6
5
4
GBW  
10V  
50mV  
SLEW  
2
AVCL = 1  
VS = ±15V  
A
VCL = 1  
VS = ±15V  
L = 15pF  
C
1
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
1677 G29  
7
LT1677  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Settling Time vs Output Step  
(Inverting)  
Settling Time vs Output Step  
(Noninverting)  
Output Voltage Swing  
vs Load Current  
+
12  
10  
12  
10  
V
0
0.01% OF  
FULL SCALE  
V
A
T
= ±15V  
= 1  
= 25°C  
V = ±15V  
S
S
V
A
2k  
5k  
+
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5k  
–55°C  
V
IN  
V
L
OUT  
V
2k  
OUT  
+
V
IN  
R
= 1k  
8
6
8
6
25°C  
0.01% OF  
FULL SCALE  
125°C  
0.01% OF  
FULL SCALE  
0.01% OF  
FULL SCALE  
0.1% OF  
FULL SCALE  
125°C  
25°C  
0.1% OF  
FULL SCALE  
4
2
0
4
2
0
0.1% OF  
FULL SCALE  
0.1% OF  
FULL SCALE  
V
A
= ±15V  
= –1  
= 25°C  
S
V
A
–55°C  
T
V
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
I
I
OUTPUT STEP (V)  
SINK  
SOURCE  
OUTPUT STEP (V)  
OUTPUT CURRENT (mA)  
1677 G33  
1677 G32  
1677 G22  
Total Harmonic Distortion and  
Noise vs Frequency for  
Noninverting Gain  
Output Short-Circuit Current  
vs Time  
Closed-Loop Output Impedance  
vs Frequency  
0.1  
50  
40  
30  
20  
10  
100  
10  
V
S
= ±15V  
Z
V
A
= 2k/15pF  
L
O
V
–55°C  
= 20V  
P-P  
= +1, +10, +100  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
25°C  
0.01  
0.001  
125°C  
1
A
V
= 100  
A
= +100  
V
–30  
–35  
–40  
–45  
–50  
0.1  
25°C  
A
V
= 10  
125°C  
–55°C  
A
= +1  
V
0.01  
0.001  
A
V
= 1  
0.0001  
10  
100  
1k  
10k  
100k  
1M  
0
2
3
1
4
100  
20  
1k  
10k 20k  
TIME FROM OUTPUT SHORT TO GND (MIN)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1677 G31  
1677 G24  
1677 G23  
Total Harmonic Distortion and  
Noise vs Output Amplitude for  
Noninverting Gain  
Total Harmonic Distortion and  
Noise vs Output Amplitude for  
Inverting Gain  
Total Harmonic Distortion and  
Noise vs Frequency for Inverting  
Gain  
1
0.1  
0.01  
1
Z
f
= 2k/15pF  
= 1kHz  
= +1, +10, +100  
Z
V
A
= 2k/15pF  
Z
f
= 2k/15pF  
= 1kHz  
= –1, –10, –100  
L
L
O
V
L
= 20V  
O
P-P  
O
A
= –1, –10, – 100  
A
V
V
MEASUREMENT BANDWIDTH  
= 10Hz TO 22kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 22kHz  
0.1  
0.01  
0.1  
A
= 100  
V
A
= –100  
V
A
= –100  
= –10  
0.01  
V
A
= 10  
A
= –10  
V
V
0.001  
0.0001  
A
V
A
= 1  
0.001  
A = –1  
V
0.001  
V
A
V
= –1  
100  
0.0001  
0.0001  
0.3  
1
10  
)
30  
0.3  
1
10  
)
30  
20  
1k  
10k 20k  
OUTPUT SWING (V  
OUTPUT SWING (V  
P-P  
P-P  
FREQUENCY (Hz)  
1677 G26  
1677 G25  
1677 G27  
8
LT1677  
W U U  
APPLICATIO S I FOR ATIO  
U
General  
10k  
8
15V  
The LT1677 series devices may be inserted directly into  
OP-07,OP-27,OP-37andsocketswithorwithoutremoval  
of external compensation or nulling components. In addi-  
tion, the LT1677 may be fitted to 741 sockets with the  
removal or modification of external nulling components.  
1
+
2
3
7
6
OUTPUT  
LT1677  
INPUT  
4
–15V  
1677 F02  
Rail-to-Rail Operation  
Figure 2. Standard Adjustment  
To take full advantage of an input range that can exceed  
the supply, the LT1677 is designed to eliminate phase  
reversal. ReferringtothephotographsshowninFigure1,  
the LT1677 is operating in the follower mode (AV = +1) at  
asingle3Vsupply. TheoutputoftheLT1677clipscleanly  
and recovers with no phase reversal. This has the benefit  
of preventing lock-up in servo systems and minimizing  
distortion components.  
The adjustment range with a 10kpot is approximately  
±2.5mV. If less adjustment range is needed, the sensitiv-  
