LT1302-5 [Linear]

Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters; 微功耗高输出电流的升压调节和固定5V DC / DC转换器
LT1302-5
型号: LT1302-5
厂家: Linear    Linear
描述:

Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters
微功耗高输出电流的升压调节和固定5V DC / DC转换器

转换器
文件: 总16页 (文件大小:360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1302/LT1302-5  
Micropower  
High Output Current  
Step-Up Adjustable and  
Fixed 5V DC/DC Converters  
U
DESCRIPTIO  
EATURE  
S
F
The LT®1302/LT1302-5 are micropower step-up DC/DC  
converters that maintain high efficiency over a wide  
range of output current. They operate from a supply  
voltage as low as 2V and feature automatic shifting  
between Burst Mode operation at light load, and current  
mode operation at heavy load.  
5V at 600mA or 12V at 120mA from 2-Cell Supply  
200µA Quiescent Current  
Logic Controlled Shutdown to 15µA  
Low VCESAT Switch: 310mV at 2A Typical  
Burst ModeTM Operation at Light Load  
Current Mode Operation for Excellent  
Line and Load Transient Response  
Available in 8-Lead SO or PDIP  
The internal low loss NPN power switch can handle  
current in excess of 2A and switch at frequencies up to  
400kHz. Quiescent current is just 200µA and can be  
further reduced to 15µA in shutdown.  
Operates with Supply Voltage as Low as 2V  
O U  
PPLICATI  
S
A
Availablein8-pinPDIPor8-pinSOpackaging,theLT1302/  
LT1302-5 have the highest switch current rating of any  
similarly packaged switching regulators presently on the  
market.  
Notebook and Palmtop Computers  
Portable Instruments  
Personal Digital Assistants  
Cellular Telephones  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a trademark of Linear Technology Corporation.  
Flash Memory  
U
O
TYPICAL APPLICATI  
2-Cell to 5V Converter Efficiency  
NC  
5
L1  
6
90  
10µH  
V
I
T
IN  
3
4
7
88  
86  
84  
SW  
SHDN  
LT1302-5  
SHUTDOWN  
C3  
0.1µF  
V
= 3V  
IN  
8
+
C1  
100µF  
PGND  
GND  
1
SENSE  
V
C
2 CELLS  
D1  
V
= 2.5V  
IN  
82  
80  
2
V
= 2V  
IN  
R
C
20k  
C
0.01µF  
+
78  
76  
74  
72  
70  
C2  
C
100µF  
OUTPUT  
5V  
LT1302 • F01  
600mA  
1
10  
100  
1000  
C1 = C2 = SANYO OS-CON  
L1 = COILTRONICS CTX10-3  
COILCRAFT DO3316-103  
D1 = MOTOROLA MBRS130LT3  
LOAD CURRENT (mA)  
LT1302 • TA02  
Figure 1. 2-Cell to 5V/600mA DC/DC Converter  
1
LT1302/LT1302-5  
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
VIN Voltage ............................................................. 10V  
SW Voltage ............................................................. 25V  
FB Voltage .............................................................. 10V  
SHDN Voltage ......................................................... 10V  
VC Voltage ................................................................ 4V  
IT Voltage.................................................................. 4V  
Maximum Power Dissipation ............................ 700mW  
Operating Temperature Range .................... 0°C to 70°C  
Storage Temperature Range ............... – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
ORDER PART  
NUMBER  
GND  
1
2
3
4
PGND  
SW  
8
7
6
5
V
C
LT1302CN8  
LT1302CS8  
LT1302CN8-5  
LT1302CS8-5  
SHDN  
V
IN  
(SENSE*)FB  
I
T
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
*FIXED VERSION  
PINS 1 AND 8 ARE INTERNALLY  
CONNECTED IN SOIC PACKAGE  
S8 PART MARKING  
1302  
13025  
TJMAX = 125°C, θJA = 100°C/W (N8)  
JMAX = 125°C, θJA = 80°C/W (S8)  
T
Consult factory for Industrial and Military grade parts.  
DC ELECTRICAL CHARACTERISTICS  
TA = 25°C, VIN = 2.5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Quiescent Current  
V
SHDN  
V
SHDN  
= 0.5V, V = 1.3V  
200  
15  
300  
25  
µA  
µA  
Q
FB  
= 1.8V  
V
V
Input Voltage Range  
2.0  
2.2  
1.22  
V
V
V
nA  
IN  
8
1.26  
Feedback Voltage (LT1302)  
Feedback Pin Bias Current (LT1302)  
Output Sense Voltage (LT1302-5)  
Output Ripple Voltage (LT1302-5)  
Sense Pin Resistance to Ground (LT1302-5)  
Offset Voltage  
V = 0.4V  
1.24  
100  
5.05  
50  
420  
15  
FB  
C
V
FB  
= 1V  
V = 0.4V  
