LT1217CS8 [Linear]

Low Power 10MHz Current Feedback Amplifier; 低功率10MHz的电流反馈放大器
LT1217CS8
型号: LT1217CS8
厂家: Linear    Linear
描述:

Low Power 10MHz Current Feedback Amplifier
低功率10MHz的电流反馈放大器

运算放大器 放大器电路 光电二极管
文件: 总8页 (文件大小:241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1217  
Low Power 10MHz  
Current Feedback Amplifier  
U
DESCRIPTIO  
EATURE  
S
F
1mA Quiescent Current  
TheLT1217isa10MHzcurrentfeedbackamplifierwithDC  
characteristics better than many voltage feedback ampli-  
fiers.Thisversatileamplifierisfast,280nssettlingto0.1%  
for a 10V step thanks to its 500V/µs slew rate. The LT1217  
is manufactured on Linear Technology’s proprietary  
complementary bipolar process resulting in a low 1mA  
quiescent current. To reduce power dissipation further,  
the LT1217 can be turned off, eliminating the load current  
and dropping the supply current to 350µA.  
50mA Output Current (Minimum)  
10MHz Bandwidth  
500V/µs Slew Rate  
280ns Settling Time to 0.1%  
Wide Supply Range, ±5V to ±15V  
1mV Input Offset Voltage  
100nA Input Bias Current  
100MInput Resistance  
The LT1217 is excellent for driving cables and other low  
impedance loads thanks to a minimum output drive cur-  
rentof50mA.Operatingonanysuppliesfrom±5Vto±15V  
allows the LT1217 to be used in almost any system. Like  
other current feedback amplifiers, the LT1217 has high  
gainbandwidthathighgains. Thebandwidthisover1MHz  
at a gain of 100.  
O U  
PPLICATI  
Video Amplifiers  
Buffers  
S
A
IF and RF Amplification  
Cable Drivers  
8, 10, 12-Bit Data Acquisition Systems  
The LT1217 comes in the industry standard pinout and  
can upgrade the performance of many older products.  
U
O
TYPICAL APPLICATI  
Cable Driver  
Voltage Gain vs Frequency  
60  
V
+
IN  
50  
40  
V
R
R
= ±15V  
= 3k  
= 100Ω  
75Ω  
S
F
L
LT1217  
R
R
R
R
= 30Ω  
= 100Ω  
= 330Ω  
= 1.3k  
= ∞  
G
G
G
G
75Ω  
30  
R
CABLE  
F
3k  
20  
V
10  
OUT  
R
R
G
G
0
3k  
75Ω  
–10  
–20  
R
100k  
1M  
10M  
100M  
F
A
= 1 +  
V
R
G
FREQUENCY (Hz)  
AT AMPLIFIER OUTPUT.  
6dB LESS AT V  
LT1217 • TA02  
.
LT1217 • TA01  
OUT  
1
LT1217  
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
Supply Voltage ...................................................... ±18V  
Input Current ...................................................... ±10mA  
Input Voltage ............................ Equal to Supply Voltage  
Output Short Circuit Duration (Note 1) .........Continuous  
Operating Temperature Range ..................... 0°C to 70°C  
Storage Temperature Range ................. 65°C to 150°C  
Junction Temperature........................................... 150°C  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
ORDER PART  
TOP VIEW  
NUMBER  
NULL  
–IN  
1
2
3
4
8
7
6
5
SHUTDOWN  
+
V
LT1217CN8  
LT1217CS8  
+IN  
OUT  
V
NULL  
S8 PART MARKING  
1217  
N8 PACKAGE  
8-LEAD PLASTIC DIP 8-LEAD PLASTIC SOIC  
S8 PACKAGE  
LT1217 • POI01  
ELECTRICAL CHARACTERISTICS VS = ±15V, TA = 0°C to 70°C unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
±3  
UNITS  
mV  
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
= 0V  
= 0V  
= 0V  
±1  
OS  
IN+  
IN–  
I
I
Non-Inverting Input Current  
Inverting Input Current  
±100 ±500  
nA  
±100 ±500  
nA  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
f = 1kHz, R = 1k, R = 10Ω  
6.5  
0.7  
nV/Hz  
pA/Hz  
MΩ  
pF  
n
F
G
i
n
f = 1kHz, R = 1k, R = 10Ω  
F G  
R
V
IN  
= ±10V  
20  
100  
1.5  
IN  
C
Input Capacitance  
IN  