ity and resolution of the nulling can be improved by using  
a smaller pot in conjunction with fixed resistors. The  
example has an approximate null range of ±200µV  
(Figure 3).  
Offset Voltage Adjustment  
1k  
15V  
The input offset voltage of the LT1677 and its drift with  
temperature are permanently trimmed at wafer  
testing to a low level. However, if further adjustment of  
VOS is necessary, the use of a 10knulling potentiometer  
will not degrade drift with temperature. Trimming to a  
value other than zero creates a drift of (VOS/300)µV/°C,  
e.g., if VOS is adjusted to 300µV, the change in drift will be  
1µV/°C (Figure 2).  
4.7k  
4.7k  
1
2
3
8
LT1677  
4
7
6
OUTPUT  
+
–15V  
1677 F03  
Figure 3. Improved Sensitivity Adjustment  
LT1677 Output  
Input = 0.5V to 3.5V  
3V  
2V  
1V  
0V  
3V  
2V  
1V  
0V  
0.5V  
0.5V  
1577 F01a  
1577 F01b  
Figure 1. Voltage Follower with Input Exceeding the Supply Voltage (VS = 3V)  
9
LT1677  
W U U  
U
APPLICATIO S I FOR ATIO  
creating additional phase shift and reducing the phase  
margin.Asmallcapacitor(20pFto50pF)inparallelwithRF  
will eliminate this problem.  
Offset Voltage and Drift  
Thermocouple effects, caused by temperature gradients  
across dissimilar metals at the contacts to the input  
terminals, can exceed the inherent drift of the amplifier  
unless proper care is exercised. Air currents should be  
minimized, package leads should be short, the two input  
leadsshouldbeclosetogetherandmaintainedatthesame  
temperature.  
R
F
+
2.5V/µs  
OUTPUT  
LT1677  
1677 F05  
The circuit shown to measure offset voltage is also used  
as the burn-in configuration for the LT1677, with the  
supply voltages increased to ±20V (Figure 4).  
Figure 5. Pulsed Operation  
50k*  
15V  
Noise Testing  
The 0.1Hz to 10Hz peak-to-peak noise of the LT1677 is  
measured in the test circuit shown (Figure 6a). The fre-  
quency response of this noise tester (Figure 6b) indicates  
that the 0.1Hz corner is defined by only one zero. The test  
time to measure 0.1Hz to 10Hz noise should not exceed  
ten seconds, as this time limit acts as an additional zero to  
eliminate noise contributions from the frequency band  
below 0.1Hz.  
2
7
6
100* LT1677  
V
OUT  
+
3
V
= 1000V  
OS  
OUT  
4
*RESISTORS MUST HAVE LOW  
THERMOELECTRIC POTENTIAL  
50k*  
–15V  
1677 F04  
Figure 4. Test Circuit for Offset Voltage and  
Offset Voltage Drift with Temperature  
Measuring the typical 70nV peak-to-peak noise perfor-  
mance of the LT1677 requires special test precautions:  
Unity-Gain Buffer Application  
1. The device should be warmed up for at least five  
minutes. As the op amp warms up, its offset voltage  
changes typically 3µV due to its chip temperature  
increasing 10°C to 20°C from the moment the power  
suppliesareturnedon. Intheten-secondmeasurement  
interval these temperature-induced effects can easily  
exceed tens of nanovolts.  
When RF 100and the input is driven with a fast, large-  
signal pulse (>1V), the output waveform will look as  
shown in the pulsed operation diagram (Figure 5).  
During the fast feedthrough-like portion of the output, the  
input protection diodes effectively short the output to the  
inputandacurrent, limitedonlybytheoutputshort-circuit  
protection, will be drawn by the signal generator. With  
RF 500, the output is capable of handling the current  
requirements (IL 20mA at 10V) and the amplifier stays  
in its active mode and a smooth transition will occur.  
2. For similar reasons, the device must be well shielded  
from air currents to eliminate the possibility of  