4.85  
5.25  
V
C
V = 0.4V  
C
mV  
kΩ  
mV  
mV  
V
OS  
See Block Diagram  
(Note 1)  
Comparator Hysteresis  
5
Oscillator Frequency  
Current Limit Not Asserted (Note 2)  
175  
160  
75  
220  
265  
310  
95  
kHz  
kHZ  
%
µs  
µs  
%/V  
mV  
mV  
µA  
A
A
V/V  
V
DC  
Maximum Duty Cycle  
Switch On Time  
Switch Off Time  
Output Line Regulation  
Switch Saturation Voltage  
86  
3.9  
0.7  
0.06  
310  
t
t
Current Limit Not Asserted  
ON  
OFF  
2 < V < 8V  
0.15  
400  
475  
IN  
V
CESAT  
I
= 2A  
SW  
Switch Leakage Current  
Switch Current Limit  
V
SW  
= 5V, Switch Off  
0.1  
1
2.8  
10  
V = 0.4V (Burst Mode Operation)  
C
V = 1.25V (Full Power) (Note 3)  
2.0  
50  
1.8  
3.9  
C
Error Amplifier Voltage Gain  
Shutdown Pin High  
Shutdown Pin Low  
0.9V V 1.2V, V /V  
75  
C
C
FB  
V
V
SHDNH  
SHDNL  
SHDN  
0.5  
20  
V
I
Shutdown Pin Bias Current  
V
SHDN  
V
SHDN  
V
SHDN  
= 5V  
= 2V  
= 0V  
8
3
0.1  
µA  
µA  
µA  
1
I Pin Resistance to Ground  
T
3.9  
kΩ  
The  
denotes specifications which apply over the 0°C to 70°C  
Note 2: The LT1302 operates in a variable frequency mode. Switching  
frequency depends on load inductance and operating conditions and may  
be above specified limits.  
temperature range.  
Note 1: Hysteresis is specified at DC. Output ripple depends on capacitor  
size and ESR.  
Note 3: Minimum switch current 100% tested. Maximum switch current  
guaranteed by design.  
2
LT1302/LT1302-5  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
No-Load Quiescent Current  
Circuit of Figure 1  
Switch Saturation Voltage  
Switch Saturation Voltage  
600  
500  
400  
300  
200  
100  
0
400  
350  
300  
250  
200  
150  
100  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
T
A
= 25°C  
T
A
= 25°C  
I
= 2A  
SW  
0
0
1
2
3
4
–50  
0
25  
50  
75  
100  
–25  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
SWITCH CURRENT (A)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
1302 G02  
1302 G03  
1302 G01  
LT1302 Feedback Voltage  
LT1302-5 Sense Pin Resistance  
Quiescent Current  
300  
250  
200  
150  
100  
50  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
600  
500  
400  
300  
200  
100  
0
V
= 2.5V  
IN  
SWITCH OFF  
0
–50  
0
25  
50  
75  
100  
–50  
0
25  
50  
75  
100  
–25  
–25  
–50  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1302 G06  
1302 G04  
1302 G05  
Error Amplifier Offset Voltage  
LT1302-5 Output Voltage  
Maximum On-Time  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
5.100  
5.075  
5.050  
5.025  
5.000  
4.975  
4.950  
4.925  
4.900  
30  
25  
20  
15  
10  
5
0
–50  
0
25  
50  
75  
100  
–50  
0
25  
50  
75  
100  
–25  
–25  
–50  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1302 G09  
1302 G08  
1302 G07  
3
LT1302/LT1302-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
U W  
Shutdown Pin Bias Current  
Oscillator Frequency  
Maximum Duty Cycle  
100  
90  
80  
70  
60  
50  
300  
275  
250  
225  
200  
175  
150  
20  
18  
16  
14  
12  
10  
8
T
A
= 25°C  
6
4
2
0
–50  
0
25  
50  
75  
100  
–50  
0
25  
50  
75  
100  
–25  
–25  
0
4
6
7
1
2
3
5
8
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHUTDOWN VOLTAGE (V)  
1302 G10  
1302 G11  
1302 G12  
LT1302-5 Output Voltage vs  
Load Current  
Maximum Output Power*  
Boost Mode  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
20  
16  
12  
8
V
= 4V  
IN  
V
IN  
= 2.2V  
V
IN  
= 3V  
4
0
0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
LOAD CURRENT (A)  
0
2
4
6
8
10  
0.1  
INPUT VOLTAGE (V)  
1302 G13  
1302 G14  
* APPROXIMATE  
U
U
U
PI FU CTIO S  
IT (Pin5):Normallyleftfloating. Additionofa3.3kresistor  
toGNDforcestheLT1302intocurrentmodeatlightloads.  
Efficiency drops at light load but increases at medium  
loads. See Applications Information section.  
GND (Pin 1): Signal Ground. Feedback resistor and 0.1µF  
ceramic bypass capacitor from VIN should be connected  
directly to this pin.  
VC (Pin 2): Frequency Compensation Pin. Connect series  
RC to GND. Keep trace short.  
