GAL16V8B-15LJI [LATTICE]

High Performance E2CMOS PLD Generic Array Logic; 高性能E2CMOS PLD通用阵列逻辑
GAL16V8B-15LJI
型号: GAL16V8B-15LJI
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

High Performance E2CMOS PLD Generic Array Logic
高性能E2CMOS PLD通用阵列逻辑

文件: 总23页 (文件大小:395K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GAL16V8  
High Performance E2CMOS PLD  
Generic Array Logic™  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
• HIGH PERFORMANCE E2CMOS® TECHNOLOGY  
— 5 ns Maximum Propagation Delay  
— Fmax = 166 MHz  
I/CLK  
CLK  
— 4 ns Maximum from Clock Input to Data Output  
— UltraMOS® Advanced CMOS Technology  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
8
8
OLMC  
I
I
I
I
I
I
I
I
• 50% to 75% REDUCTION IN POWER FROM BIPOLAR  
— 75mA Typ Icc on Low Power Device  
— 45mA Typ Icc on Quarter Power Device  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
• ACTIVE PULL-UPS ON ALL PINS  
• E2 CELL TECHNOLOGY  
— Reconfigurable Logic  
— Reprogrammable Cells  
— 100% Tested/Guaranteed 100% Yields  
— High Speed Electrical Erasure (<100ms)  
— 20 Year Data Retention  
8
8
8
8
8
8
• EIGHT OUTPUT LOGIC MACROCELLS  
— Maximum Flexibility for Complex Logic Designs  
— Programmable Output Polarity  
— Also Emulates 20-pin PAL® Devices with Full Func-  
tion/Fuse Map/Parametric Compatibility  
• PRELOAD AND POWER-ON RESET OF ALL REGISTERS  
— 100% Functional Testability  
• APPLICATIONS INCLUDE:  
— DMA Control  
— State Machine Control  
— High Speed Graphics Processing  
— Standard Logic Speed Upgrade  
I/O/Q  
I/OE  
OE  
• ELECTRONIC SIGNATURE FOR IDENTIFICATION  
DESCRIPTION  
PIN CONFIGURATION  
The GAL16V8C, at 5 ns maximum propagation delay time, com-  
bines a high performance CMOS process with Electrically Eras-  
able (E2) floating gate technology to provide the highest speed  
performance available in the PLD market. High speed erase times  
(<100ms) allow the devices to be reprogrammed quickly and ef-  
ficiently.  
DIP  
1
20  
Vcc  
I/CLK  
PLCC  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/OE  
I
I
I
I/CLK Vcc I/O/Q  
20  
I
I
2
The generic architecture provides maximum design flexibility by  
allowing the Output Logic Macrocell (OLMC) to be configured by  
the user. An important subset of the many architecture configu-  
rations possible with the GAL16V8 are the PAL architectures  
listed in the table of the macrocell description section. GAL16V8  
devices are capable of emulating any of these PAL architectures  
with full function/fuse map/parametric compatibility.  
GAL  
18  
I/O/Q  
4
6
I
16V8  
I/O/Q  
I/O/Q  
I
GAL16V8  
Top View  
5
I
I
16  
I
15  
I/O/Q  
I/O/Q  
I
I
I
14  
I
8
9
I
11  
13  
Unique test circuitry and reprogrammable cells allow complete  
AC, DC, and functional testing during manufacture. As a result,  
Lattice Semiconductor guarantees 100% field programmability  
and functionality of all GAL products. In addition, 100 erase/write  
cycles and data retention in excess of 20 years are guaranteed.  
GND I/OE I/O/Q I/O/Q  
I
10  
11  
GND  
2
Copyright © 1996 Lattice Semiconductor Corporation. E CMOS, GAL, ispGAL, ispLSI, pLSI, pDS, Silicon Forest, UltraMOS, L with Lattice Semiconductor Corp. and L (Stylized) are registered  
trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, In-System Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD,  
ispGDS, ispStarter, ispSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice Semiconductor Corporation. ISP is a service mark of Lattice  
Semiconductor Corporation. All brand names or product names mentioned are trademarks or registered trademarks of their respective holders.  
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.  
1996 Data Book  
Tel. (503) 681-0118; 1-888-ISP-PLDS; FAX (503) 681-3037; http://www.lattice.com  
Specifications GAL16V8  
GAL16V8 ORDERING INFORMATION  
Commercial Grade Specifications  
Tpd (ns) Tsu (ns) Tco (ns) Icc (mA)  
Ordering #  
Package  
5
3
4
115  
115  
20-Pin Plastic DIP  
GAL16V8C-5LP  
GAL16V8C-5LJ  
GAL16V8C-7LP  
GAL16V8C-7LJ  
GAL16V8B-7LP  
GAL16V8B-7LJ  
GAL16V8B-10LP  
20-Lead PLCC  
7.5  
7
5
20-Pin Plastic DIP  
20-Lead PLCC  
115  
115  
115  
115  
115  
20-Pin Plastic DIP  
20-Lead PLCC  
10  
15  
10  
12  
7
20-Pin Plastic DIP  
115  
55  
GAL16V8B-10LJ  
GAL16V8B-15QP  
GAL16V8B-15QJ  
20-Lead PLCC  
20-Pin Plastic DIP  
20-Lead PLCC  
10  
55  
90  
GAL16V8B-15LP  
20-Pin Plastic DIP  
90  
55  
55  
GAL16V8B-15LJ  
GAL16V8B-25QP  
GAL16V8B-25QJ  
20-Lead PLCC  
20-Pin Plastic DIP  
20-Lead PLCC  
25  
15  
12  
90  
90  
GAL16V8B-25LP  
GAL16V8B-25LJ  
20-Pin Plastic DIP  
20-Lead PLCC  
Industrial Grade Specifications  
Tpd (ns) Tsu (ns) Tco (ns) Icc (mA)  
Ordering #  
Package  
7.5  
10  
15  
20  
25  
7
5
130  
130  
130  
130  
130  
130  
65  
GAL16V8C-7LPI  
GAL16V8C-7LJI  