thermoelectric effects in excess of a few nanovolts,  
which would invalidate the measurements.  
As with all operational amplifiers when RF > 2k, a pole will  
be created with RF and the amplifier’s input capacitance,  
3. Sudden motion in the vicinity of the device can also  
“feedthrough” to increase the observed noise.  
10  
LT1677  
W U U  
U
APPLICATIO S I FOR ATIO  
0.1µF  
100  
90  
80  
70  
60  
50  
40  
30  
100k  
10Ω  
+
2k  
*
+
22µF  
LT1677  
SCOPE  
× 1  
IN  
4.3k  
LT1001  
4.7µF  
R
= 1M  
110k  
2.2µF  
VOLTAGE GAIN  
= 50,000  
100k  
0.1µF  
*DEVICE UNDER TEST  
NOTE: ALL CAPACITOR VALUES ARE FOR  
NONPOLARIZED CAPACITORS ONLY  
24.3k  
0.01  
0.1  
1
10  
100  
1677 F06a  
FREQUENCY (Hz)  
1677 F06b  
Figure 6b. 0.1Hz to 10Hz Peak-to-Peak  
Noise Tester Frequency Response  
Figure 6a. 0.1Hz to 10Hz Noise Test Circuit  
100k  
Current noise is measured in the circuit shown in Figure 7  
and calculated by the following formula:  
100Ω  
500k  
LT1677  
e
no  
1/2  
500k  
+
2
)
2
)
130nV  
(
e
101  
1677 F07  
(
no  
i =  
n
1M101  
(
)(  
)
Figure 7  
The LT1677 achieves its low noise, in part, by operating  
the input stage at 120µA versus the typical 10µA of most  
other op amps. Voltage noise is inversely proportional  
while current noise is directly proportional to the square  
root of the input stage current. Therefore, the LT1677’s  
currentnoisewillberelativelyhigh.Atlowfrequencies,the  
low 1/f current noise corner frequency (90Hz) mini-  
mizes current noise to some extent.  
1000  
R
R
V
= ±15V  
S
A
T
= 25°C  
SOURCE RESISTANCE = 2R  
100  
10  
1
AT 1kHz  
AT 10Hz  
RESISTOR  
NOISE ONLY  
In most practical applications, however, current noise will  
not limit system performance. This is illustrated in the  
Total Noise vs Source Resistance plot (Figure 8) where:  
0.1  
1
10  
100  
SOURCE RESISTANCE (k)  
1677 F08  
Total Noise = [(voltage noise)2 + (current noise • RS)2 +  
(resistor noise)2]1/2  
Figure 8. Total Noise vs Source Resistance  
Three regions can be identified as a function of source  
resistance:  
(iii) RS > 50k at 1kHz  
RS > 8k at 10Hz  
Current noise  
dominates  
(i) RS 400. Voltage noise dominates  
}
(ii) 400Ω ≤ RS 50k at 1kHz  
400Ω ≤ RS 8k at 10Hz  
Resistor noise  
dominates  
ClearlytheLT1677shouldnotbeusedinregion(iii),where  
total system noise is at least six times higher than the  
}
11  
LT1677  
W U U  
U
APPLICATIO S I FOR ATIO  
resistorsRC1, RC2 isreducedtolessthan200mV, degrad-  
ing the slew rate, bandwidth voltage noise, offset voltage  
and input bias current (the cancellation is shut off).  
voltage noise of the op amp, i.e., the low voltage noise  
specification is completely wasted. In this region the  
LT1792 or LT1793 is the best choice.  
When the input common mode range goes below 1.5V  
above the negative rail, the NPN input pair (Q1, Q2) shuts  
off and the PNP input pair (Q8, Q9) turns on. The offset  
voltage, input bias current, voltage noise and bandwidth  
are also degraded. The graph of Offset Voltage vs Com-  
mon Mode Range shows where the knees occur by  
displaying the change in offset voltage. The change-over  
points are temperature dependent, see Common Mode  
Range vs Temperature.  
Rail-to-Rail Input  
The LT1677 has the lowest voltage noise, offset voltage  
and highest gain when compared to any rail-to-rail op  
amp. The input common mode range for the LT1677 can  
exceed the supplies by at least 100mV. As the common  
mode voltage approaches the positive rail (VCC – 0.7V),  