VIN (Pin6):SupplyPin.Mustbebypassedwith:(1)a0.1µF  
ceramictoGND, and(2)alargevalueelectrolytictoPGND.  
When VIN is greater than 5V, a low value resistor (2to  
10) is recommended to isolate the VIN pin from input  
supply noise.  
SHDN (Pin 3): Shutdown. Pull high to effect shutdown; tie  
to ground for normal operation.  
FB/Sense (Pin 4): Feedback/Sense. On the LT1302 this  
pin connects to CMP1 input. On the LT1302-5 this pin  
connects to the output resistor string.  
4
LT1302/LT1302-5  
U
U
U
PI FU CTIO S  
SW (Pin 7): Switch Pin. Connect inductor and diode here.  
Keep layout short and direct.  
and 8 are thermally connected to the die. One square inch  
of PCB copper provides an adequate heat sink for the  
device.  
PGND (Pin 8): Power Ground. Pins 8 and 1 should be  
connected under the package. In the SO package, pins 1  
W
BLOCK DIAGRA SM  
D1  
L1  
V
IN  
V
OUT  
+
+
C2  
0.1µF  
C1  
C3  
6
7
V
SW  
IN  
36mV  
R4  
+
1.75Ω  
R5  
730Ω  
A2  
CMP1  
1.24V  
REFERENCE  
OFF  
+
ENABLE  
Q3  
220kHz  
OSCILLATOR  
Q4  
160X  
A3  
R1  
R2  
HYSTERETIC  
DRIVER  
FB  
COMPARATOR  
2
µA  
4
3
V
OS  
C5  
100pF  
V
IN  
15mV  
Q5  
V
IN  
Q1  
Q2  
A1  
BIAS  
SHDN  
SHUTDOWN  
+
ERROR  
AMPLIFIER  
300Ω  
3.6k  
GND  
V
I
PGND  
C
T
1
2
5
8
R3  
22k  
1302 F02  
C4  
0.01µF  
Figure 2. LT1302 Block Diagram  
5
LT1302/LT1302-5  
W
BLOCK DIAGRA SM  
SENSE  
4
V
IN  
6
SW  
7
36mV  
R4  
1.75Ω  
+
R5  
A2  
730Ω  
R1  
315k  
CMP1  
1.24V  
OFF  
220kHz  
OSCILLATOR  
+
REFERENCE  
ENABLE  
Q3  
Q4  
A3  
160X  
HYSTERETIC  
COMPARATOR  
DRIVER  
2
µA  
V
OS  
V
IN  
15mV  
Q5  
R2  
105k  
V
IN  
Q1  
Q2  
A1  
BIAS  
SHDN  
3
SHUTDOWN  
+
ERROR  
AMPLIFIER  
300Ω  
3.6k  
1
2
5
I
8
1302 F03  
GND  
V
C
PGND  
T
Figure 3. LT1302-5 Block Diagram  
U
OPERATIO  
CMP1’s hysteresis (about 5mV) CMP1 turns the oscilla-  
tor off. In this mode, peak switch current is limited to  
approximately 1A by A2, Q2, and Q3. Q2’s current, set at  
34µA, flows through R5, causing A2’s negative input to  
be 25mV lower than VIN. This node must fall more than  
36mV below VIN for A2 to trip and turn off the oscillator.  
The remaining 11mV is generated by Q3’s current flow-  
ing through R4. Emitter-area scaling sets Q3’s collector  
current to 0.625% of switch Q4’s current. When Q4’s  
current is 1A, Q3’s current is 6.25mA, creating an 11mV  
drop across R4 which, added to R5’s 25mV drop, is  
enough to trip A2.  
The LT1302’s operation can best be understood by  
examining the block diagram in Figure 2. The LT1302  
operates in one of two modes, depending on load. With  
light loads, comparator CMP1 controls the output; with  
heavy loads, control is passed to error amplifier A1.  
Burst Mode operation consists of monitoring the FB pin  
voltage with hysteretic comparator CMP1. When the FB  
voltage, related to the output voltage by external attenu-  
ator R1 and R2, falls below the 1.24V reference voltage,  
the oscillator is enabled. Switch Q4 alternately turns on,  
causing current buildup in inductor L1, then turns off,  
allowing the built-up current to flow into output capaci-  
tor C3 via D1. As the output voltage increases, so does  
the FB voltage; when it exceeds the reference plus  
When the output load is increased to the point where the  
1A peak current cannot support the output voltage,  
6
LT1302/LT1302-5  
U
OPERATIO  
CMP1 stays on and the peak switch current is regulated  
by the voltage on the VC pin (A1’s output). VC drives the  
base of Q1. As the VC voltage rises, Q2 conducts less  
current, resulting in less drop across R5. Q4’s peak  
current must then increase in order for A2 to trip. This  
currentmodecontrolresultsingoodstabilityandimmu-  
nity to input voltage variations. Because this is a linear,  
closed-loopsystem,frequencycompensationisrequired.  
A series RC from VC to ground provides the necessary  
pole-zero combination.  
The LT1302-5 incorporates feedback resistors R1 and  
R2 into the device. Output voltage is set at 5.05V in Burst  
Mode, dropping to 4.97V in current mode.  