Input Voltage Range  
±10  
±12  
66  
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
Inverting Input Current Common Mode Rejection  
Power Supply Rejection Ratio  
Non-Inverting Input Current Power Supply Rejection  
Inverting Input Current Power Supply Rejection  
Large Signal Voltage Gain  
V
V
= ±10V  
= ±10V  
60  
dB  
CM  
5
20  
nA/V  
dB  
CM  
V = ±4.5V to ±18V  
S
68  
76  
2
V = ±4.5V to ±18V  
S
20  
50  
nA/V  
nA/V  
V = ±4.5V to ±18V  
S
10  
105  
A
V
R
R
= 2k, V = ±10V  
OUT  
90  
70  
dB  
dB  
LOAD  
LOAD  
= 400, V  
= ±10V  
OUT  
R
OL  
Transresistance, V /I  
R
LOAD  
R
LOAD  
= 2k, V = ±10V  
OUT  
5
1.5  
45  
MΩ  
MΩ  
OUT IN–  
= 400, V  
= ±10V  
OUT  
V
Output Swing  
R
R
= 2k  
= 200Ω  
±12  
±10  
±13  
V
V
OUT  
OUT  
LOAD  
LOAD  
I
Output Current  
R
LOAD  
= 0Ω  
50  
100  
500  
10  
mA  
V/µs  
MHz  
ns  
SR  
Slew Rate (Note 2, 3)  
Bandwidth  
R = 3k, R = 3k  
F
100  
G
BW  
R = 3k, R = 3k, V  
F
= 100mV  
= 1V  
G
OUT  
OUT  
OUT  
OUT  
OUT  
t
t
Rise Time, Fall Time (Note 3)  
Propagation Delay  
Overshoot  
R = 3k, R = 3k, V  
F
30  
40  
r
G
R = 3k, R = 3k, V  
F
= 1V  
25  
ns  
PD  
G
R = 3k, R = 3k, V  
F
= 1V  
5
%
G
t
I
Settling Time, 0.1%  
Supply Current  
R = 3k, R = 3k, V  
F
= 10V  
280  
1
ns  
s
G
V
IN  
= 0V  
2
mA  
µA  
S
Supply Current, Shutdown  
Pin 8 Current = 50µA  
350  
1000  
The  
denotes specifications which apply over the operating temperature  
Note 2: Non-Inverting operation, V  
= ±10V, measured at ±5V.  
OUT  
range.  
Note 3: AC parameters are 100% tested on the plastic DIP packaged parts  
(N suffix), and are sample tested on every lot of the SO packaged parts  
(S suffix).  
Note 1: A heat sink may be required.  
2
LT1217  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Voltage Gain and Phase vs  
Frequency, Gain = 6dB  
–3dB Bandwidth vs Supply  
–3dB Bandwidth vs Supply  
Voltage, Gain = 2, RL = 100Ω  
Voltage, Gain = 2, RL = 1kΩ  
8
7
0
30  
25  
30  
25  
PHASE  
45  
PEAKING 0.5dB  
PEAKING 5dB  
PEAKING 0.5dB  
PEAKING 5dB  
6
5
90  
GAIN  
R = 1k  
F
135  
180  
225  
20  
15  
20  
15  
R = 1k  
4
F
R = 2k  
F
3
R = 2k  
F
R = 3k  
F
2
10  
5
10  
5
R = 3k  
1
F
R = 5.1k  
F
V
R
R
= ±15V  
= 100Ω  
= 3k  
0
S
L
F
R = 5.1k  
F
–1  
–2  
0
0
0.01  
0.1  
1.0  
10  
0
2
4
6
8
10 12 14 16 18  
0
2
4
6
8
10 12 14 16 18  
FREQUENCY (MHz)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1217 • TPC03  
LT1217 • TPC01  
LT1217 • TPC02  
Voltage Gain and Phase vs  
Frequency, Gain = 20dB  
–3dB Bandwidth vs Supply  
–3dB Bandwidth vs Supply  
Voltage, Gain = 10, RL = 1kΩ  
Voltage, Gain = 10, RL = 100Ω  
22  
21  
0
20  
18  
16  
20  
18  
16  
PHASE  
PEAKING 0.5dB  
PEAKING 5dB  
PEAKING 0.5dB  
PEAKING 5dB  
45  
20  
19  
18  
17  
16  
15  
14  
13  
12  
90  
GAIN  
R = 750Ω  
F
135  
180  
225  
14  
12  
14  
12  
R = 750Ω  
F
R = 1k  
F
R = 1k  
R = 2k  
F
F
10  
8
10  
8
R = 3k  
F
R = 2k  
F
R = 3k  
F
6
6
R = 5.1k  
F
V
= ±15V  
= 100Ω  
4
2
0
4
2
0
S
L
F
R = 5.1k  
F
R
R = 3k  
0.01  
0.1  
1.0  
10  
0
2
4
6
8
10 12 14 16 18  
0
2
4
6
8
10 12 14 16 18  
FREQUENCY (MHz)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1217 • TPC06  
LT1217 • TPC04  
LT1217 • TPC05  
Voltage Gain and Phase vs  
Frequency, Gain = 40dB  
–3dB Bandwidth vs Supply  
Voltage, Gain = 100, RL = 100Ω  
–3dB Bandwidth vs Supply  
Voltage, Gain = 100, RL = 1kΩ  
42  
41  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
PHASE  
R = 1k  