the tail current for the input pair (Q1, Q2) is reduced,  
which prevents the input pair from saturating (refer to the  
Simplified Schematic). The voltage drop across the load  
U
TYPICAL APPLICATIO  
Microvolt Comparator with Hysteresis  
15V  
10M  
5%  
365Ω  
1%  
7
3
+
15k  
1%  
INPUT  
8
6
OUTPUT  
LT1677  
2
4
–15V  
1677 TA02  
POSITIVE FEEDBACK TO ONE OF THE NULLING TERMINALS  
CREATES APPROXIMATELY 5µV OF HYSTERESIS. OUTPUT  
CAN SINK 16mA  
INPUT OFFSET VOLTAGE IS TYPICALLY CHANGED LESS THAN  
5µV DUE TO THE FEEDBACK  
12  
LT1677  
W
W
SI PLIFIED SCHE ATIC  
+
+
13  
LT1677  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1098  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
14  
LT1677  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 1298  
15  
LT1677  
U
TYPICAL APPLICATIO  
This 2-wire remote Geophone preamp operates on a  
current-loop principle and so has good noise immunity.  
Quiescent current is 10mA for a VOUT of 2.5V. Excitation  
will cause AC currents about this point of ~±4mA for a  
gain of ~107. Components R5 and Q1 convert the voltage  
into a current for transmission back to R10, which con-  
verts it into a voltage again. The LM334 and 2N3904 are  
not temperature compensated so the DC output contains  
temperature information.  
V
OUT of ~±1V max. The op amp is configured for a voltage  
2-Wire Remote Geophone Preamp  
R9  
20Ω  
+
V
V
LINEAR  
TECHNOLOGY  
LM334Z  
R
R8  
11Ω  
6mA  
Q1  
12V  
3V  
2N3904  
R2  
R6  
C
100k  
R4  
4.99k  
+
R
C3  
14k  
LT1431CZ  
220µF  
R7  
24.9k  
A
R5  
243Ω  
V
R1  
150Ω  
OUT  
2.5V ±1V  
2 –  
C2  
0.1µF  
R10  
250Ω  
7
LT1677  
4
GEOSOURCE  
+
6
MD-105  
R
= 847Ω  
L
3
+
GEOPHONE  
C4  
1000pF  
R3  
16.2k  
1677 TA03  
||  
R2 + R3 R4  
107  
A
=
V
R1 + R  
L
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
Ultralow Noise Precision Op Amp  
Ultralow Noise, Low distortion Audio Op Amp  
Dual/Quad Low Noise, High Speed Precision Op Amps  
COMMENTS  
LT1028  
Lowest Noise 0.85nV/Hz  
LT1115  
0.002% THD, Max Noise 1.2nV/Hz  
Similar to LT1007  
LT1124/LT1125  
LT1126/LT1127  
LT1498/LT1499  
LT1792  
Dual/Quad Decompensated Low Noise, High Speed Precision Op Amps  
10MHz, 5V/µs, Dual/Quad Rail-to-Rail Input and Output Op Amps  
Low Noise, Precision JFET Input Op Amp  
Similar to LT1037  
Precision C-LoadTM Stable  
4.2nV/Hz, 10fA/Hz  
LT1793  
Low Noise, Picoampere Bias Current Op Amp  
6nV/Hz, 1fA/Hz  
LT1884  
Dual Rail-to-Rail Output Picoamp Input Precision Op Amp  
2.2MHz Bandwidth, 1.2V/µs SR  
C-Load is a trademark of Linear Technology Corporation.  
1677i LT/TP 0200 4K • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 2000  

相关型号:

LT1677CS8

Low Noise, Rail-to-Rail Precision Op Amp
Linear

LT1677CS8#PBF

暂无描述
Linear

LT1677CS8#TRPBF

LT1677 - Low Noise, Rail-to-Rail Precision Op Amp; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1677I

Low Noise, Rail-to-Rail Precision Op Amp
Linear

LT1677IN8

Low Noise, Rail-to-Rail Precision Op Amp
Linear

LT1677IN8#PBF

LT1677 - Low Noise, Rail-to-Rail Precision Op Amp; Package: PDIP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1677IN8#TR

IC OP-AMP, 180 uV OFFSET-MAX, 5.8 MHz BAND WIDTH, PDIP8, 0.300 INCH, PLASTIC, DIP-8, Operational Amplifier
Linear

LT1677IS8

Low Noise, Rail-to-Rail Precision Op Amp
Linear

LT1677IS8#PBF

暂无描述
Linear

LT1677IS8#TRPBF

LT1677 - Low Noise, Rail-to-Rail Precision Op Amp; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1677_1

Low Noise, Rail-to-Rail Precision Op Amp
Linear

LT1678

Dual/Quad Low Noise, Rail-to-Rail, Precision Op Amps
Linear