U
W U U  
APPLICATIONS INFORMATION  
Inductor Selection  
t
×
ON  
V V  
(
)
IN  
SW  
L ≤  
Inductors used with the LT1302 must fulfill two require-  
ments. First, the inductor must be able to handle current  
of 2.5A to 3A without runaway saturation. Rod or drum  
coreunitsusuallysaturategraduallyanditisacceptableto  
exceed manufacturers’ published saturation currents by  
20% or so. Second, it should have low DCR, under 0.05Ω  
so that copper loss is kept low. Inductance value is not  
critical. Generally, for low voltage inputs down to 2V, a  
10µHinductorisrecommended(suchasCoilcraftDO3316-  
103). For inputs above 4V to 5V use a 22µH unit (such as  
CoilcraftDO3316-223). Switchingfrequencycanreachup  
to 400kHz so the core material should be able to handle  
high frequency without loss. Ferrite or molypermalloy  
cores are a better choice than powdered iron. If EMI is a  
concernatoroidalinductorissuggested,suchasCoiltronics  
CTX20-4.  
2A  
With the 2V input a value of 3.3µH is acceptable. Since the  
inductance is so low, usually a smaller core size can be  
used. Efficiency will not be as high as for the continuous  
case since peak currents will necessarily be higher.  
Table1listsinductorsuppliersalongwithappropriatepart  
numbers.  
Table 1. Recommended Inductors  
VENDOR  
Coilcraft  
PART NO.  
VALUE(  
µH)  
PHONE NO.  
(708) 639-6400  
DO3316-103  
DO3316-153  
DO3316-223  
10  
15  
22  
10  
20  
10  
20  
10  
15  
22  
Coiltronics  
Dale  
CTX10-2  
CTX20-4  
(407) 241-7876  
(605) 665-9301  
(708) 956-0666  
LPT4545-100LA  
LPT4545-200LA  
CD105-100  
CD105-150  
CDR125-220  
For a boost converter, duty cycle can be calculated by the  
following formula:  
Sumida  
V
IN  
DC = 1–  
VOUT  
Capacitor Selection  
AspecialsituationexistswheretheVOUT/VIN differentialis  
high, such as a 2V-to-12V converter. The required duty  
cycle is higher than the LT1302 can provide, so the  
converter must be designed for discontinuous operation.  
This means that inductor current goes to zero during the  
switch off-time. In the 2V-to-12V case, inductance must  
be low enough so that current in the inductor can reach  
2A in a single cycle. Inductor value can be defined by:  
The output capacitor should have low ESR for proper  
performance. A high ESR capacitor can result in “mode-  
hopping” between current mode and Burst Mode at high  
load currents because the output voltage will increase by  
I
SW × ESR when the inductor current is flowing into the  
diode. Figure 4 shows output voltage of an LT1302-5  
boostconverterwithtwo220µFAVXTPScapacitorsatthe  
output. Ripple voltage at a 510mA load is about 30mVP-P  
7
LT1302/LT1302-5  
U
W U U  
APPLICATIONS INFORMATION  
Input Capacitor  
and there is no low frequency component. The total ESR  
is under 0.03. If a single 100µF aluminum electrolytic  
capacitor is used instead, the converter mode-hops be-  
tween current mode and Burst Mode due to high ESR,  
causing the voltage comparator to trip as shown in Figure  
5. The ripple voltage is now over 500mVP-P and contains  
a low frequency component. Maximum allowable output  
capacitor ESR can be calculated by the following formula:  
The input supply should be decoupled with a good quality  
electrolytic capacitor close to the LT1302 to provide a  
stable input supply. Long leads or traces from power  
source to the switcher can have considerable impedance  
at the LT1302’s switching frequency. The input capacitor  
provides a low impedance at high frequency. A 0.1µF  
ceramiccapacitorisrequiredrightattheVIN pin. Whenthe  
input voltage can be above 5V, a 10/1µF decoupling  
network for VIN is recommended as detailed in Figure 6.  
This network is also recommended when driving a trans-  
former.  
VOS × VOUT  
VREF ×1A  
ESRMAX  
=
where,  
VOS = 15mV  
V
> 5V  
IN  
V
REF = 1.24V  
10Ω  
V
IN  
SW  
LT1302  
+
47µF  
TO  
100µF  
+
1µF  
• • •  
VOUT  
50mV/DIV  
PGND  
GND  
AC COUPLED  
1302 F06  
510mA  
ILOAD  
10mA  
Figure 6. A 10/1µF Decoupling Network at VIN Is  
