LT1008S8#TRPBF [Linear]

LT1008 - Picoamp Input Current, Microvolt Offset, Low Noise Op Amp; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1008S8#TRPBF
型号: LT1008S8#TRPBF
厂家: Linear    Linear
描述:

LT1008 - Picoamp Input Current, Microvolt Offset, Low Noise Op Amp; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1008  
Picoamp Input Current,  
Microvolt Offset,  
Low Noise Op Amp  
U
FEATURES  
DESCRIPTIO  
The LT®1008 is a universal precision operational amplifier  
that can be used in practically all precision applications.  
The LT1008 combines for the first time, picoampere bias  
currents (which are maintained over the full 55°C to  
125°C temperature range), microvolt offset voltage (and  
low drift with time and temperature), low voltage and  
current noise, and low power dissipation. Extremely high  
common mode and power supply rejection ratios, and the  
ability to deliver 5mA load current with high voltage gain  
round out the LT1008’s superb precision specifications.  
Guaranteed Bias Current  
TA = 25°C: 100pA Max  
TA = 55°C to 125°C: 600pA Max  
Guaranteed Offset Voltage: 120μV Max  
Guaranteed Drift: 1.5μV/°C Max  
Low Noise, 0.1Hz to 10Hz: 0.5μVP-P  
Guaranteed Low Supply Current: 600μA Max  
Guaranteed CMRR: 114dB Min  
Guaranteed PSRR: 114dB Min  
Guaranteed Voltage Gain with 5mA Load Current  
Available in 8-Lead PDIP and SO Packages  
The all around excellence of the LT1008 eliminates the  
necessity of the time consuming error analysis procedure  
of precision system design in many applications; the  
LT1008 can be stocked as the universal precision op amp.  
U
APPLICATIO S  
Precision Instrumentation  
Charge Integrators  
Wide Dynamic Range Logarithmic Amplifiers  
Light Meters  
Low Frequency Active Filters  
Standard Cell Buffers  
Thermocouple Amplifiers  
The LT1008 is externally compensated with a single ca-  
pacitor for additional flexibility in shaping the frequency  
response of the amplifier. It plugs into and upgrades all  
standard LM108A/LM308A applications. For an internally  
compensated version with even lower offset voltage but  
otherwise similar performance see the LT1012.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Input Amplifier for 4.5 Digit Voltmeter  
Input Bias Current vs Temperature  
100  
1000pF  
50  
1
15V  
UNDERCANCELLED UNIT  
2
3
0.1V  
1V  
8
INPUT  
7
0.1V  
1V  
0
6
100k  
5%  
LT1008  
OVERCANCELLED UNIT  
+
10V  
9k*  
1k*  
4
100V  
1000V  
–50  
9M  
10V  
900k  
100V  
90k  
1000V  
10k  
–15V  
TO 1V FULL-SCALE  
ANALOG-TO-DIGITAL  
CONVERTER  
–100  
*RATIO MATCH 0.01%  
–150  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
THIS APPLICATION REQUIRES LOW  
BIAS CURRENT AND OFFSET VOLTAGE,  
LOW NOISE AND LOW DRIFT WITH  
FN507  
ALLEN BRADLEY  
DECADE VOLTAGE DIVIDER  
1008 TA02  
TIME AND TEMPERATURE  
1008 TA01  
1008fb  
1
LT1008  
W W  
U W  
ABSOLUTE AXI U RATI GS (Note 1)  
Supply Voltage ...................................................... 20V  
Differential Input Current (Note 2) ..................... 10mA  
Input Voltage ........................................................ 20V  
Output Short-Circuit Duration......................... Indefinite  
Storage Temperature Range ................. 65°C to 150°C  
Operating Temperature Range  
LT1008M (OBSOLETE) ............... 55°C to 125°C  
LT1008C................................................. 0°C to 70°C  
LT1008I ............................................. 40°C to 85°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
COMP2  
TOP VIEW  