45  
F
40  
39  
38  
37  
36  
35  
34  
33  
32  
90  
GAIN  
R
= 250Ω  
135  
180  
225  
F
R = 250Ω  
R
= 1k  
F
F
R = 5.1k  
R
= 5.1k  
F
F
V
R
R
= ±15V  
= 100Ω  
= 3k  
S
L
F
0.01  
0.1  
1.0  
10  
0
2
4
6
8
10 12 14 16 18  
0
2
4
6
8
10 12 14 16 18  
FREQUENCY (MHz)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1217 • TPC09  
LT1217 • TPC07  
LT1217 • TPC08  
3
LT1217  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Maximum Capacitive Load vs  
Feedback Resistor  
Total Harmonic Distortion vs  
Frequency  
2nd and 3rd Harmonic  
Distortion vs Frequency  
–20  
–30  
–40  
–50  
–60  
0.1  
10000  
1000  
100  
V
= ±15V  
R = 400Ω  
L
V
= ±15V  
= 100Ω  
= 2Vpp  
A
= 2  
S
S
L
V
L
R
V
R
= 1k  
R = R = 3kΩ  
PEAKING 5dB  
F
G
O
R = 3k  
F
A
= 10dB  
V
3RD  
V
= ±5V  
S
V
= ±15V  
S
0.01  
V
= 7V  
RMS  
O
2ND  
V
= 2V  
RMS  
O
0.001  
10  
0.1  
1
10  
10  
100  
1000  
FREQUENCY (Hz)  
10000  
100000  
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
FEEDBACK RESISTOR (k)  
LT1217 • TPC11  
LT1217 • TPC12  
LT1217 • TPC10  
Input Common Mode Limit vs  
Temperature  
Output Saturation Voltage vs  
Temperature  
+
Output Short Circuit Current vs  
Temperature  
+
V
V
120  
110  
100  
90  
–0.5  
–1.0  
–1.5  
–2.0  
2.0  
–1.0  
–2.0  
–3.0  
3.0  
+
V
= +5V TO +18V  
R
= ∞  
L
±5V V ≤ ±18V  
80  
S
70  
1.5  
2.0  
60  
V
= –5V TO –18V  
1.0  
1.0  
50  
0.5  
V
V
40  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
PACKAGE TEMPERATURE (°C)  
PACKAGE TEMPERATURE (°C)  
PACKAGE TEMPERATURE (°C)  
LT1217 • TPC13  
LT1217 • TPC14  
LT1217 • TPC15  
Spot Noise Voltage and Current vs  
Frequency  
Power Supply Rejection vs  
Frequency  
Output Impedance vs  
Frequency  
100  
10  
1
70  
60  
50  
40  
30  
20  
10  
0
10000  
1000  
100  
SHUTDOWN  
(PIN 8 AT GND)  
i
n–  
POSITIVE  
NEGATIVE  
e
n
10  
1
i
n+  
NORMAL  
V
= ±15V  
= 100Ω  
G
S
L
F
R
V
= ±15V  
G
S
F
R = R =3k  
R = R = 3k  
0.1  
0.1  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
FREQUENCY (kHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
LT1217 • TPC16  
LT1217 • TPC17  
LT1217 • TPC18  
4
LT1217  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Settling Time to 10mV vs  
Output Step  
Settling Time to 1mV vs  
Output Step  
Supply Current vs Supply Voltage  
10  
8
10  
8
1.4  
1.2  
1.0  
0.8  
V
= ±15V  
G
S
F
T = 125°C  
V
= ±15V  
G
S
F
R = R = 3k  
R = R = 3k  
6
4
6
4
INVERTING  
NON-INVERTING  
T = 25°C  
INVERTING  
2
2
NON-INVERTING  
NON-INVERTING  
T = –55°C  
0
0
0.6  
0.4  
0.2  
0.0  
–2  
–2  
T = –55°C  
NON-INVERTING  
T = 25°C, 125°C  
–4  
–6  
–4  
–6  
SHUTDOWN  
PIN 8 AT GND  
INVERTING  
100 150  
–8  
–8  
INVERTING  
300  
–10  
–10  
0
50  
200  
250  
300  
0
100  
200  
400  
500  
0
2
4
6
8
10 12 14 16 18  
SETTLING TIME (ns)  
SETTLING TIME (ns)  
SUPPLY VOLTAGE (±V)  
LT1217 • TPC19  
LT1217 • TPC20  
LT1217 • TPC21  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Current Feedback Basics  
Feedback Resistor Selection  
The small signal bandwidth of the LT1217 is set by the  
external feedback resistors and the internal junction ca-  
pacitors. As a result, the bandwidth is a function of the  
supply voltage, the value of the feedback resistor, the  
closed loop gain and load resistor. The characteristic  
curves of bandwidth versus supply voltage are done with  
a heavy load (100) and a light load (1k) to show the  
effect of loading. These graphs also show the family of  
curves that result from various values of the feedback  
resistor. These curves use a solid line when the response  
has less than 0.5dB of peaking and a dashed line when the  
response has 0.5dB to 5dB of peaking. The curves stop  
where the response has more than 5dB of peaking.  
The small signal bandwidth of the LT1217, like all current  
feedback amplifiers, isn’t a straight inverse function of the  
closed loop gain. This is because the feedback resistors  
determine the amount of current driving the amplifier’s  
internal compensation capacitor. In fact, the amplifier’s  
feedback resistor (RF) from output to inverting input  
workswithinternaljunctioncapacitancesoftheLT1217to  
set the closed loop bandwidth.  
Eventhoughthegainsetresistor(RG)frominvertinginput  
to ground works with RF to set the voltage gain just like it  
does in a voltage feedback op amp, the closed loop  
bandwidthdoesnotchange.Thisisbecausetheequivalent  
gain bandwidth product of the current feedback amplifier  
issetbytheTheveninequivalentresistanceattheinverting  
input and the internal compensation capacitor. By keeping  
RF constant and changing the gain with RG, the Thevenin  
resistance changes by the same amount as the change in  
gain. As a result, the net closed loop bandwidth of the  
LT1217 remains the same for various closed loop gains.  
At a gain of two, on ±15V supplies with a 3kfeedback  
resistor, the bandwidth into a light load is 13.5MHz with a  
little peaking, but into a heavy load the bandwidth is  
10MHzwithnopeaking.Atveryhighclosedloopgains,the  
bandwidth is limited by the gain bandwidth product of  
about 100MHz. The curves show that the bandwidth at a  
closed loop gain of 100 is about 1MHz.  
The curve on the first page shows the LT1217 voltage gain  
versusfrequencywhiledriving100,forfivegainsettings  
from 1 to 100. The feedback resistor is a constant 3k and  
the gain resistor is varied from infinity to 30. Second  
order effects reduce the bandwidth somewhat at the  
higher gain settings.  
Capacitance on the Inverting Input  
Current feedback amplifiers want resistive feedback from  
the output to the inverting input for stable operation. Take  
5
LT1217  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
care to minimize the stray capacitance between the output  
and the inverting input. Capacitance on the inverting input  
to ground will cause peaking in the frequency response  
(and overshoot in the transient response), but it does not  
degrade the stability of the amplifier. The amount of  
capacitance that is necessary to cause peaking is a func-  
tion of the closed loop gain taken.  
same amount. The advantage of resistive isolation is that  
the bandwidth is only reduced when the capacitive load is  
present. The disadvantage of resistor isolation is that  
resistive loading causes gain errors. Because the DC  
accuracy is not degraded with resistive loading, the de-  
sired way of driving capacitive loads, such as flash  
converters, is to increase the feedback resistor. The Maxi-  
mum Capacitive Load versus Feedback Resistor curve  
shows the value of feedback resistor and capacitive load  
that gives 5dB of peaking. For less peaking, use a larger  
feedback resistor.  
The higher the gain, the more capacitance is required to  
cause peaking. We can add capacitance from the inverting  
input to ground to increase the bandwidth in high gain  
applications. For example, in this gain of 100 application,  
the bandwidth can be increased from 1MHz to 2MHz by  
adding a 2200pF capacitor.  
Power Supplies  
The LT1217 may be operated with single or split supplies  
as low as ±4.5V (9V total) to as high as ±18V (36V total).  
It is not necessary to use equal value split supplies,  
however, the offset voltage will degrade about 350µV per  
volt of mismatch. The internal compensation capacitor  
decreaseswithincreasingsupplyvoltage.The3dBBand-  
width versus Supply Voltage curves show how this affects  
the bandwidth for various feedback resistors. Generally,  
the bandwidth at ±5V supplies is about half the value it is  
at ±15V supplies for a given feedback resistor.  
+
V
IN  
LT1217  
V
OUT  
R
F
3k  
R
G
C
G
30Ω  
LT1229 • TA03  
Boosting Bandwidth of High Gain Amplifier with  
Capacitance on Inverting Input  
The LT1217 is very stable even with minimal supply  
bypassing, however, the transient response will suffer if  
thesupplyrings.Itisrecommendedforgoodslewrateand  
settling time that 4.7µF tantalum capacitors be placed  
within 0.5 inches of the supply pins.  
45  
44  
43  
C
= 4700pF  
G
42  
41  
40  
39  
38  
37  
36  
35  
Input Range  
C
= 2200pF  
G
The non-inverting input of the LT1217 looks like a 100MΩ  
resistor in parallel with a 3pF capacitor until the common  
mode range is exceeded. The input impedance drops  
somewhat and the input current rises to about 10µA when  
the input comes too close to the supplies. Eventually,  
when the input exceeds the supply by one diode drop, the  
base collector junction of the input transistor forward  
biases and the input current rises dramatically. The input  
current should be limited to 10mA when exceeding the  
supplies. The amplifier will recover quickly when the input  
is returned to its normal common mode range unless the  
input was over 500mV beyond the supplies, then it will  
take an extra 100ns.  
C
= 0  
G
100k  
1M  
FREQUENCY (Hz)  
10M  
LT1217 • TA04  
Capacitive Loads  
The LT1217 can be isolated from capacitive loads with a  
small resistor (10to 20) or it can drive the capacitive  
load directly if the feedback resistor is increased. Both  
techniques lower the amplifier’s bandwidth about the  
6
LT1217  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Large Signal Response, AV = 2, RF = RG = 3k,  
Offset Adjust  
Slew Rate 500V/µs  
Output offset voltage is equal to the input offset voltage  
times the gain plus the inverting input bias current times  
the feedback resistor. The LT1217 output offset voltage  
can be nulled by pulling approximately 30µA from pin 1 or  
5. The easy way to do this is to use a 100kpot between  
pin1and5witha430kresistorfromthewipertoground  
for 15V supply applications. Use a 110k resistor when  
operating on a 5V supply.  
Shutdown  
Pin 8 activates a shutdown control function. Pulling more  
than50µA from pin 8 drops thesupply currentto less than  
350µA, and puts the output into a high impedance state.  
The easy way to force shutdown is to ground pin 8, using  
an open collector (drain) logic stage. An internal resistor  
limits current, allowing direct interfacing with no addi-  
tional parts. When pin 8 is open, the LT1217 operates  
normally.  
Large Signal Response, AV = –2, RF = 3k, RG = 1.5k,  
Slew Rate 850V/µs  
Slew Rate  
The slew rate of a current feedback amplifier is not  
independent of the amplifier gain configuration the way it  
is in a traditional op amp. This is because the input stage  
and the output stage both have slew rate limitations.  
Invertingamplifiersdonotslewtheinputandaretherefore  
limited only by the output stage. High gain, non-inverting  
amplifiers are similar. The input stage slew rate of the  
LT1217 is about 50V/µs before it becomes non-linear and  
isenhancedbythenormallyreversebiasedemittersonthe  
inputtransistors. Theoutputslewratedependsonthesize  
of the feedback resistors. The output slew rate is about  
850V/µs with a 3k feedback resistor and drops propor-  
tionally for larger values. The photos show the LT1217  
with a 20V peak-to-peak output swing for three different  
gain configurations.  
Large Signal Response, AV = 10, RF = 3k, RG = 330,  
Slew Rate 150V/µs  
Settling Time  
The characteristic curves show that the LT1217 settles to  
within10mVoffinalvalueinlessthan300nsforanyoutput  
step up to 10V. Settling to 1mV of final value takes less  
than 500ns.  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LT1217  
W
W
SI PLIFIED SCHE ATIC  
7
90k  
1
5
BIAS  
60k  
8
3
6
2
BIAS  
4
LT1217 • TA08  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
0.300 – 0.320  
(7.620 – 8.128)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.400  
(10.160)  
MAX  
0.045 – 0.065  
(1.143 – 1.651)  
0.065  
N8 Package  
(1.651)  
TYP  
8
1
7
6
8-Lead Plastic DIP  
5
4
0.009 - 0.015  
(0.229 - 0.381)  
TJ MAX  
θJA  
0.250 ± 0.010  
(6.350 ± 0.254)  
0.125  
(3.175)  
MIN  
0.020  
(0.508)  
MIN  
150°C  
100°C/W  
+0.025  
–0.015  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
+0.635  
8.255  
(
)
3
2
–0.381  
0.100 ± 0.010  
0.018 ± 0.003  
(0.457 ± 0.076)  
(2.540 ± 0.254)  
N8 1291  
0.189 – 0.197  
(4.801 – 5.004)  
7
5
8
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
S8 Package  
8-Lead Plastic SOIC  
0.053 – 0.069  
(1.346 – 1.753)  
0.004 – 0.010  
(0.102 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0.228 – 0.244  
(5.791 – 6.198)  
0.150 – 0.157  
(3.810 – 3.988)  
TJ MAX  
θJA  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
150°C  
150°C/W  
0.014 – 0.019  
(0.356 – 0.483)  
0°– 8° TYP  
1
2
3
4
S8 1291  
BA/GP 0192 10K REV 0  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
8
LINEAR TECHNOLOGY CORPORATION 1992  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1217CS8#PBF

LT1217 - Low Power 10MHz Current Feedback Amplifier; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1217CS8#TR

LT1217 - Low Power 10MHz Current Feedback Amplifier; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1217CS8#TRPBF

LT1217 - Low Power 10MHz Current Feedback Amplifier; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1218

Precision Rail-to-Rail Input and Output Op Amps
Linear

LT1218CN8

Precision Rail-to-Rail Input and Output Op Amps
Linear

LT1218CN8#PBF

LT1218 - Precision Rail-to-Rail Input and Output Op Amp; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1218CS8

Precision Rail-to-Rail Input and Output Op Amps
Linear

LT1218CS8#PBF

LT1218 - Precision Rail-to-Rail Input and Output Op Amp; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1218CS8#TRPBF

LT1218 - Precision Rail-to-Rail Input and Output Op Amp; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1218L

Precision Rail-to-Rail Input and Output Op Amps
Linear

LT1218LCN8

Precision Rail-to-Rail Input and Output Op Amps
Linear

LT1218LCN8#PBF

LT1218L - Precision Rail-to-Rail Input and Output Op Amp; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C
Linear