Recommended When Input Voltage Is Above 5V  
500µs/DIV  
1302 F04  
Figure 4. Low ESR Output Capacitor Results in Stable  
Operation. Ripple Voltage is Under 30mVP-P  
Table 2 lists capacitor vendors along with device types.  
Table 2. Recommended Capacitors  
VENDOR  
AVX  
Sanyo  
SERIES  
TPS  
OS-CON  
595D  
TYPE  
PHONE NO.  
Surface Mount  
Through Hole  
Surface Mount  
(803) 448-9411  
(619) 661-6835  
(603) 224-1961  
VOUT  
200mV/DIV  
AC COUPLED  
Sprague  
510mA  
Diode Selection  
ILOAD  
10mA  
A 2A Schottky diode such as Motorola MBRS130LT3 has  
been found to be the best available. Other choices include  
1N5821 or MBRS130T3. Do not use “general purpose”  
diodes such as 1N4001. They are much too slow for use  
in switching regulator applications.  
500µs/DIV  
1302 F05  
Figure 5. Inexpensive Electrolytic Capacitor Has High  
ESR, Resulting in Mode-Hop, Ripple Voltage Amplitude Is  
Over 500mVP-P and Includes Low Frequency Component  
8
LT1302/LT1302-5  
U
W U U  
APPLICATIONS INFORMATION  
Frequency Compensation  
behavior in the 4th graticule is the result of the LT1302’s  
BurstModecomparatorturningoffallswitching asoutput  
voltage rises above its threshold.  
Obtaining proper RC values for the frequency compensa-  
tion network is largely an empirical procedure, since  
variations in input and output voltage, topology, capacitor  
ESR and inductance make a simple formula elusive. As an  
example, considerthecaseofa2.5Vto5Vboostconverter  
supplying 500mA. To determine optimum compensation,  
the circuit is built and a transient load is applied to the  
circuit. Figure 7 shows the setup.  
In Figure 7c, the 0.1µF capacitor has been replaced by a  
0.01µF unit. Undershoot is less but the response is still  
underdamped. Figure 7d shows the results of the 0.1µF  
capacitor and a 10k resistor in series. Now some amount  
of damping is observed, and behavior is more controlled.  
Figure 7e details response with a 0.01µF/10k series net-  
work. Undershoot is down to around 100mV, or 2%. A  
slight underdamping is still noticeable.  
In Figure 7a, the VC pin is simply left floating. Although  
output voltage is maintained and transient response is  
good, switch current rises instantaneously to the internal  
current limit upon application of load. This is an undesir-  
able situation as it places maximum stress on the switch  
and the other power components. Additionally, efficiency  
iswelldownfromitsoptimalvalue.Next,a0.1µFcapacitor  
is connected with no resistor. Figure 7b details response.  
Although the circuit eventually stabilizes, the loop is quite  
underdamped. Initial output “sag” exceeds 5%. Aberrant  
Finally, a 0.01µF/24k series network results in the re-  
sponse shown in Figure 7f. This has optimal damping,  
undershoot less than 100mV and settles in less than 1ms.  
The VC pin is sensitive to high frequency noise. Some  
layouts may inject enough noise to modulate peak switch  
current at 1/2 the switching frequency. A small capacitor  
connected from VC to ground will eliminate this. Do not  
exceed 1/10 of the compensation capacitor value.  
V
IN  
2.5V  
NC  
L1  
10µH  
V
I
T
SHDN  
IN  
+
C1  
330µF  
SW  
LT1302-5  
D1  
0.1µF  
PGND  
GND  
SENSE  
V
C
10Ω  
2W  
500Ω  
+
+
C2  
220µF  
C3  
220µF  
R
PULSE  
GENERATOR  
C
MTP3055EL  
50Ω  
C1, C2, C3 = AVX TPS SERIES  
D1 = MOTOROLA MBRS130LT3  
L1 = COILCRAFT DO3316-103K  
1302 F07  
Figure 7. Boost Converter with Simulated Load  
VOUT  
100mV/DIV  
AC COUPLED  
VOUT  
100mV/DIV  
AC COUPLED  
510mA  
ILOAD  
510mA  
ILOAD  
10mA  
10mA  
2ms/DIV  
1302 F07b  
2ms/DIV  
1302 F07a  
Figure 7b. 0.1µF from VC to Ground.  
Better, but More Improvement Needed  
Figure 7a. VC Pin Left Unconnected. Output Shows  
Low Frequency Components Under Load  
9
LT1302/LT1302-5  
U
W U U  
APPLICATIONS INFORMATION  
IT Pin  
VOUT  
100mV/DIV  
AC COUPLED  
The IT pin is used to disable Burst Mode, forcing the  
LT1302 to operate in current mode even at light load. To  
disable Burst Mode, 3.3k resistor R1 is connected from IT  