TOP VIEW  
COMP1  
–IN  
1
COMP2  
8
7
6
5
8
+
COMP1  
–IN  
1
2
3
4
8
7
6
5
COMP2  
+
V
7
5
COMP1  
–IN  
+IN  
1
3
2
V
+
V
+
+IN  
3
4
OUT  
NC  
2
6
OUT  
+IN  
OUT  
NC  
V
NC  
V
4
N8 PACKAGE  
8-LEAD PDIP  
V
(CASE)  
S8 PACKAGE  
8-LEAD PLASTIC SO  
H PACKAGE  
TJMAX = 150°C, θJA = 130°C/W  
8-LEAD TO-5 METAL CAN  
TJMAX = 150°C, θJA = 190°C/W  
J8 PACKAGE 8-LEAD CERDIP  
TJMAX = 150°C, θJA = 100°C/W  
TJMAX = 150°C, θJA = 150°C/W, θJC = 45°C/W  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
S8 PART  
MARKING  
LT1008MH  
LT1008CH  
LT1008MJ8  
LT1008CJ8  
LT1008CN8  
LT1008IN8  
LT1008S8  
1008  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
OBSOLETE PACKAGES  
Consider N8 or S8 Package for Alternate Source  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
VS = 15V, VCM = 0V, TA = 25°C, unless otherwise noted.  
LT1008M/I  
LT1008C  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN TYP MAX  
MIN TYP MAX  
UNITS  
V
OS  
30  
40  
120  
180  
30  
40  
120  
180  
μV  
μV  
(Note 3)  
Long-Term Input Offset Voltage Stability  
Input Offset Current  
0.3  
0.3  
μV/Month  
I
I
30  
40  
100  
150  
30  
40  
100  
150  
pA  
pA  
OS  
(Note 3)  
Input Bias Current  
30  
40  
100  
150  
30  
40  
100  
150  
pA  
pA  
B
(Note 3)  
e
Input Noise Voltage  
0.1Hz to 10Hz  
0.5  
0.5  
μV  
P-P  
n
Input Noise Voltage Density  
f = 10Hz (Note 4)  
f = 1000Hz (Note 5)  
O
17  
14  
30  
22  
17  
14  
30  
22  
nVHz  
nV/Hz  
O
i
Input Noise Current Density  
Large-Signal Voltage Gain  
f = 10Hz  
20  
20  
fA/Hz  
n
O
A
V
OUT  
V
OUT  
= 12V, R 10k  
= 10V, R 2k  
200 2000  
120 600  
200 2000  
120 600  
V/mV  
V/mV  
VOL  
L
L
1008fb  
2
LT1008  
ELECTRICAL CHARACTERISTICS  
VS = 15V, VCM = 0V, TA = 25°C, unless otherwise noted.  
LT1008M/I  
MIN TYP MAX  
LT1008C  
MIN TYP MAX  
SYMBOL PARAMETER  
CONDITIONS  
= 13.5V  
UNITS  
dB  
CMRR  
PSRR  
Common Mode Rejection Ratio  
V
114 132  
114 132  
13.5 14  
114 132  
114 132  
13.5 14  
CM  
Power Supply Rejection Ratio  
Input Voltage Range  
Output Voltage Swing  
Slew Rate  
V = 2V to 20V  
S
dB  
V
V
I
R = 10k  
L
13  
14  
13  
14  
V
OUT  
C = 30pF  
F
0.1  
0.2  
0.1  
0.2  
V/μs  
μA  
Supply Current  
(Note 3)  
380 600  
380 600  
S
The indicates specifications which apply over the full operating temperature range of 55°C TA 125°C for the LT1008M, 40°C  
TA 85°C for the LT1008I and 0°C TA 70°C for the LT1008C. VS = 15V, VCM = 0V, unless otherwise noted.  
LT1008M/I  
LT1008C  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN TYP MAX  
MIN TYP MAX  
UNITS  
V
50  
60  
250  
320  
40  
50  
180  
250  
μV  
μV  
OS  
(Note 3)  
Average Temperature Coefficient of  
Input Offset Voltage  
0.2  
1.5  
0.2  
1.5  
μV/°C  
I
I
Input Offset Current  
60  
80  
250  
350  
40  
50  
180  
250  
pA  
pA  
OS  
(Note 3)  
(Note 3)  
Average Temperature Coefficient of  
Input Offset Current  
0.4  
80  
150 800  
2.5  
0.4  
2.5  
pA/°C  
Input Bias Current  
600  
40  
50  
180  
250  
pA  
pA  
B
Average Temperature Coefficient of  
Input Bias Current  
0.6  
100 1000  
108 128  
108 126  
13.5  
6
0.4  
150 1500  
110 130  
110 128  
13.5  
2.5  
pA/°C  
V/mV  
dB  
A
Large-Signal Voltage Gain  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Voltage Range  
V
V
= 12V, R 10k  
L
VOL  
OUT  
CM  
CMRR  
PSRR  
= 13.5V  
V = 2.5V to 20V  
dB  
S
V
V
I
Output Voltage Swing  
R = 10k  
13  
14  
400 800  
13  
14  
V
OUT  
L
Supply Current  
400 800  
μA  
S
(LT1008S8 only) VS = 15V, VCM = 0V, TA = 25°C, unless otherwise noted.  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
30  
40  
200  
250  
μV  
μV  
OS  
(Note 3)  
Long-Term Input Offset Voltage Stability  
Input Offset Current  
0.3  
μV/Month  
I
I
100  
120  
280  
380  
pA  
pA  
OS  
(Note 3)  
Input Bias Current  
100  
120  
300  
400  
pA  
pA  
B
(Note 3)  
e
Input Noise Voltage  
0.1Hz to 10Hz  
0.5  
μV  
n
P-P  
Input Noise Voltage Density  
f = 10Hz (Note 5)  
f = 1000Hz (Note 5)  
O
17  
14  
30  
22  
nV/Hz  
nV/Hz  
O
1008fb  
3
LT1008  
ELECTRICAL CHARACTERISTICS  
(LT1008S8 only) VS = 15V, VCM = 0V, TA = 25°C, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
f = 10Hz  
MIN  
TYP  
MAX  
UNITS  
i
Input Noise Current Density  
20  
fA/Hz  
n
O
A
Large-Signal Voltage Gain  
V
V
= 12V, R 10k  
200  
120  
2000  
600  
V/mV  
V/mV  
VOL  
OUT  
OUT  
L
=
10V, R 2k  
L
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Voltage Range  
Output Voltage Swing  
Slew Rate  
V
= 13.5V  
110  
110  
13.5  
13  
132  
132  
14  
dB  
dB  
V
CM  
V = 2V to 20V  
S
V
I
R = 10k  
14  
V
OUT  
L
C = 30pF  
0.1  
0.2  
380  
V/μs  
μA  
F
Supply Current  
(Note 3)  
600  
S
(LT1008S8 only) The indicates specifications which apply over the full operating temperature range of 0°C TA 70°C.  
VS = 15V, VCM = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
40  
50  
280  
340  
μV  
μV  
OS  
(Note 3)  
Average Temperature Coefficient of  
Input Offset Voltage  
0.2  
1.8  
μV/°C  
I
I
Input Offset Current  
120  
140  
380  
500  
pA  
pA  
OS  
(Note 3)  
(Note 3)  
Average Temperature Coefficient of  
Input Offset Current  
0.4  
4
pA/°C  
Input Bias Current  
120  
140  
420  
550  
pA  
pA  
B
Average Temperature Coefficient of  
Input Bias Current  
0.4  
5
pA/°C  
A
Large-Signal Voltage Gain  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Voltage Range  
V
V
= 12V, R 10k  
150  
108  
108  
13.5  
13  
1500  
130  
V/mV  
dB  
dB  
V
VOL  
OUT  
CM  
L
CMRR  
PSRR  
= 13.5V  
V = 2.5V to 20V  
128  
S
V
I
Output Voltage Swing  
R = 10k  
14  
V
OUT  
L
Supply Current  
400  
800  
μA  
S
Note 1:Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: These specifications apply for 2V V 20V  
S
( 2.5V V 20V over the temperature range) and  
S
–13.5V V 13.5V (for V = 15V).  
CM  
S
Note 4: 10Hz noise voltage density is sample tested on every lot. Devices  
Note 2: Differential input voltages greater than 1V will cause excessive  
current to flow through the input protection diodes unless current limiting  
resistors are used.  
100% tested at 10Hz are available on request.  
Note 5: This parameter is tested on a sample basis only.  
1008fb  
4
LT1008  
U
W U  
U
FREQUE CY CO PE SATIO CIRCUITS  
Standard Compensation Circuit  
Alternate* Frequency Compensation  
R1  
R2  
R1  
R2  
–V  
IN  
–V  
IN  
*IMPROVES REJECTION OF POWER  
SUPPLY NOISE BY A FACTOR OF 5  
**BANDWIDTH AND SLEW RATE  
**BANDWIDTH AND SLEW RATE ARE  
+
+
2
3
ARE PROPORTIONAL TO 1/C  
2
3
F
PROPORTIONAL TO 1/C  
S
6
6
V
V
LT1008  
1
LT1008  
8
OUT  
OUT  
R3  
8
+V  
+V  
IN  
IN  
R1C  
O
R1 + R2  
= 30pF  
C ≥  
F
C **  
100pF  
S
C
O
1008 FCC02  
C **  
F
1008 FCC01  
R2  
R1  
FOR  
> 200, NO EXTERNAL FREQUENCY COMPENSATION IS NECESSARY  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Offset Voltage Drift vs Source  
Resistance (Balanced or  
Unbalanced)  
Offset Voltage vs Source  
Resistance (Balanced or  
Unbalanced)  
Input Bias Current vs  
Common Mode Range  
60  
40  
100  
10  
10  
1
V
T
=
15V  
V
T
=
15V  
S
A
S
A
= 25°C  
= 25°C  
DEVICE WITH POSITIVE INPUT CURRENT  
20  
R
= 2 × 1012Ω  
INCM  
0
DEVICE WITH NEGATIVE INPUT CURRENT  
MAXIMUM  
TYPICAL  
MAXIMUM  
TYPICAL  
1
0.1  
–20  
–40  
–60  
I
B
+
V
CM  
0.1  
0.01  
–15  
–5  
0
5
10  
15  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
–10  
SOURCE RESISTANCE (Ω)  
SOURCE RESISTANCE (Ω)  
COMMON MODE INPUT VOLTAGE (V)  
1008 G03  
1008 G01  
1008 G02  
Offset Voltage Drift with  
Temperature of Four  
Representative Units  
Long-Term Stability of Four  
Representative Units  
Warm-Up Drift  
5
10  
8
60  
40  
20  
0
V
= 15V  
= 25°C  
S
A
T
4
3
2
1
0
6
4
2
0
–2  
–4  
–6  
–8  
–10  
METAL CAN (H) PACKAGE  
–20  
–40  
–60  
DUAL-IN-LINE PACKAGE  
PLASTIC (N) OR CERDIP (J)  
0
1
2
3
4
5
0
1
3
4
5
50  
TEMPERATURE (°C)  
100 125  
2
–50 –25  
0
25  
75  
TIME AFTER POWER ON (MINUTES)  
TIME (MONTHS)  
1008 G04  
1008 G05  
1008 G06  
1008fb  
5
LT1008  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs Supply Voltage  
Output Short-Circuit Current vs Time  
15  
500  
450  
400  
350  
300  
12  
9
–55°C  
6
125°C  
25°C  
3
0
25°C  
–3  
–6  
–9  
–12  
–15  
125°C  
125°C  
25°C  
–55°C  
–55°C  
0
1.0 1.5 2.0  
2.5 3.0 3.5  
0.5  
10  
15  
0
20  
5
TIME FROM OUTPUT SHORT (MINUTES)  
SUPPLY VOLTAGE ( V)  
1008 G08  
1008 G07  
0.1Hz to 10Hz Noise  
Noise Spectrum  
Total Noise vs Source Resistance  
1000  
10  
1
T
= 25°C  
T = 25°C  
A
A
S
T
= 25°C  
A
S
V
= 2V TO 20V  
V
S
= 2V TO 20V  
V
=
2V TO 20V  
AT 10Hz  
AT 1Hz  
100  
10  
1
R
+
R
CURRENT NOISE  
R
= 2R  
S
VOLTAGE NOISE  
0.1  
0.01  
1/f CORNER  
2.5Hz  
AT 1Hz  
1/f CORNER  
120Hz  
AT 10Hz  
2
RESISTOR NOISE ONLY  
3
4
5
6
7
10  
8
10  
1
10  
100  
1000  
10  
10  
10  
10  
10  
0
2
4
6
8
10  
FREQUENCY (Hz)  
SOURCE RESISTANCE (Ω)  
TIME (SECONDS)  
1008 G10  
1008 G11  
1008 G09  
Gain, Phase Shift vs Frequency  
with Standard (Feedback)  
Compensation  
Gain, Phase Shift vs Frequency  
with Alternate Compensation  
Voltage Gain vs Frequency  
40  
30  
20  
10  
0
100  
120  
140  
160  
180  
200  
40  
30  
20  
10  
0
100  
120  
140  
160  
180  
200  
140  
120  
100  
80  
GAIN  
φ
C
C
= 10pF  
S
GAIN  
= 3pF  
= 30pF  
F
C
F
C
= 3pF  
F
φ
C
φ
C
= 3pF  
C
= 10pF  
= 100pF  
S
F
S
φ
C
= 10pF  
GAIN  
= 30pF  
S
C
= 100pF  
C
S
GAIN  
= 100pF  
F
60  
C
S
C
= 30pF  
F
40  
20  
PHASE MARGIN  
PHASE MARGIN  
WITH C = 100pF = 56°  
WITH C = 30pF = 60°  
F
S
0
T
= 25°C  
T
= 25°C  
A
S
A
S
V
= 15V  
V
= 15V  
–10  
–10  
–20  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
100 1k  
10k 100k 1M 10M  
0.01 0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
1008 G13  
1008 G14  
1008 G12  
1008fb  
6
LT1008  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Common Mode Rejection  
vs Frequency  
Power Supply Rejection  
vs Frequency  
Voltage Gain vs Load Resistance  
140  
120  
100  
80  
10M  
140  
120  
100  
80  
V
S
V
O
=
=
15V  
10V  
V
T
=
15V  
V
T
=
15V  
S
A
S
A
= 25°C  
= 25°C  
C = 30pF  
F
–55°C  
NEGATIVE  
SUPPLY  
3M  
1M  
C
S
= 100pF  
25°C  
POSITIVE  
SUPPLY  
F
125°C  
C = 30pF  
60  
POSITIVE  
60  
40  
20  
SUPPLY  
= 100pF  
40  
C
300k  
100k  
S
20  
0
10k  
FREQUENCY (Hz)  
1M  
1
10  
100  
1k  
100k  
1
2
5
10  
20  
0.1  
100 1k  
10k 100k 1M  
1
10  
LOAD RESISTANCE (kΩ)  
FREQUENCY (Hz)  
1008 G15  
1008 G16  
1008 G17  
Slew Rate  
vs Compensation Capacitance  
Large-Signal Transient Response  
Large-Signal Transient Response  
10  
V
=
15V  
S
A
T
= 25°C  
1
C
S
C
F
AV = 1  
CS = 100pF  
20μs/DIV  
1008 G18  
AV = 1  
CF = 30pF  
20μs/DIV  
1008 G20  
0.1  
20  
40  
60  
80  
100  
0
COMPENSATION CAPACITOR (pF)  
108 G19  
Small-Signal Transient Response  
Small-Signal Transient Response  
Small-Signal Transient Response  
AV = 1  
CS = 100pF  
CLOAD = 100pF  
5μs/DIV  
1008 G21  
AV = 1  
CS = 100pF  
CLOAD = 600pF  
5μs/DIV  
1008 G22  
AV = 1  
CF = 30pF  
CLOAD = 100pF  
5μs/DIV  
1008 G23  
1008fb  
7
LT1008  
W U U  
U
APPLICATIO S I FOR ATIO  
Achieving Picoampere/Microvolt Performance  
TheLT1008isspecifiedoverawiderangeofpowersupply  
voltagesfrom 2Vto 18V. Operationwithlowersupplies  
is possible down to 1.2V (two Ni-Cad batteries).  
In order to realize the picoampere—microvolt level accu-  
racy of the LT1008, proper care must be exercised. For  
example, leakage currents in circuitry external to the op  
amp can significantly degrade performance. High quality  
insulation should be used (e.g., TeflonTM, Kel-F); cleaning  
of all insulating surfaces to remove fluxes and other  
residueswillprobablyberequired.Surfacecoatingmaybe  
necessary to provide a moisture barrier in high humidity  
environments.  
Test Circuit for Offset Voltage and Its Drift with Temperature  
50k*  
15V  
*RESISTORS MUST HAVE LOW  
2
3
THERMOELECTRIC POTENTIAL  
7
THIS CIRCUIT IS ALSO USED AS  
THE BURN-IN CONFIGURATION  
FOR THE LT1008 WITH SUPPLY  
VOLTAGES INCREASED TO 20V  
6
100Ω*  
LT1008  
V
O
+
4
50k*  
V
= 1000V  
OS  
O
Board leakage can be minimized by encircling the input  
circuitry with a guard ring operated at a potential close to  
that of the inputs: in inverting configurations the guard  
ringshouldbetiedtoground, innoninvertingconnections  
to the inverting input at Pin 2. Guarding both sides of the  
printed circuit board is required. Bulk leakage reduction  
depends on the guard ring width. Nanoampere level leak-  
age into the compensation terminals can affect offset  
voltage and drift with temperature.  
–15V  
1008 AI02  
Noise Testing  
The 0.1Hz to 10Hz peak-to-peak noise of the LT1008 is  
measured in the test circuit shown. The frequency re-  
sponse of this noise tester indicates that the 0.1Hz corner  
isdefinedbyonlyonezero. Thetesttimetomeasure0.1Hz  
to 10Hz noise should not exceed 10 seconds, as this time  
limit acts as an additional zero to eliminate noise contribu-  
tions from the frequency band below 0.1Hz.  
COMPENSATION  
+
V
A noise voltage density test is recommended when mea-  
suring noise on a large number of units. A 10Hz noise  
voltage density measurement will correlate well with a  
0.1Hz to 10Hz peak-to-peak noise reading since both  
results are determined by the white noise and the location  
of the 1/f corner frequency.  
8
OUTPUT  
7
1
6
2
5
4
3
Current noise is measured in the circuit shown and calcu-  
lated by the following formula where the noise of the  
source resistors is subtracted.  
V
GUARD  
1008 AI01  
1/2  
2
e2 – 820nV  
REFERENCE ONLY—OBSOLETE PACKAGE  
(
)
no  
in =  
Microvolt level error voltages can also be generated in the  
external circuitry. Thermocouple effects caused by tem-  
perature gradients across dissimilar metals at the con-  
tacts to the input terminals can exceed the inherent drift of  
the amplifier. Air currents over device leads should be  
minimized, package leads should be short, and the two  
input leads should be as close together as possible and  
maintained at the same temperature.  
40MΩ ×100  
10k  
10M* 10M*  
2
+
6
100Ω  
e
no  
LT1008  
10M* 10M*  
3
*METAL FILM  
1008 AI04  
1008fb  
8
LT1008  
W U U  
U
APPLICATIO S I FOR ATIO  
0.1Hz to 10Hz Noise Test Circuit  
0.1μF  
100k  
10Ω  
2k  
LT1008*  
+
22μF  
SCOPE  
4.3k  
2.2μF  
+
4.7μF  
×1  
LT1001  
R
= 1M  
VOLTAGE  
GAIN: 50,000  
IN  
110k  
100k  
*DEVICE UNDER TEST  
24.3k  
NOTE: ALL CAPACITOR VALUES ARE FOR  
NONPOLARIZED CAPACITORS ONLY  
0.1μF  
1008 AI03  
Frequency Compensation  
In the voltage follower configuration, when the input is  
drivenbyafast, large-signalpulse(>1V), theinputprotec-  
tion diodes effectively short the output to the input during  
slewing, and a current, limited only by the output short-  
circuit protection, will flow through the diodes.  
The LT1008 is externally frequency compensated with a  
single capacitor. The two standard compensation circuits  
shown earlier are identical to the LM108A/LM308A fre-  
quency compensation schemes. Therefore, the LT1008  
operational amplifiers can be inserted directly into  
LM108A/LM308A sockets, with similar AC and upgraded  
DC performance.  
The use of a feedback resistor, as shown in the voltage  
follower feedforward diagram, is recommended because  
this resistor keeps the current below the short-circuit  
limit,resultinginfasterrecoveryandsettlingoftheoutput.  
External frequency compensation provides the user with  
additional flexibility in shaping the frequency response of  
the amplifier. For example, for a voltage gain of ten and  
CF = 3pF, a gain bandwidth product of 5MHz and slew rate  
of1.2V/μscanberealized. Forclosed-loopgainsinexcess  
of 200, no external compensation is necessary, and slew  
rate increases to 4V/μs. The LT1008 can also be overcom-  
pensated (i.e.,CF>30pForCS >100pF)toimprovecapaci-  
tiveloadhandlingcapabilityortonarrownoisebandwidth.  
In many applications, the feedback loop around the ampli-  
fier has gain (e.g., logarithmic amplifiers); overcompen-  
sation can stabilize these circuits with a single capacitor.  
Inverter Feedforward Compensation  
C2  
5pF  
R1  
10k  
R2  
2
3
10k  
INPUT  
+
6
V
OUT  
LT1008  
1
8
R3  
3k  
C3  
10pF  
C1  
500pF  
1008 AI05  
The availability of the compensation terminals permits the  
use of feedforward frequency compensation to enhance  
slew rate in low closed-loop gain configurations. The  
inverter slew rate is increased to 1.4V/μs. The voltage  
follower feedforward scheme bypasses the amplifier’s  
gain stages and slews at nearly 10V/μs.  
The inputs of the LT1008 are protected with back-to-back  
diodes.Currentlimitingresistorsarenotused,becausethe  
leakage of these resistors would prevent the realization of  
picoampere level bias currents at elevated temperatures.  
5μs/DIV  
1008 AI07  
1008fb  
9
LT1008  
APPLICATIO S I FOR ATIO  
W U U  
U
Follower Feedforward Compensation  
30pF  
10k  
2
3
6
OUTPUT  
LT1008  
10k  
INPUT*  
+
8
1000pF  
1008 AI06  
*SOURCE RESISTANCE 15k FOR STABILITY  
5μs/DIV  
1008 AI07  
U
TYPICAL APPLICATIO S  
Logarithmic Amplifier  
Q1A  
2N2979  
Q1B  
2N2979  
124k*  
5.1k  
15V  
15V  
LT1004C  
1.2V  
+
2
3
2k  
100pF  
330pF  
10k*  
2
3
7
INPUT  
+
6
15.7k  
LM107  
6
4
LT1008  
1k  
TEL. LABS  
TYPE Q81  
8
1
–15V OUTPUT  
*1% FILM RESISTOR  
30pF  
LOW BIAS CURRENT AND OFFSET VOLTAGE OF THE LT1008  
ALLOW 4.5 DECADES OF VOLTAGE INPUT LOGGING  
Amplifier for Bridge Transducers  
Saturated Standard Cell Amplifier  
15V  
R5  
56M  
+
3
2
7
V
+
C1  
30pF  
2N3609  
1.018235V  
SATURATED  
STANDARD  
CELL #101  
6
OUTPUT  
LT1008  
S1  
100k  
T
4
R3  
510k  
R1  
8
1
100k  
1
2
3
–15V  
+
+
8
6
R4  
510k  
LT1008  
OUTPUT  
EPPLEY LABS  
NEWPORT, R.I.  
1000pF  
R2  
S2  
100k  
R2  
100k  
R6  
56M  
T
VOLTAGE GAIN 100  
R1  
1008 TA04  
1008 TA05  
THE TYPICAL 30pA BIAS CURRENT OF THE LT1008 WILL  
DEGRADE THE STANDARD CELL BY ONLY 1ppm/YEAR.  
NOISE IS A FRACTION OF A ppm. UNPROTECTED GATE  
MOSFET ISOLATES STANDARD CELL ON POWER DOWN  
1008fb  
10  
LT1008  
U
TYPICAL APPLICATIO S  
Amplifier for Photodiode Sensor  
Five Decade Kelvin-Varley Divider Buffered by the LT1008  
R1  
5M  
1%  
15V  
7
2
3
10V  
+
6
100k  
KELVIN-VARLEY  
DIVIDER  
OUTPUT  
LT1008  
2
4
8
6
ESI #DP311  
λ
S1  
LT1008  
8
OUTPUT  
1
00000 – 99999 + 1  
–15V  
3
+
R2  
V
OUT  
= 10V/μA  
C1  
5M  
1%  
100pF  
1000pF  
1008 TA06  
APPROXIMATE ERROR DUE TO NOISE, BIAS CURRENT,  
COMMON MODE REJECTION. VOLTAGE GAIN OF THE  
AMPLIFIER IS 1/5 OF A LEAST SIGNIFICANT BIT  
1008 TA07  
The LT1008 integrator extends low frequency range. Total  
dynamic range is 0.01Hz to 10kHz (or 120dB) with 0.01%  
linearity.  
Extended Range Charge Pump Voltage to Frequency Converter  
15V  
15V  
1.8k  
OPTIONAL 0.01Hz TRIM  
22M  
50k  
1000pF  
(POLYSTYRENE)  
–15V  
1μF  
2
V
IN  
0V TO 10V  
10k*  
6
3
+
63.4k*  
10k*  
LT1008  
8
1k  
6
3
+
LM301A  
100k  
750k  
10k*  
2
100pF  
LM329  
22k  
10k  
15V  
+
2
3
10k  
10k  
15V  
LT1004C  
1.2V  
7
LT311A  
–15V  
1
4
5pF  
–15V  
FREQUENCY OUPUT  
0.01Hz TO 10kHz  
1008 TA08  
*1% METAL FILM RESISTOR  
ALL DIODES 1N4148  
1008fb  
11  
LT1008  
U
TYPICAL APPLICATIO S  
Precision, Fast Settling, Lowpass Filter  
Thiscircuitisusefulwherefastsignalacquisitionandhigh  
precision are required, as in electronic scales.  
10k  
The filter’s time constant is set by the 2k resistor and the  
1μF capacitor until comparator 1 switches. The time  
constant is then set by the 1.5M resistor and the 1μF  
capacitor. Comparator 2 provides a quick reset.  
2
1.5M  
6
OUTPUT  
LT1008  
2k  
3
8
INPUT  
+
1μF  
1
The circuit settles to a final value three times as fast as a  
simple 1.5M-1μF filter with almost no DC error.  
1000pF  
OPTO-MOS*  
15V  
1k  
15V  
2
8
+
7
#1  
LT311A  
3
4
–15V  
1
5
FILTER CUT  
IN ADJUST  
100Ω  
10k  
15V  
*OPTO-MOS SWITCH  
TYPE OFM1A  
THETA-J CORP  
3
2
8
+
7
#2  
LT311A  
4
–15V  
1
1008 TA09  
Fast Precision Inverters  
2pF TO 8pF  
10k*  
10k*  
10k*  
10pF  
INPUT  
10k  
1N4148 ×2  
15V  
1
300pF  
2N4393  
×2  
2
3
10k*  
5
+
15V  
7
INPUT  
7
1000pF  
6
LT318A  
OUTPUT  
2
3
15V  
7
6
2
3
4
LT318A  
OUTPUT  
+
15k  
6
LT1008  
+
4
4
8
–15V  
–15V  
1
10k  
10k  
–15V  
1N4148 (4)  
300pF  
30pF  
FULL POWER BANDWIDTH = 2MHz  
SLEW RATE AT 50V/μs  
SETTLING (10V STEP) = 12μs TO 0.01%  
BIAS CURRENT DC = 30pA  
OFFSET DRIFT = 0.3μV/°C  
OFFSET VOLTAGE = 30μV  
*1% METAL FILM  
15V  
7
10k  
2
6
LT1008  
4
3
+
8
SLEW RATE = 100V/μs  
1
10k  
–15V  
SETTLING (10V STEP) = 5μs TO 0.01%  
OFFSET VOLTAGE = 30μV  
BIAS CURRENT DC = 30pA  
*1% METAL FILM  
30pF  
1008 TA10  
1008fb  
12  
LT1008  
W
W
SCHE ATIC DIAGRA  
COMP1  
COMP2  
8
+
1
V
7
1.3k  
4.2k  
Q20  
Q14  
Q30  
22k  
22k  
Q29  
3k  
Q22  
Q24  
Q7  
Q5  
Q8  
1.5k  
Q43  
Q25  
Q21  
Q6  
Q27  
Q28  
Q37  
Q38  
S
Q16  
Q4  
60Ω  
70Ω  
OUTPUT  
6
Q3  
3k  
Q13  
Q23  
Q11  
3k  
S
S
S
–INPUT  
2
50k 1.5k  
Q12  
Q2  
Q1  
Q15  
Q26  
Q9  
J1  
Q42  
Q32  
Q31  
Q33  
Q10  
Q39  
+INPUT  
3
16k  
20k  
Q35  
3.3k  
Q18  
Q19  
Q17  
Q40  
Q41  
3.3k  
3.3k  
Q34  
320Ω  
40Ω  
330Ω  
4.3k  
4.8k  
V
4
1008fb  
13  
LT1008  
U
PACKAGE DESCRIPTIO  
H Package  
8-Lead TO-5 Metal Can (.200 Inch PCD)  
(Reference LTC DWG # 05-08-1320)  
0.335 – 0.370  
(8.509 – 9.398)  
DIA  
0.027 – 0.045  
(0.686 – 1.143)  
0.305 – 0.335  
(7.747 – 8.509)  
0.040  
(1.016)  
MAX  
45°TYP  
PIN 1  
0.028 – 0.034  
(0.711 – 0.864)  
0.050  
(1.270)  
MAX  
0.165 – 0.185  
(4.191 – 4.699)  
0.200  
(5.080)  
TYP  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
0.500 – 0.750  
(12.700 – 19.050)  
0.010 – 0.045*  
(0.254 – 1.143)  
H8(TO-5) 0.200 PCD 1197  
0.110 – 0.160  
0.016 – 0.021**  
(0.406 – 0.533)  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND 0.045" BELOW THE REFERENCE PLANE  
0.016 – 0.024  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
(0.406 – 0.610)  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
0.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
0.005  
(0.127)  
MIN  
6
5
8
7
2
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
3
4
0.200  
0.300 BSC  
(5.080)  
MAX  
(0.762 BSC)  
0.015 – 0.060  
(0.381 – 1.524)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.065  
(1.143 – 1.651)  
0.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
0.014 – 0.026  
(0.360 – 0.660)  
0.100  
(2.54)  
BSC  
J8 1298  
OBSOLETE PACKAGES  
1008fb  
14  
LT1008  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
.255 .015*  
(6.477 0.381)  
1
2
4
3
.130 .005  
.300 – .325  
.045 – .065  
(3.302 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 .003  
(0.457 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 .005  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
2
3
4
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1008fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1008  
U
TYPICAL APPLICATIO  
Ammeter measures currents from 100pA to 100μA with-  
out the use of expensive high value resistors. Accuracy at  
100μA is limited by the offset voltage between Q1 and Q2  
and at 100pA by the inverting bias current of the LT1008.  
Ammeter with Six Decade Range  
10k  
15V  
Q3  
100μA  
METER  
R1  
2k  
1.2k  
100pA  
Q1  
15V  
549Ω  
549Ω  
549Ω  
549Ω  
549Ω  
549Ω  
RANGE 1nA  
10k  
2
3
7
CURRENT  
INPUT  
Q2  
+
33k  
6
LT1008  
4
10nA  
100nA  
1μA  
LT1004C-1.2  
Q4  
8
1
PIN 13  
CA3146  
–15V  
0.01μF  
Q1 TO Q4: RCA CA3146 TRANSISTOR ARRAY  
CALIBRATION: ADJUST R1 FOR FULL SCALE  
DEFLECTION WITH 1μA INPUT CURRENT  
10μA  
100μA  
1008 TA11  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1012  
LT1112  
LT1880  
Picoamp Input Current, Microvolt Offset, Low Noise Op Amp  
Dual Low Power, Precision, Picoamp Input Op Amp  
Internally Compensated LT1008  
Dual LT1012  
SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp  
Single SOT-23 Version of LT1884  
LT1881/LT1882 Dual and Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps  
LT1884/LT1885 Dual and Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps  
Dual/Quad C  
Stable  
LOAD  
Dual/Quad Faster LT1881/LT1882  
1008fb  
LT 0607 REV B • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 1991  

相关型号:

LT1008_1

Picoamp Input Current, Microvolt Offset, Low Noise Op Amp
Linear

LT1009

2.5V Reference
Linear

LT1009

2.5-V INTEGRATED REFERENCE CIRCUITS
TI

LT1009C

2.5V Reference
Linear

LT1009CD

2.5-V INTEGRATED REFERENCE CIRCUITS
TI

LT1009CDE4

2.5-V INTEGRATED REFERENCE CIRCUIT
TI

LT1009CDG4

1-OUTPUT TWO TERM VOLTAGE REFERENCE, 2.5V, PDSO8, GREEN, PLASTIC, SOIC-8
TI

LT1009CDR

2.5-V INTEGRATED REFERENCE CIRCUIT
TI

LT1009CDRE4

2.5-V INTEGRATED REFERENCE CIRCUIT
TI

LT1009CDRG4

2.5-V INTEGRATED REFERENCE CIRCUIT
TI

LT1009CH

2.5V Reference
Linear

LT1009CH#PBF

IC TWO TERM VOLTAGE REFERENCE, MBCY3, LEAD FREE, METAL CAN, TO-46, 3 PIN, Voltage Reference
Linear