GAL16V8B-10LPI  
GAL16V8B-10LJI  
GAL16V8B-15LPI  
GAL16V8B-15LJI  
GAL16V8B-20QPI  
GAL16V8B-20QJI  
GAL16V8B-25QPI  
GAL16V8B-25QJI  
20-Pin Plastic DIP  
20-Lead PLCC  
10  
12  
13  
15  
7
20-Pin Plastic DIP  
20-Lead PLCC  
10  
11  
12  
20-Pin Plastic DIP  
20-Lead PLCC  
20-Pin Plastic DIP  
20-Lead PLCC  
65  
65  
20-Pin Plastic DIP  
20-Lead PLCC  
65  
130  
130  
GAL16V8B-25LPI  
GAL16V8B-25LJI  
20-Pin Plastic DIP  
20-Lead PLCC  
PART NUMBER DESCRIPTION  
_
XXXXXXXX XX  
X
X X  
GAL16V8C Device Name  
GAL16V8B  
Grade  
Blank = Commercial  
I = Industrial  
Speed (ns)  
L = Low Power Power  
Package P = Plastic DIP  
Q = Quarter Power  
J = PLCC  
1996 Data Book  
3-66  
Specifications GAL16V8  
OUTPUT LOGIC MACROCELL (OLMC)  
The following discussion pertains to configuring the output logic  
macrocell. It should be noted that actual implementation is ac-  
complished by development software/hardware and is completely  
transparent to the user.  
PAL Architectures  
Emulated by GAL16V8  
GAL16V8  
Global OLMC Mode  
16R8  
16R6  
16R4  
16RP8  
16RP6  
16RP4  
Registered  
Registered  
Registered  
Registered  
Registered  
Registered  
There are three global OLMC configuration modes possible:  
simple, complex, and registered. Details of each of these  
modes are illustrated in the following pages. Two global bits, SYN  
and AC0, control the mode configuration for all macrocells. The  
XOR bit of each macrocell controls the polarity of the output in any  
of the three modes, while the AC1 bit of each of the macrocells  
controls the input/output configuration. These two global and 16  
individual architecture bits define all possible configurations in a  
GAL16V8 . The information given on these architecture bits is  
only to give a better understanding of the device. Compiler soft-  
ware will transparently set these architecture bits from the pin  
definitions, so the user should not need to directly manipulate  
these architecture bits.  
16L8  
16H8  
16P8  
Complex  
Complex  
Complex  
10L8  
12L6  
14L4  
16L2  
10H8  
12H6  
14H4  
16H2  
10P8  
12P6  
14P4  
16P2  
Simple  
Simple  
Simple  
Simple  
Simple  
Simple  
Simple  
Simple  
Simple  
Simple  
Simple  
Simple  
The following is a list of the PAL architectures that the GAL16V8  
can emulate. It also shows the OLMC mode under which the  
GAL16V8 emulates the PAL architecture.  
COMPILER SUPPORT FOR OLMC  
Software compilers support the three different global OLMC  
modes as different device types. These device types are listed  
in the table below. Most compilers have the ability to automati-  
cally select the device type, generally based on the register usage  
and output enable (OE) usage. Register usage on the device  
forces the software to choose the registered mode. All combina-  
torial outputs with OE controlled by the product term will force the  
software to choose the complex mode. The software will choose  
the simple mode only when all outputs are dedicated combinatorial  
without OE control. The different device types listed in the table  
can be used to override the automatic device selection by the  
software. For further details, refer to the compiler software  
manuals.  
In registered mode pin 1 and pin 11 are permanently configured  
as clock and output enable, respectively. These pins cannot be  
configured as dedicated inputs in the registered mode.  
In complex mode pin 1 and pin 11 become dedicated inputs and  
use the feedback paths of pin 19 and pin 12 respectively. Because  
of this feedback path usage, pin 19 and pin 12 do not have the  
feedback option in this mode.  
In simple mode all feedback paths of the output pins are routed  
via the adjacent pins. In doing so, the two inner most pins ( pins  
15 and 16) will not have the feedback option as these pins are  
always configured as dedicated combinatorial output.  
When using compiler software to configure the device, the user  
must pay special attention to the following restrictions in each  
mode.  
Registered  
Complex  
Simple  
Auto Mode Select  
ABEL  
CUPL  
LOG/iC  
OrCAD-PLD  
PLDesigner  
TANGO-PLD  
P16V8R  
G16V8MS  
GAL16V8_R  
"Registered"1  
P16V8R2  
P16V8C  
G16V8MA  
GAL16V8_C7  
"Complex"1  
P16V8C2  
P16V8AS  
G16V8AS  
GAL16V8_C8  
"Simple"1  
P16V8  
G16V8  
GAL16V8  
GAL16V8A  
P16V8A  
G16V8  
P16V8C2  
G16V8R  
G16V8C  
G16V8AS3  
1) Used with Configuration keyword.  
2) Prior to Version 2.0 support.  
3) Supported on Version 1.20 or later.  
1996 Data Book  
3-67  
Specifications GAL16V8  
REGISTERED MODE  
In the Registered mode, macrocells are configured as dedicated  
registered outputs or as I/O functions.  
mode. Dedicated input or output functions can be implemented  
as subsets of the I/O function.  
Architecture configurations available in this mode are similar to  
the common 16R8 and 16RP4 devices with various permutations  
of polarity, I/O and register placement.  
Registered outputs have eight product terms per output. I/O's  
have seven product terms per output.  
The JEDEC fuse numbers, including the User Electronic Signature  
(UES) fuses and the Product Term Disable (PTD) fuses, are  
shown on the logic diagram on the following page.  
All registered macrocells share common clock and output enable  
control pins. Any macrocell can be configured as registered or  
I/O. Up to eight registers or up to eight I/O's are possible in this  
CLK  
Registered Configuration for Registered Mode  
- SYN=0.  
- AC0=1.  
- XOR=0 defines Active Low Output.  
- XOR=1 defines Active High Output.  
- AC1=0 defines this output configuration.  
- Pin 1 controls common CLK for the registered outputs.  
- Pin 11 controls common OE for the registered outputs.  
- Pin 1 & Pin 11 are permanently configured as CLK &  
OE.  
D
Q
Q
XOR  
OE  
Combinatorial Configuration for Registered Mode  
- SYN=0.  
- AC0=1.  
- XOR=0 defines Active Low Output.  
- XOR=1 defines Active High Output.  
- AC1=1 defines this output configuration.  
- Pin 1 & Pin 11 are permanently configured as CLK &  
OE.  
XOR  
Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.  
1996 Data Book  
3-68  
Specifications GAL16V8  
REGISTERED MODE LOGIC DIAGRAM  
DIP & PLCC Package Pinouts  
1
2128  
PTD  
28  
0
4
8
12  
16  
20  
24  
0000  
0224  
OLMC  
19  
18  
17  
16  
15  
14  
13  
XOR-2048  
AC1-2120  
2
3
4
5
6
7
8
9
0256  
0480  
OLMC  
XOR-2049  
AC1-2121  
0512  
0736  
OLMC  
XOR-2050  
AC1-2122  
0768  
0992  
OLMC  
XOR-2051  
AC1-2123  
1024  
1248  
OLMC  
XOR-2052  
AC1-2124  
1280  
1504  
OLMC  
XOR-2053  
AC1-2125  
1536  
1760  
OLMC  
XOR-2054  
AC1-2126  
1792  
2016  
OLMC  
12  
11  
XOR-2055  
AC1-2127  
OE  
2191  
SYN-2192  
AC0-2193  
1996 Data Book  
3-69  
Specifications GAL16V8  
COMPLEX MODE  
In the Complex mode, macrocells are configured as output only  
or I/O functions.  
pability. Designs requiring eight I/O's can be implemented in the  
Registered mode.  
Architecture configurations available in this mode are similar to  
the common 16L8 and 16P8 devices with programmable polarity  
in each macrocell.  
All macrocells have seven product terms per output. One product  
term is used for programmable output enable control. Pins 1 and  
11 are always available as data inputs into theAND array.  
Up to six I/O's are possible in this mode. Dedicated inputs or  
outputs can be implemented as subsets of the I/O function. The  
two outer most macrocells (pins 12 & 19) do not have input ca-  
The JEDEC fuse numbers including the UES fuses and PTD fuses  
are shown on the logic diagram on the following page.  
Combinatorial I/O Configuration for Complex Mode  
- SYN=1.  
- AC0=1.  
- XOR=0 defines Active Low Output.  
- XOR=1 defines Active High Output.  
- AC1=1.  
XOR  
- Pin 13 through Pin 18 are configured to this function.  
Combinatorial Output Configuration for Complex Mode  
- SYN=1.  
- AC0=1.  
- XOR=0 defines Active Low Output.  
- XOR=1 defines Active High Output.  
- AC1=1.  
XOR  
- Pin 12 and Pin 19 are configured to this function.  
Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.  
1996 Data Book  
3-70  
Specifications GAL16V8  
COMPLEX MODE LOGIC DIAGRAM  
DIP & PLCC Package Pinouts  
1
2128  
PTD  
0
4
8
12  
16  
20  
24  
28  
0000  
0224  
OLMC  
XOR-2048  
AC1-2120  
19  
2
3
4
0256  
0480  
OLMC  
XOR-2049  
AC1-2121  
18  
0512  
0736  
OLMC  
XOR-2050  
AC1-2122  
17  
0768  
0992  
OLMC  
16  
XOR-2051  
AC1-2123  
5
6
7
8
1024  
1248  
OLMC  
15  
XOR-2052  
AC1-2124  
1280  
1504  
OLMC  
14  
XOR-2053  
AC1-2125  
1536  
1760  
OLMC  
XOR-2054  
AC1-2126  
13  
1792  
2016  
OLMC  
12  
XOR-2055  
AC1-2127  
9
11  
2191  
SYN-2192  
AC0-2193  
1996 Data Book  
3-71  
Specifications GAL16V8  
SIMPLE MODE  
In the Simple mode, macrocells are configured as dedicated inputs  
or as dedicated, always active, combinatorial outputs.  
Pins 1 and 11 are always available as data inputs into the AND  
array. The center two macrocells (pins 15 & 16) cannot be used  
as input or I/O pins, and are only available as dedicated outputs.  
Architecture configurations available in this mode are similar to  
the common 10L8 and 12P6 devices with many permutations of  
generic output polarity or input choices.  
The JEDEC fuse numbers including the UES fuses and PTD fuses  
are shown on the logic diagram.  
All outputs in the simple mode have a maximum of eight product  
terms that can control the logic. In addition, each output has pro-  
grammable polarity.  
Combinatorial Output with Feedback Configuration  
for Simple Mode  
Vcc  
- SYN=1.  
- AC0=0.  
- XOR=0 defines Active Low Output.  
- XOR=1 defines Active High Output.  
- AC1=0 defines this configuration.  
- All OLMC except pins 15 & 16 can be configured to  
this function.  
XOR  
Combinatorial Output Configuration for Simple Mode  
Vcc  
- SYN=1.  
- AC0=0.  
- XOR=0 defines Active Low Output.  
- XOR=1 defines Active High Output.  
- AC1=0 defines this configuration.  
- Pins 15 & 16 are permanently configured to this  
function.  
XOR  
Dedicated Input Configuration for Simple Mode  
- SYN=1.  
- AC0=0.  
- XOR=0 defines Active Low Output.  
- XOR=1 defines Active High Output.  
- AC1=1 defines this configuration.  
- All OLMC except pins 15 & 16 can be configured to  
this function.  
Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.  
1996 Data Book  
3-72  
Specifications GAL16V8  
SIMPLE MODE LOGIC DIAGRAM  
DIP & PLCC Package Pinouts  
1
2128  
0
4
8
12  
16  
20  
24  
28  
PTD  
0000  
0224  
OLMC  
19  
18  
17  
16  
15  
14  
13  
XOR-2048  
AC1-2120  
2
3
0256  
0480  
OLMC  
XOR-2049  
AC1-2121  
0512  
0736  
OLMC  
XOR-2050  
AC1-2122  
4
5
6
0768  
0992  
OLMC  
XOR-2051  
AC1-2123  
1024  
1248  
OLMC  
XOR-2052  
AC1-2124  
1280  
1504  
OLMC  
XOR-2053  
AC1-2125  
7
8
1536  
1760  
OLMC  
XOR-2054  
AC1-2126  
1792  
2016  
OLMC  
XOR-2055  
AC1-2127  
12  
11  
9
2191  
SYN-2192  
AC0-2193  
1996 Data Book  
3-73  
SpecificationsGAL16V8C
ABSOLUTE MAXIMUM RATINGS(1)  
RECOMMENDED OPERATING COND.  
Commercial Devices:  
Ambient Temperature (TA) ...............................0 to 75°C  
Supply voltage (VCC)  
Supply voltage VCC ....................................... –0.5 to +7V  
Input voltage applied .......................... –2.5 to VCC +1.0V  
Off-state output voltage applied .......... –2.5 to VCC +1.0V  
Storage Temperature.................................65 to 150°C  
Ambient Temperature with  
with Respect to Ground ..................... +4.75 to +5.25V  
Industrial Devices:  
Ambient Temperature (TA) ...........................40 to 85°C  
Supply voltage (VCC)  
Power Applied ........................................55 to 125°C  
1.Stresses above those listed under the “Absolute Maximum  
Ratings” may cause permanent damage to the device. These  
are stress only ratings and functional operation of the device  
at these or at any other conditions above those indicated in the  
operational sections of this specification is not implied (while  
programming, follow the programming specifications).  
with Respect to Ground ..................... +4.50 to +5.50V  
DC ELECTRICAL CHARACTERISTICS  
Over Recommended Operating Conditions (Unless Otherwise Specified)  
SYMBOL  
PARAMETER  
CONDITION  
MIN.  
TYP.3  
MAX. UNITS  
VIL  
VIH  
IIL1  
Input Low Voltage  
Vss – 0.5  
2.0  
0.8  
Vcc+1  
–100  
10  
V
V
Input High Voltage  
Input or I/O Low Leakage Current  
Input or I/O High Leakage Current  
Output Low Voltage  
0V VIN VIL (MAX.)  
3.5V VIN VCC  
µA  
µA  
V
IIH  
VOL  
VOH  
IOL  
IOL = MAX. Vin = VIL or VIH  
IOH = MAX. Vin = VIL or VIH  
0.5  
Output High Voltage  
2.4  
V
Low Level Output Current  
High Level Output Current  
Output Short Circuit Current  
16  
mA  
mA  
mA  
IOH  
IOS2  
–3.2  
–150  
VCC = 5V VOUT = 0.5V TA= 25°C  
–30  
COMMERCIAL  
ICC  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V  
L -5/-7  
L -7  
75  
75  
115  
130  
mA  
mA  
ftoggle = 15MHz Outputs Open  
INDUSTRIAL  
ICC  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V  
ftoggle = 15MHz Outputs Open  
1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.  
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester  
ground degradation. Guaranteed but not 100% tested.  
3) Typical values are at Vcc = 5V and TA = 25 °C  
1996 Data Book  
3-74  
SpecificationsGAL16V8C
AC SWITCHING CHARACTERISTICS  
Over Recommended Operating Conditions  
COM  
-5  
COM  
-7  
IND  
-7  
TEST  
COND1.  
DESCRIPTION  
PARAMETER  
UNITS  
MIN. MAX.  
MIN. MAX.  
MIN. MAX.  
tpd  
A
Input or I/O to  
Comb. Output  
8 outputs switching  
1 output switching  
1
5
3
7.5  
7
1
7.5  
ns  
ns  
tco  
tcf2  
tsu  
th  
A
Clock to Output Delay  
1
3
4
3
2
7
5
3
1
7
5
3
ns  
ns  
ns  
Clock to Feedback Delay  
Setup Time, Input or Feedback before Clock↑  
Hold Time, Input or Feedback after Clock↑  
A
0
0
0
ns  
Maximum Clock Frequency with  
External Feedback, 1/(tsu + tco)  
142.8 —  
83.3  
83.3  
MHz  
fmax3  
A
A
Maximum Clock Frequency with  
Internal Feedback, 1/(tsu + tcf)  
166  
166  
100  
100  
100  
100  
MHz  
MHz  
Maximum Clock Frequency with  
No Feedback  
twh  
twl  
Clock Pulse Duration, High  
Clock Pulse Duration, Low  
3
3
5
5
5
5
ns  
ns  
ten  
B
B
Input or I/O to Output Enabled  
OE to Output Enabled  
1
1
6
6
3
2
9
6
1
1
9
6
ns  
ns  
tdis  
C
C
Input or I/O to Output Disabled  
OE to Output Disabled  
1
1
5
5
2
9
6
1
1
9
6
ns  
ns  
1.5  
1) Refer to Switching Test Conditions section.  
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.  
3) Refer to fmax Descriptions section. Characterized initially and after any design or process changes that may affect these  
parameters.  
CAPACITANCE (TA = 25°C, f = 1.0 MHz)  
SYMBOL  
PARAMETER  
Input Capacitance  
I/O Capacitance  
MAXIMUM*  
UNITS  
pF  
TEST CONDITIONS  
VCC = 5.0V, VI = 2.0V  
VCC = 5.0V, VI/O = 2.0V  
CI  
8
8
CI/O  
pF  
*Guaranteed but not 100% tested.  
1996 Data Book  
3-75  
SpecificationsGAL16V8B  
ABSOLUTE MAXIMUM RATINGS(1)  
RECOMMENDED OPERATING COND.  
Commercial Devices:  
Ambient Temperature (TA) ...............................0 to 75°C  
Supply voltage (VCC)  
Supply voltage VCC ....................................... –0.5 to +7V  
Input voltage applied .......................... –2.5 to VCC +1.0V  
Off-state output voltage applied .......... –2.5 to VCC +1.0V  
Storage Temperature.................................65 to 150°C  
Ambient Temperature with  
with Respect to Ground ..................... +4.75 to +5.25V  
Industrial Devices:  
Ambient Temperature (TA) ...........................40 to 85°C  
Supply voltage (VCC)  
Power Applied ........................................55 to 125°C  
1.Stresses above those listed under the “Absolute Maximum  
Ratings” may cause permanent damage to the device. These  
are stress only ratings and functional operation of the device  
at these or at any other conditions above those indicated in the  
operational sections of this specification is not implied (while  
programming, follow the programming specifications).  
with Respect to Ground ..................... +4.50 to +5.50V  
DC ELECTRICAL CHARACTERISTICS  
Over Recommended Operating Conditions (Unless Otherwise Specified)  
SYMBOL  
PARAMETER  
CONDITION  
MIN.  
TYP.3  
MAX. UNITS  
VIL  
VIH  
IIL1  
Input Low Voltage  
Vss – 0.5  
2.0  
0.8  
Vcc+1  
100  
10  
V
V
Input High Voltage  
Input or I/O Low Leakage Current  
Input or I/O High Leakage Current  
Output Low Voltage  
0V VIN VIL (MAX.)  
3.5V VIN VCC  
µA  
µA  
V
IIH  
VOL  
VOH  
IOL  
IOL = MAX. Vin = VIL or VIH  
IOH = MAX. Vin = VIL or VIH  
0.5  
Output High Voltage  
2.4  
V
Low Level Output Current  
High Level Output Current  
Output Short Circuit Current  
24  
mA  
mA  
mA  
IOH  
IOS2  
–3.2  
–150  
VCC = 5V VOUT = 0.5V TA= 25°C  
–30  
COMMERCIAL  
ICC  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V  
L -7/-10  
75  
75  
115  
90  
mA  
mA  
ftoggle = 15MHz Outputs Open  
L -15/-25  
Q -15/-25  
45  
55  
mA  
INDUSTRIAL  
ICC  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V  
L -10/-15/-25  
Q -20/-25  
75  
45  
130  
65  
mA  
mA  
ftoggle = 15MHz Outputs Open  
1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.  
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester  
ground degradation. Guaranteed but not 100% tested.  
3) Typical values are at Vcc = 5V and TA = 25 °C  
1996 Data Book  
3-76  
SpecificationsGAL16V8B
AC SWITCHING CHARACTERISTICS  
Over Recommended Operating Conditions  
COM  
-7  
COM / IND COM / IND  
IND  
-20  
COM / IND  
-25  
-10  
-15  
TEST  
COND1.  
DESCRIPTION  
PARAM.  
UNITS  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
MIN. MAX.  
tpd  
A
Input or I/O to  
Comb. Output  
8 outputs switching  
1 output switching  
3
7.5  
7
3
10  
3
15  
3
20  
3
25  
ns  
ns  
tco  
tcf2  
tsu  
th  
A
Clock to Output Delay  
2
7
5
3
2
7
6
2
10  
8
2
11  
9
2
12  
10  
ns  
ns  
ns  
Clock to Feedback Delay  
10  
12  
13  
15  
Setup Time, Input or Fdbk before Clk↑  
Hold Time, Input or Fdbk after Clk↑  
A
0
0
0
0
0
ns  
Maximum Clock Frequency with  
External Feedback, 1/(tsu + tco)  
83.3  
58.8  
45.5  
41.6  
37  
MHz  
fmax3  
A
A
Maximum Clock Frequency with  
Internal Feedback, 1/(tsu + tcf)  
100  
100  
62.5  
62.5  
50  
45.4  
50  
40  
MHz  
MHz  
Maximum Clock Frequency with  
No Feedback  
62.5  
41.6  
twh  
twl  
Clock Pulse Duration, High  
Clock Pulse Duration, Low  
5
5
8
8
8
8
10  
10  
12  
12  
ns  
ns  
ten  
B
B
Input or I/O to Output Enabled  
OE to Output Enabled  
3
2
9
6
3
2
10  
10  
15  
15  
20  
18  
25  
20  
ns  
ns  
tdis  
C
C
Input or I/O to Output Disabled  
OE to Output Disabled  
2
9
6
2
10  
15  
15  
20  
18  
25  
20  
ns  
ns  
1.5  
1.5 10  
1) Refer to Switching Test Conditions section.  
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.  
3) Refer to fmax Descriptions section.  
CAPACITANCE (TA = 25°C, f = 1.0 MHz)  
SYMBOL  
PARAMETER  
Input Capacitance  
I/O Capacitance  
MAXIMUM*  
UNITS  
TEST CONDITIONS  
VCC = 5.0V, VI = 2.0V  
VCC = 5.0V, VI/O = 2.0V  
CI  
8
8
pF  
pF  
CI/O  
*Guaranteed but not 100% tested.  
1996 Data Book  
3-77  
Specifications GAL16V8  
SWITCHING WAVEFORMS  
INPUT or  
I/O FEEDBACK  
VALID INPUT  
su  
h
t
t
CLK  
INPUT or  
I/O FEEDBACK  
VALID INPUT  
tco  
REGISTERED  
OUTPUT  
tpd  
COMBINATIONAL  
OUTPUT  
1/fmax  
(external fdbk)  
Combinatorial Output  
Registered Output  
INPUT or  
I/O FEEDBACK  
OE  
dis  
en  
t
t
dis  
t
en  
t
COMBINATIONAL  
OUTPUT  
REGISTERED  
OUTPUT  
Input or I/O to Output Enable/Disable  
OE to Output Enable/Disable  
wh  
wl  
t
t
CLK  
1/ max (internal fdbk)  
f
CLK  
cf  
t
su  
t
1/ max  
(w/o fb)  
f
REGISTERED  
FEEDBACK  
Clock Width  
fmax with Feedback  
1996 Data Book  
3-78  
Specifications GAL16V8  
fmax DESCRIPTIONS  
CLK  
CLK  
LOGIC  
ARRAY  
REGISTER  
LOGIC  
ARRAY  
REGISTER  
t
su  
tco  
fmax with External Feedback 1/(tsu+tco)  
Note: fmax with external feedback is calculated from measured  
t
cf  
pd  
tsu and tco.  
t
CLK  
fmax with Internal Feedback 1/(tsu+tcf)  
LOGIC  
REGISTER  
ARRAY  
Note: tcf is a calculated value, derived by subtracting tsu from  
the period of fmax w/internal feedback (tcf = 1/fmax - tsu). The  
value of tcf is used primarily when calculating the delay from  
clocking a register to a combinatorial output (through registered  
feedback), as shown above. For example, the timing from clock  
to a combinatorial output is equal to tcf + tpd.  
t
su + th  
fmax with No Feedback  
Note: fmax with no feedback may be less than 1/(twh + twl). This  
is to allow for a clock duty cycle of other than 50%.  
SWITCHING TEST CONDITIONS  
+5V  
Input Pulse Levels  
Input Rise and  
Fall Times  
GND to 3.0V  
2 – 3ns 10% – 90%  
1.5ns 10% – 90%  
1.5V  
R
1
GAL16V8B  
GAL16V8C  
FROM OUTPUT (O/Q)  
UNDER TEST  
TEST POINT  
Input Timing Reference Levels  
Output Timing Reference Levels  
Output Load  
1.5V  
C L*  
See Figure  
R
2
3-state levels are measured 0.5V from steady-state active  
level.  
*CL INCLUDES TEST FIXTURE AND PROBE CAPACITANCE  
GAL16V8B Output Load Conditions (see figure)  
GAL16V8C Output Load Conditions (see figure)  
Test Condition  
R1  
R2  
CL  
Test Condition  
R1  
R2  
CL  
A
B
200Ω  
200Ω  
390Ω  
390Ω  
390Ω  
390Ω  
390Ω  
50pF  
50pF  
50pF  
5pF  
A
B
200Ω  
200Ω  
200Ω  
200Ω  
200Ω  
200Ω  
200Ω  
50pF  
50pF  
50pF  
5pF  
Active High  
Active Low  
Active High  
Active Low  
Active High  
Active Low  
Active High  
Active Low  
C
C
200Ω  
5pF  
200Ω  
5pF  
1996 Data Book  
3-79  
Specifications GAL16V8  
ELECTRONIC SIGNATURE  
OUTPUT REGISTER PRELOAD  
An electronic signature is provided in every GAL16V8 device. It  
contains 64 bits of reprogrammable memory that can contain user  
defined data. Some uses include user ID codes, revision num-  
bers, or inventory control. The signature data is always available  
to the user independent of the state of the security cell.  
When testing state machine designs, all possible states and state  
transitions must be verified in the design, not just those required  
in the normal machine operations. This is because, in system  
operation, certain events occur that may throw the logic into an  
illegal state (power-up, line voltage glitches, brown-outs, etc.). To  
test a design for proper treatment of these conditions, a way must  
be provided to break the feedback paths, and force any desired  
(i.e., illegal) state into the registers. Then the machine can be  
sequenced and the outputs tested for correct next state conditions.  
NOTE: The electronic signature is included in checksum calcu-  
lations. Changing the electronic signature will alter the checksum.  
SECURITY CELL  
GAL16V8 devices include circuitry that allows each registered  
output to be synchronously set either high or low. Thus, any  
present state condition can be forced for test sequencing. If  
necessary, approved GAL programmers capable of executing text  
vectors perform output register preload automatically.  
A security cell is provided in the GAL16V8 devices to prevent un-  
authorized copying of the array patterns. Once programmed, this  
cell prevents further read access to the functional bits in the de-  
vice. This cell can only be erased by re-programming the device,  
so the original configuration can never be examined once this cell  
is programmed. The Electronic Signature is always available to  
the user, regardless of the state of this control cell.  
INPUT BUFFERS  
GAL16V8 devices are designed with TTL level compatible input  
buffers. These buffers have a characteristically high impedance,  
and present a much lighter load to the driving logic than bipolar  
TTL devices.  
LATCH-UP PROTECTION  
GAL16V8 devices are designed with an on-board charge pump  
to negatively bias the substrate. The negative bias minimizes the  
potential of latch-up caused by negative input undershoots.  
Additionally, outputs are designed with n-channel pull-ups instead  
of the traditional p-channel pull-ups in order to eliminate latch-up  
due to output overshoots.  
The GAL16V8 input and I/O pins have built-in active pull-ups. As  
a result, unused inputs and I/O's will float to a TTL "high" (logi-  
cal "1"). Lattice Semiconductor recommends that all unused  
inputs and tri-stated I/O pins be connected to another active input,  
VCC, or Ground. Doing this will tend to improve noise immunity  
and reduce ICC for the device.  
DEVICE PROGRAMMING  
Typical Input Pull-up Characteristic  
GAL devices are programmed using a Lattice Semiconductor-  
approved Logic Programmer, available from a number of manu-  
facturers. Complete programming of the device takes only a few  
seconds. Erasing of the device is transparent to the user, and is  
done automatically as part of the programming cycle.  
0
- 2 0  
- 4 0  
- 6 0  
0
1 . 0  
2 . 0  
3 . 0  
4 . 0  
5 . 0  
Input Voltage (Volts)  
1996 Data Book  
3-80  
Specifications GAL16V8  
POWER-UP RESET  
Vcc (min.)  
Vcc  
t
su  
t
wl  
CLK  
t
pr  
Internal Register  
Reset to Logic "0"  
INTERNAL REGISTER  
Q - OUTPUT  
FEEDBACK/EXTERNAL  
OUTPUT REGISTER  
Device Pin  
Reset to Logic "1"  
Circuitry within the GAL16V8 provides a reset signal to all reg-  
isters during power-up. All internal registers will have their Q  
outputs set low after a specified time (tpr, 1µs MAX). As a result,  
the state on the registered output pins (if they are enabled) will  
always be high on power-up, regardless of the programmed  
polarity of the output pins. This feature can greatly simplify state  
machine design by providing a known state on power-up. Be-  
cause of the asynchronous nature of system power-up, some  
conditions must be met to guarantee a valid power-up reset of the  
device. First, the VCC rise must be monotonic. Second, the clock  
input must be at static TTL level as shown in the diagram during  
power up. The registers will reset within a maximum of tpr time.  
As in normal system operation, avoid clocking the device until all  
input and feedback path setup times have been met. The clock  
must also meet the minimum pulse width requirements.  
INPUT/OUTPUT EQUIVALENT SCHEMATICS  
PIN  
PIN  
Feedback  
Vcc  
Active Pull-up  
Circuit  
Active Pull-up  
Circuit  
Vcc  
Tri-State  
Control  
Vref  
Vcc  
Vcc  
Vref  
ESD  
Protection  
Circuit  
Data  
Output  
PIN  
PIN  
ESD  
Protection  
Circuit  
Feedback  
(To Input Buffer)  
Typ. Vref = 3.2V  
Typ. Vref = 3.2V  
Typical Input  
Typical Output  
1996 Data Book  
3-81  
Specifications GAL16V8  
GAL 16V8C-5/-7: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS  
Normalized Tpd vs Vcc  
Normalized Tsu vs Vcc  
Normalized Tco vs Vcc  
1.2  
1.1  
1
1.2  
1.1  
1
1.2  
1.1  
1
RISE  
FALL  
PT H->L  
PT L->H  
PT H->L  
PT L->H  
0.9  
0.8  
0.9  
0.8  
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Voltage (V)  
Normalized Tpd vs Temp  
Normalized Tco vs Temp  
Normalized Tsu vs Temp  
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
1.4  
1.3  
1.2  
1.1  
1
PT H->L  
PT L->H  
RISE  
FALL  
PT H->L  
PT L->H  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
Temperature (deg. C)  
Temperature (deg. C)  
Temperature (deg. C)  
Delta Tpd vs # of Outputs  
Switching  
Delta Tco vs # of Outputs  
Switching  
0
-0.25  
-0.5  
0
-0.25  
-0.5  
RISE  
FALL  
RISE  
FALL  
-0.75  
-1  
-0.75  
-1  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Number of Outputs Switching  
Number of Outputs Switching  
Delta Tpd vs Output Loading  
Delta Tco vs Output Loading  
8
6
4
2
0
8
6
4
2
0
RISE  
FALL  
RISE  
FALL  
-2  
0
-2  
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Loading (pF)  
Output Loading (pF)  
1996 Data Book  
3-82  
Specifications GAL16V8  
GAL 16V8C-5/-7: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS  
Voh vs Ioh  
Voh vs Ioh  
Vol vs Iol  
5
4
3
2
1
0
4.25  
4
2
1.5  
1
3.75  
3.5  
0.5  
0
3.25  
0.00  
10.00  
20.00  
30.00  
40.00  
50.00  
0.00  
1.00  
2.00  
3.00  
4.00  
0.00  
20.00  
40.00  
60.00  
80.00  
Ioh(mA)  
Ioh(mA)  
Iol (mA)  
Normalized Icc vs Vcc  
Normalized Icc vs Temp  
Normalized Icc vs Freq.  
1.20  
1.10  
1.00  
0.90  
0.80  
1.3  
1.2  
1.1  
1
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
-55  
-25  
0
25  
50  
75  
100 125  
0
25  
50  
75  
100  
Supply Voltage (V)  
Temperature (deg. C)  
Frequency (MHz)  
Delta Icc vs Vin (1 input)  
Input Clamp (Vik)  
10  
0
5
8
6
4
2
0
10  
15  
20  
25  
30  
35  
40  
45  
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00  
-2.00  
-1.50  
-1.00  
-0.50  
0.00  
Vin (V)  
Vik (V)  
1996 Data Book  
3-83  
Specifications GAL16V8  
GAL 16V8B-7/-10: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS  
Normalized Tpd vs Vcc  
Normalized Tsu vs Vcc  
Normalized Tco vs Vcc  
1.2  
1.1  
1
1.2  
1.1  
1
1.2  
1.1  
1
RISE  
FALL  
PT H->L  
PT L->H  
PT H->L  
PT L->H  
0.9  
0.8  
0.9  
0.8  
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Voltage (V)  
Normalized Tpd vs Temp  
Normalized Tco vs Temp  
Normalized Tsu vs Temp  
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
1.4  
1.3  
1.2  
1.1  
1
PT H->L  
PT L->H  
RISE  
FALL  
PT H->L  
PT L->H  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
Temperature (deg. C)  
Temperature (deg. C)  
Temperature (deg. C)  
Delta Tpd vs # of Outputs  
Switching  
Delta Tco vs # of Outputs  
Switching  
0
-0.5  
-1  
0
-0.5  
-1  
RISE  
FALL  
RISE  
FALL  
-1.5  
-1.5  
-2  
-2  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Number of Outputs Switching  
Number of Outputs Switching  
Delta Tpd vs Output Loading  
Delta Tco vs Output Loading  
10  
8
10  
8
RISE  
FALL  
RISE  
FALL  
6
6
4
4
2
2
0
0
-2  
-2  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Loading (pF)  
Output Loading (pF)  
1996 Data Book  
3-84  
Specifications GAL16V8  
GAL 16V8B-7/-10: TYPICALAC AND DC CHARACTERISTIC DIAGRAMS  
Vol vs Iol  
Voh vs Ioh  
Voh vs Ioh  
1
0.75  
0.5  
5
4
3
2
1
0
4.5  
4.25  
4
0.25  
0
3.75  
3.5  
0.00  
20.00  
40.00  
60.00  
80.00 100.00  
0.00 10.00 20.00 30.00 40.00 50.00 60.00  
0.00  
1.00  
2.00  
3.00  
4.00  
Iol (mA)  
Ioh(mA)  
Ioh(mA)  
Normalized Icc vs Vcc  
Normalized Icc vs Temp  
Normalized Icc vs Freq.  
1.20  
1.10  
1.00  
0.90  
0.80  
1.2  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
1.1  
1
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
-55  
-25  
0
25  
50  
75  
100 125  
0
25  
50  
75  
100  
Supply Voltage (V)  
Temperature (deg. C)  
Frequency (MHz)  
Delta Icc vs Vin (1 input)  
Input Clamp (Vik)  
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
8
6
4
2
0
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00  
-2.00  
-1.50  
-1.00  
-0.50  
0.00  
Vin (V)  
Vik (V)  
1996 Data Book  
3-85  
Specifications GAL16V8  
GAL 16V8B-15/-25: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS  
Normalized Tpd vs Vcc  
Normalized Tsu vs Vcc  
Normalized Tco vs Vcc  
1.2  
1.1  
1
1.2  
1.1  
1
1.2  
1.1  
1
RISE  
FALL  
PT H->L  
PT L->H  
PT H->L  
PT L->H  
0.9  
0.8  
0.9  
0.8  
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Voltage (V)  
Normalized Tsu vs Temp  
Normalized Tpd vs Temp  
Normalized Tco vs Temp  
1.4  
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
PT H->L  
PT L->H  
PT H->L  
PT L->H  
RISE  
FALL  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
-55  
-25  
0
25  
50  
75  
100 125  
-55  
-25  
0
25  
50  
75  
100 125  
-55  
-25  
0
25  
50  
75  
100 125  
Temperature (deg. C)  
Temperature (deg. C)  
Temperature (deg. C)  
Delta Tpd vs # of Outputs  
Switching  
Delta Tco vs # of Outputs  
Switching  
0
-0.5  
-1  
0
-0.5  
-1  
RISE  
FALL  
RISE  
FALL  
-1.5  
-1.5  
-2  
-2  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Number of Outputs Switching  
Number of Outputs Switching  
Delta Tpd vs Output Loading  
Delta Tco vs Output Loading  
12  
10  
8
12  
10  
8
RISE  
FALL  
RISE  
FALL  
6
6
4
4
2
2
0
0
-2  
-2  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Loading (pF)  
Output Loading (pF)  
1996 Data Book  
3-86  
Specifications GAL16V8  
GAL 16V8B-15/-25: TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS  
Voh vs Ioh  
Voh vs Ioh  
Vol vs Iol  
5
4
3
2
1
0
4.25  
4
2
1.5  
1
3.75  
3.5  
0.5  
0
3.25  
0.00 10.00 20.00 30.00 40.00 50.00 60.00  
0.00  
1.00  
2.00  
3.00  
4.00  
0.00  
20.00  
40.00  
60.00  
80.00 100.00  
Ioh(mA)  
Ioh(mA)  
Iol (mA)  
Normalized Icc vs Vcc  
Normalized Icc vs Temp  
Normalized Icc vs Freq.  
1.20  
1.10  
1.00  
0.90  
0.80  
1.2  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
1.1  
1
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
-55  
-25  
0
25  
50  
75  
100 125  
0
25  
50  
75  
100  
Supply Voltage (V)  
Temperature (deg. C)  
Frequency (MHz)  
Input Clamp (Vik)  
Delta Icc vs Vin (1 input)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
12  
10  
8
6
4
2
0
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00  
-2.00  
-1.50  
-1.00  
-0.50  
0.00  
Vin (V)  
Vik (V)  
1996 Data Book  
3-87  

相关型号:

GAL16V8B-15LP

High Performance E2CMOS PLD Generic Array Logic
LATTICE

GAL16V8B-15LPI

HIGH PERFORMANCE E2CMOS PLD
LATTICE

GAL16V8B-15LR/883

EE PLD, 15ns, PAL-Type, CMOS, CQCC20, LCC-20
LATTICE

GAL16V8B-15QJ

High Performance E2CMOS PLD Generic Array Logic
LATTICE

GAL16V8B-15QJI

HIGH PERFORMANCE E2CMOS PLD
LATTICE

GAL16V8B-15QP

High Performance E2CMOS PLD Generic Array Logic
LATTICE

GAL16V8B-15QPI

HIGH PERFORMANCE E2CMOS PLD
LATTICE

GAL16V8B-20LD/883

EE PLD, 20ns, PAL-Type, CMOS, CDIP20, CERDIP-20
LATTICE

GAL16V8B-20LR/883

Electrically-Erasable PLD
ETC

GAL16V8B-20QJI

Electrically-Erasable PLD
ETC

GAL16V8B-20QPI

Electrically-Erasable PLD
ETC

GAL16V8B-25LJ

High Performance E2CMOS PLD Generic Array Logic
LATTICE