to gound. More conservative frequency compensation  
must be used when in this mode. A 0.1µF capacitor and  
4.7k resistor from VC to ground has been found to be  
adequate. Low frequency Burst Mode ripple can be  
reduced or eliminated using this technique in many appli-  
cations.  
510mA  
ILOAD  
10mA  
2ms/DIV  
1302 F07c  
Figure 7c. 0.01µF from VC to Ground.  
Underdamped Response Requires Series R  
To illustrate, the transient load response of Figure 8’s  
circuit is pictured without and with R1. Figure 8a shows  
output voltage and inductor current without the resistor.  
Note the 6kHz burst rate when the converter is delivering  
25mA. By adding the 3.3k resistor, the low frequency  
bursting is eliminated, as shown in Figure 8b. This feature  
is useful in systems that contain audio circuitry. At very  
light or zero load, switching frequency drops and eventu-  
VOUT  
100mV/DIV  
AC COUPLED  
510mA  
ILOAD  
10mA  
2ms/DIV  
1302 F07d  
Figure 7d. 0.1µF with 10k Series RC.  
Classic Overdamped Response  
V
IN  
2.5V  
10µH  
V
SENSE  
IN  
SW  
+
C1  
330µF  
VOUT  
100mV/DIV  
AC COUPLED  
LT1302-5  
MBRS130LT3  
0.1µF  
PGND  
GND  
V
C
I
T
+
+
220µF  
10V  
220µF  
10V  
4.7k  
0.1µF  
R1  
3.3k  
510mA  
ILOAD  
10mA  
1302 F08  
V
2ms/DIV  
1302 F07e  
OUT  
5V  
600mA  
Figure 7e. 0.01µF, 10k Series RC Shows Good  
Transient Response. Slight Underdamping  
Still Noticeable  
Figure 8. Addition of R1 Eliminates Low Frequency  
Output Ripple in This 2.5V to 5V Boost Converter  
VOUT  
VOUT  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
INDUCTOR  
CURRENT  
1A/DIV  
510mA  
ILOAD  
10mA  
525mA  
ILOAD  
25mA  
1ms/DIV  
1302 F08a  
2ms/DIV  
1302 F07f  
Figure 7f. 0.01µF, 24k Series RC  
Results in Optimum Response  
Figure 8a. IT Pin Floating. Note 6kHz Burst Rate at  
ILOAD = 25mA. 0.1µF/4.7k Compensation Network  
Causes 220mV Undershoot  
10  
LT1302/LT1302-5  
U
W U U  
APPLICATIONS INFORMATION  
ally reaches audio frequencies, but at a much lighter load  
than without the IT feature. At some input voltage/load  
current combinations, some residual bursting may occur  
at frequencies out of the audio band.  
The IT pin cannot be used as a soft-start. Large capacitors  
connected to the pin will cause erratic operation. If oper-  
ating the device in Burst Mode, let the pin float. Keep high  
dV/dt signals away from the pin.  
Figure8cdetailsefficiencywithandwithouttheadditionof  
R1. Burst Mode operation keeps efficiency high at light  
load with IT floating. Efficiency falls off at light load with  
R1addedbecausetheLT1302cannottransitionintoBurst  
Mode.  
VOUT  
100mV/DIV  
AC COUPLED  
INDUCTOR  
CURRENT  
1A/DIV  
Layout  
525mA  
ILOAD  
25mA  
1ms/DIV  
1302 F08b  
The high speed, high current switching associated with  
the LT1302 mandates careful attention to layout. Follow  
thesuggestedcomponentplacementinFigure9forproper  
operation. High current functions are separated by the  
package from sensitive control functions. Feedback resis-  
tors R1 and R2 should be close to the feedback pin (pin4).  
Noisecaneasilybecoupledintothispinifcareisnottaken.  
A small capacitor (100pF to 200pF) from FB to ground  
provides a high frequency bypass. If the LT1302 is oper-  
ated off a three-cell or higher input, R3 (2to 10) in  
series with VIN is recommended. This isolates the device  
from noise spikes on the input supply. Do not put in R3 if  
the device must operate from a 2V input, as input current  
will cause the voltage at the LT1302’s VIN pin to go below  
2V. The 0.1µF ceramic bypass capacitor C3 (use X7R, not  
Z5U) should be mounted as close as possible to the  
package. When R3 is used, C3 should be a 1µF tantalum  
unit. Grounding should be segregated as illustrated. C3’s  
ground trace should not carry switch current. Run a  
Figure 8b. 3.3k Resistor from IT Pin to Ground Forces  
LT1302 into Current Mode Regardless of Load. Audio  
Frequency Component Eliminated  
90  
I
T
FLOATING  
80  
70  
60  
50  
40  
30  
3.3k I TO GND  
T
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
1302 F08c  
Figure 8c. 3.3k Resistor for IT to Ground Increases  
Efficiency at Moderate Load, Decreases at Light Load  
V
IN  
R2  
5
6
7
8
4
C3  
R3  
2Ω  
L1  
3
2
1
R1  
200pF  
R
SHUTDOWN  
LT1302  
C
+
C1  
C
C
D1  
C2  
V
OUT  
GND (BATTERY AND LOAD RETURN)  
1302 F09  
Figure 9. Suggested Component Placement for LT1302  
11  
LT1302/LT1302-5  
U
W U U  
APPLICATIONS INFORMATION  
separate ground trace up under the package as shown.  
The battery and load return should go to the power side of  
the ground copper.  
Table 3. S8 Package, 8-Lead Plastic SO  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2500 sq. mm 2500 sq. mm 2500 sq. mm  
1000 sq. mm 2500 sq. mm 2500 sq. mm  
60°C/W  
62°C/W  
65°C/W  
69°C/W  
73°C/W  
80°C/W  
83°C/W  
Thermal Considerations  
The LT1302 contains a thermal shutdown feature which  
protects against excessive internal (junction) tempera-  
ture. If the junction temperature of the device exceeds the  
protection threshold, the device will begin cycling be-  
tween normal operation and an off state. The cycling is not  
harmful to the part. The thermal cycling occurs at a slow  
rate, typically10mstoseveralseconds, whichdependson  
the power dissipation and the thermal time constants of  
the package and heat sinking. Raising the ambient tem-  
perature until the device begins thermal shutdown gives a  
good indication of how much margin there is in the  
thermal design.  
225 sq. mm  
100 sq. mm  
100 sq. mm  
100 sq. mm  
100 sq. mm  
2500 sq. mm 2500 sq. mm  
2500 sq. mm 2500 sq. mm  
1000 sq. mm 2500 sq. mm  
225 sq. mm 2500 sq. mm  
100 sq. mm 2500 sq. mm  
* Pins 1 and 8 attached to topside copper  
N8 Package, 8-Lead DIP:  
Thermal Resistance (Junction-to-Ambient) = 100°C/W  
Calculating Temperature Rise  
Power dissipation internal to the LT1302 in a boost  
regulator configuration is approximately equal to:  
For surface mount devices heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Experiments have shown that the  
heat spreading copper layer does not need to be electri-  
cally connected to the tab of the device. The PCB material  
can be very effective at transmitting heat between the pad  
area attached to pins 1 and 8 of the device, and a ground  
or power plane layer either inside or on the opposite side  
of the board. Although the actual thermal resistance of the  
PCB material is high, the length/area ratio of the thermal  
resistance between the layer is small. Copper board stiff-  
eners and plated through holes can also be used to spread  
the heat generated by the device.  
2
VOUT + VD  
IOUT OUT  
VOUT + VD  
IOUT OUTR  
P = I2OUT  
R
D
V
R
V
VIN −  
VIN −  
VIN  
VIN  
IOUT  
V
+ VD VIN  
(
)
OUT  
+
27  
The first term in this equation is due to switch “on-  
resistance.” The second term is from the switch driver. R  
is switch resistance, typically 0.15. VD is the diode  
forward drop.  
Table 3 lists thermal resistance for the SO package.  
Measured values of thermal resistance for several differ-  
ent board sizes and copper areas are listed for each  
surface mount package. All measurements were taken in  
The temperature rise can be calculated from:  
T = PD × θJA  
still air on 3/32" FR-4 board with 1oz copper. This data can  
where:  
be used as a rough guideline in estimating thermal resis-  
tance. The thermal resistance for each application will be  
affectedbythermalinteractionswithothercomponentsas  
well as board size and shape.  
T = Temperature Rise  
PD = Device Power Dissipation  
θJA = Thermal Resistance (Junction-to-Ambient)  
12  
LT1302/LT1302-5  
U
W U U  
APPLICATIONS INFORMATION  
As an example, consider a boost converter with the  
following specifications:  
VIN = 3V  
VOUT = 6V  
IOUT = 700mA  
Total power loss in the LT1302, assuming R = 0.15and  
VD = 0.45V, is:  
2
0.7 6 + 0.45 3  
2
) (  
(
)(  
)
6 + 0.45  
0.7× 6 × 0.15  
6 + 0.45  
0.7× 6 × 0.15  
3
P = 700mA 0.15Ω  
+
(
)
D
27  
3 −  
3 −  
3
= 223mW + 89mW = 312mW  
Using the CS8 package with 100 sq. mm topside and  
backside heat sinking:  
T = (312mW)(84°C/W) = 25.9°C rise  
With the N8 package:  
T = 31.2°C  
At a 70°C ambient, die temperature would be 101.2°C.  
13  
LT1302/LT1302-5  
U
TYPICAL APPLICATIONS  
Single Cell to 5V/150mA Converter  
5V/150mA  
OUTPUT  
L1  
3.3µH  
D1  
R1  
301k  
220Ω  
10Ω  
100k  
1%  
2N3906  
1.5V  
CELL  
(169k FOR 3.3V)  
100k  
100k  
I
V
V
IN  
SW  
SHDN  
FB  
L
IN  
SET  
SW1  
LT1073  
LT1302  
56.2k  
1%  
A
O
I
T
FB  
GND  
V
C
GND  
SW2  
PGND  
100pF  
20k  
4.99k  
1%  
+
+
C1  
47µF  
C2  
220µF  
0.1µF  
0.01µF  
36.5k  
1%  
L1 = COILCRAFT DO3316-332  
D1 = MOTOROLA MBRS130LT3  
C1 = AVX TPSD476M016R0150  
C2 = AVX TPSE227M010R0100  
COILCRAFT (708) 639-2361  
1302 TA03  
2V to 12V/120mA Converter  
NC  
5
L1  
3.3µH  
6
V
I
T
IN  
3
4
7
8
SW  
SHDN  
SHUTDOWN  
C3  
0.1µF  
LT1302  
+
C1  
100µF  
PGND  
GND  
1
FB  
V
C
2 CELLS  
D1  
2
R1  
100k  
1%  
R2  
866k  
1%  
R
C
100pF  
+
+
20k  
C2  
C2  
33µF  
33µF  
C
C
0.02µF  
OUTPUT  
12V  
LT1302 • TA04  
120mA  
C1 = AVX TPSD107M010R0100  
C2 = AVX TPSD336M025R0200  
D1 = MOTOROLA MBRS130LT3  
L1 = COILCRAFT DO3316-332  
14  
LT1302/LT1302-5  
U
TYPICAL APPLICATIONS  
3 Cell to 3.3V Buck-Boost Converter with Auxiliary 12V Regulated Output  
V
IN  
2.5V-8V  
7
6
10Ω  
C3  
+
SHUTDOWN  
47µF  
T1D  
T1E  
5
16V  
4
SHDN  
FB  
V
IN  
SW  
D2  
13V  
LT1302  
100k  
1%  
0.1µF  
I
T
2
V
C
C1  
+
GND  
PGND  
100µF  
T1B  
16V  
IN  
12V  
OUT  
ADJ  
9
+
120mA  
22µF  
25V  
D1  
330k  
1%  
169k  
1%  
24k  
LT1121  
200pF  
SHDN  
+
3
1
T1A  
10  
GND  
3.3µF  
C2  
+
4700pF  
330µF  
T1C  
150k  
1%  
6.3V  
8
1302 TA05  
3.3V OUTPUT  
400mA  
T1 = DALE LPE-6562-A069, 1:3:1:1:1 TURNS RATIO, 10µH PRIMARY. DALE (605) 665-9301  
D1, D2 = MOTOROLA MBRS130LT3  
C1 = AVX TPSE107016R0100  
C2 = AVX TPSE337006R0100  
C3 = AVX TPSD476016R0150  
2 Li-Ion Cell to 5.8V/600mA DC/DC Converter  
C2  
220µF  
L1  
10V  
22µH  
+
V
IN  
4V TO 9V  
10Ω  
L2  
MBRS130LT3  
22µH  
365k  
1%  
SW  
FB  
V
T
V
5.8V  
600mA  
IN  
OUT  
I
+
+
C1  
100µF  
16V  
1µF  
LT1302  
+
C3  
220µF  
10V  
SHDN  
GND  
V
C
100k  
1%  
PGND  
20k  
10nF  
SHUTDOWN  
V
OUT  
1302 TA07  
DUTY CYCLE =  
L1, L2  
=
=
=
COILCRAFT DO3316-223  
AVX TPSE107016R0100  
AVX TPSE227010R0100  
V
+ V  
OUT  
IN  
PEAK SWITCH VOLTAGE = V + V  
C1  
C2, C3  
IN  
OUT  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1302/LT1302-5  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead Plastic DIP  
0.400*  
(10.160)  
MAX  
8
7
6
3
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.015  
(0.380)  
MIN  
(3.175)  
MIN  
+0.025  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
–0.015  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0694  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTURSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm).  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157*  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
SO8 0294  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
LT/GP 0295 10K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
16  
LINEAR TECHNOLOGY CORPORATION 1995  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1302-5_15

Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters
Linear

LT1302CN8

Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters
Linear

LT1302CN8-12

2 A SWITCHING REGULATOR, PDIP8
Linear

LT1302CN8-5

Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters
Linear

LT1302CN8-5#PBF

LT1302 - Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1302CS8

Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters
Linear

LT1302CS8#PBF

暂无描述
Linear

LT1302CS8#TR

LT1302 - Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1302CS8-12

2 A SWITCHING REGULATOR, PDSO8
Linear

LT1302CS8-5

Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters
Linear

LT1302CS8-5#PBF

LT1302 - Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1302CS8-5#TR

LT1302 - Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear