22V10 [LATTICE]

High Performance E2CMOS PLD Generic Array Logic; 高性能E2CMOS PLD通用阵列逻辑
22V10
型号: 22V10
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

High Performance E2CMOS PLD Generic Array Logic
高性能E2CMOS PLD通用阵列逻辑

文件: 总29页 (文件大小:387K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GAL22V10  
High Performance E2CMOS PLD  
Generic Array Logic™  
Functional Block Diagram  
Features  
• HIGH PERFORMANCE E2CMOS® TECHNOLOGY  
— 4 ns Maximum Propagation Delay  
— Fmax = 250 MHz  
RESET  
I/CLK  
8
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
I/O/Q  
I/O/Q  
— 3.5 ns Maximum from Clock Input to Data Output  
I
I
I
I
I
I
— UltraMOS® Advanced CMOS Technology  
10  
12  
• ACTIVE PULL-UPS ON ALL PINS  
• COMPATIBLE WITH STANDARD 22V10 DEVICES  
— Fully Function/Fuse-Map/Parametric Compatible  
with Bipolar and UVCMOS 22V10 Devices  
I/O/Q  
I/O/Q  
• 50% to 75% REDUCTION IN POWER VERSUS BIPOLAR  
— 90mA Typical Icc on Low Power Device  
— 45mA Typical Icc on Quarter Power Device  
14  
16  
16  
14  
• E2 CELL TECHNOLOGY  
— Reconfigurable Logic  
— Reprogrammable Cells  
— 100% Tested/100% Yields  
— High Speed Electrical Erasure (<100ms)  
— 20 Year Data Retention  
I/O/Q  
I/O/Q  
I
I
• TEN OUTPUT LOGIC MACROCELLS  
— Maximum Flexibility for Complex Logic Designs  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
12  
10  
• PRELOAD AND POWER-ON RESET OF REGISTERS  
— 100% Functional Testability  
• APPLICATIONS INCLUDE:  
— DMA Control  
— State Machine Control  
— High Speed Graphics Processing  
— Standard Logic Speed Upgrade  
I
I
8
I
• ELECTRONIC SIGNATURE FOR IDENTIFICATION  
ESCRIPTION  
PRESET  
Pin Configuration  
Description  
DIP  
The GAL22V10, at 4ns maximum propagation delay time, combines  
a high performance CMOS process with Electrically Erasable (E2)  
floating gate technology to provide the highest performance avail-  
able of any 22V10 device on the market. CMOS circuitry allows  
the GAL22V10 to consume much less power when compared to  
bipolar 22V10 devices. E2 technology offers high speed (<100ms)  
erase times, providing the ability to reprogram or reconfigure the  
device quickly and efficiently.  
PLCC  
1
6
Vcc  
24  
I/CLK  
I/O/Q  
I
I
I
I
I
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I
4
2
28  
26  
5
7
25  
23  
I
I
I
I/O/Q  
I/O/Q  
I/O/Q  
GAL  
22V10  
The generic architecture provides maximum design flexibility by  
allowing the Output Logic Macrocell (OLMC) to be configured by  
the user. The GAL22V10 is fully function/fuse map/parametric com-  
patible with standard bipolar and CMOS 22V10 devices.  
GAL22V10  
Top View  
NC  
NC  
18  
I
I
I
I
I
9
21  
19  
I/O/Q  
I/O/Q  
I/O/Q  
11  
I
12  
14  
16  
18  
Unique test circuitry and reprogrammable cells allow completeAC,  
DC, and functional testing during manufacture. As a result, Lat-  
tice Semiconductor delivers 100% field programmability and func-  
tionality of all GAL products. In addition, 100 erase/write cycles and  
data retention in excess of 20 years are specified.  
I
I
GND  
12  
13  
Copyright © 2000 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject  
to change without notice.  
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.  
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com  
August 2000  
22v10_06  
1
Specifications GAL22V10  
GAL22V10 Ordering Information  
Commercial Grade Specifications  
Tpd (ns) Tsu (ns) Tco (ns) Icc (mA)  
Ordering #  
Package  
4
5
2.5  
3
3.5  
4
140  
140  
150  
140  
140  
140  
140  
140  
55  
GAL22V10D-4LJ  
GAL22V10D-5LJ  
GAL22V10C-5LJ  
GAL22V10D-7LP  
GAL22V10C-7LP  
28-Lead PLCC  
28-Lead PLCC  
28-Lead PLCC  
24-Pin Plastic DIP  
24-Pin Plastic DIP  
28-Lead PLCC  
24-Pin Plastic DIP  
28-Lead PLCC  
24-Pin Plastic DIP  
28-Lead PLCC  
7.5  
4.5  
5
4.5  
4.5  
4.5  
5
4.5  
6.5  
GAL22V10D-7LJ or GAL22V10C-7LJ  
GAL22V10B-7LP  
GAL22V10B-7LJ  
10  
15  
25  
7
7
GAL22V10D-10QP  
55  
GAL22V10D-10QJ  
130  
130  
55  
GAL22V10D-10LP, GAL22V10C-10LP or GAL22V10B-10LP 24-Pin Plastic DIP  
GAL22V10D-10LJ, GAL22V10C-10LJ or GAL22V10B-10LJ  
GAL22V10D-15QP or GAL22V10B-15QP  
GAL22V10D-15QJ or GAL22V10B-15QJ  
GAL22V10D-15LP or GAL22V10B-15LP  
GAL22V10D-15LJ or GAL22V10B-15LJ  
GAL22V10D-25QP or GAL22V10B-25QP  
GAL22V10D-25QJ or GAL22V10B-25QJ  
GAL22V10D-25LP or GAL22V10B-25LP  
GAL22V10D-25LJ or GAL22V10B-25LJ  
28-Lead PLCC  
24-Pin Plastic DIP  
28-Lead PLCC  
24-Pin Plastic DIP  
28-Lead PLCC  
24-Pin Plastic DIP  
28-Lead PLCC  
24-Pin Plastic Dip  
28-Pin PLCC  
10  
15  
8
55  
130  
130  
55  
15  
55  
90  
90  
Industrial Grade Specifications  
Tpd (ns) Tsu (ns) Tco (ns) Icc (mA)  
Ordering #  
Package  
7.5  
10  
15  
20  
25  
5
4.5  
7
4.5  
4.5  
7
160  
160  
160  
160  
150  
150  
150  
150  
150  
150  
24-Pin Plastic DIP  
28-Lead PLCC  
GAL22V10D-7LPI or GAL22V10C-7LPI  
GAL22V10D-7LJI or GAL22V10C-7LJI  
GAL22V10D-10LPI or GAL22V10C-10LPI  
GAL22V10D-10LJI or GAL22V10C-10LJI  
GAL22V10D-15LPI or GAL22V10B-15LPI  
GAL22V10D-15LJI or GAL22V10B-15LJI  
GAL22V10D-20LPI or GAL22V10B-20LPI  
GAL22V10D-20LJI or GAL22V10B-20LJI  
GAL22V10D-25LPI or GAL22V10B-25LPI  
GAL22V10D-25LJI or GAL22V10B-25LJI  
24-Pin Plastic DIP  
28-Lead PLCC  
10  
14  
15  
8
24-Pin Plastic DIP  
28-Lead PLCC  
10  
15  
24-Pin Plastic DIP  
28-Lead PLCC  
24-Pin Plastic DIP  
28-Lead PLCC  
Part Number Description  
_
XXXXXXXX XX  
X X X  
Device Name  
Speed (ns)  
GAL22V10D  
GAL22V10C  
GAL22V10B  
Grade  
Blank = Commercial  
I = Industrial  
L = Low Power Power  
Package P = Plastic DIP  
Q = Quarter Power  
J = PLCC  
2
Specifications GAL22V10  
Output Logic Macrocell (OLMC)  
The GAL22V10 has a variable number of product terms per OLMC.  
Of the ten available OLMCs, two OLMCs have access to eight  
product terms (pins 14 and 23, DIP pinout), two have ten product  
terms (pins 15 and 22), two have twelve product terms (pins 16 and  
21), two have fourteen product terms (pins 17 and 20), and two  
OLMCs have sixteen product terms (pins 18 and 19). In addition  
to the product terms available for logic, each OLMC has an addi-  
tional product-term dedicated to output enable control.  
The GAL22V10 has a product term for Asynchronous Reset (AR)  
and a product term for Synchronous Preset (SP). These two prod-  
uct terms are common to all registered OLMCs. TheAsynchronous  
Reset sets all registers to zero any time this dedicated product term  
is asserted. The Synchronous Preset sets all registers to a logic  
one on the rising edge of the next clock pulse after this product term  
is asserted.  
NOTE: TheAR and SP product terms will force the Q output of the  
flip-flop into the same state regardless of the polarity of the output.  
Therefore, a reset operation, which sets the register output to a zero,  
may result in either a high or low at the output pin, depending on  
the pin polarity chosen.  
The output polarity of each OLMC can be individually programmed  
to be true or inverting, in either combinatorial or registered mode.  
This allows each output to be individually configured as either active  
high or active low.  
A R  
D
4 T O  
1
Q
M U X  
C L K  
Q
S P  
2 T O  
1
M U X  
GAL22V10 OUTPUT LOGIC MACROCELL (OLMC)  
Output Logic Macrocell Configurations  
Each of the Macrocells of the GAL22V10 has two primary functional NOTE: In registered mode, the feedback is from the /Q output of  
modes: registered, and combinatorial I/O. The modes and the the register, and not from the pin; therefore, a pin defined as reg-  
output polarity are set by two bits (SO and S1), which are normally istered is an output only, and cannot be used for dynamic  
controlled by the logic compiler. Each of these two primary modes, I/O, as can the combinatorial pins.  
and the bit settings required to enable them, are described below  
and on the following page.  
COMBINATORIAL I/O  
In combinatorial mode the pin associated with an individual OLMC  
is driven by the output of the sum term gate. Logic polarity of the  
REGISTERED  
In registered mode the output pin associated with an individual output signal at the pin may be selected by specifying that the output  
OLMC is driven by the Q output of that OLMC’s D-type flip-flop. buffer drive either true (active high) or inverted (active low). Out-  
Logic polarity of the output signal at the pin may be selected by put tri-state control is available as an individual product-term for  
specifying that the output buffer drive either true (active high) or each output, and may be individually set by the compiler as either  
inverted (active low). Output tri-state control is available as an in- “on” (dedicated output), “off” (dedicated input), or “product-term  
dividual product-term for each OLMC, and can therefore be defined driven” (dynamic I/O). Feedback into theAND array is from the pin  
by a logic equation. The D flip-flop’s /Q output is fed back into the side of the output enable buffer. Both polarities (true and inverted)  
AND array, with both the true and complement of the feedback of the pin are fed back into the AND array.  
available as inputs to the AND array.  
3
Specifications GAL22V10  
Registered Mode  
A R  
A R  
D
Q
Q
D
Q
Q
C L K  
C L K  
S P  
S P  
ACTIVE LOW  
ACTIVE HIGH  
S0 = 0  
S1 = 0  
S0 = 1  
S1 = 0  
Combinatorial Mode  
ACTIVE LOW  
ACTIVE HIGH  
S0 = 0  
S1 = 1  
S0 = 1  
S1 = 1  
4
Specifications GAL22V10  
GAL22V10 Logic Diagram / JEDEC Fuse Map  
DIP (PLCC) Package Pinouts  
1 (2)  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
ASYNCHRONOUS RESET  
(TO ALL REGISTERS)  
0000  
0044  
.
8
OLMC  
.
.
23 (27)  
S0  
0396  
5808  
S1  
5809  
0440  
.
10  
.
OLMC  
22 (26)  
S0  
.
.
5810  
S1  
5811  
0880  
2 (3)  
3 (4)  
0924  
.
.
.
.
.
12  
OLMC  
21 (25)  
20 (24)  
S0  
5812  
S1  
1452  
5813  
1496  
.
.
14  
16  
.
OLMC  
.
S0  
5814  
S1  
.
.
2112  
5815  
4 (5)  
5 (6)  
2156  
.
.
.
19 (23)  
18 (21)  
17 (20)  
.
OLMC  
.
S0  
5816  
S1  
.
.
2860  
5817  
2904  
.
.
.
16  
.
OLMC  
.
S0  
5818  
S1  
.
.
3608  
5819  
6 (7)  
7 (9)  
3652  
.
.
14  
12  
.
OLMC  
.
S0  
5820  
S1  
.
.
4268  
5821  
4312  
.
.
OLMC  
.
16 (19)  
15 (18)  
.
.
S0  
5822  
S1  
4840  
5823  
8 (10)  
9 (11)  
4884  
.
.
10  
8
OLMC  
.
.
S0  
5824  
S1  
5324  
5825  
5368  
.
.
.
OLMC  
14 (17)  
13 (16)  
S0  
5826  
S1  
5720  
5827  
10 (12)  
11 (13)  
5764  
SYNCHRONOUS PRESET  
(TO ALL REGISTERS)  
5828, 5829 ... Electronic Signature ... 5890, 5891  
Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0  
M
S
B
L
S
B
5
Specifications GAL22V10D  
1
Absolute Maximum Ratings  
Recommended Operating Conditions  
Commercial Devices:  
Supply voltage VCC ....................................... -0.5 to +7V  
Ambient Temperature (TA) ............................. 0 to +75°C  
Supply voltage (VCC)  
with Respect to Ground ..................... +4.75 to +5.25V  
Input voltage applied ........................... -2.5 to VCC +1.0V  
Off-state output voltage applied........... -2.5 to VCC +1.0V  
Storage Temperature..................................-65 to 150°C  
Ambient Temperature with  
Industrial Devices:  
Ambient Temperature (TA) ............................-40 to 85°C  
Supply voltage (VCC)  
Power Applied .........................................-55 to 125°C  
1. Stresses above those listed under the Absolute Maximum  
Ratingsmay cause permanent damage to the device. These  
are stress only ratings and functional operation of the device  
at these or at any other conditions above those indicated in  
the operational sections of this specification is not implied  
(while programming, follow the programming specifications).  
with Respect to Ground ..................... +4.50 to +5.50V  
DC Electrical Characteristics  
Over Recommended Operating Conditions (Unless Otherwise Specified)  
SYMBOL  
PARAMETER CONDITION MIN.  
TYP.3  
MAX. UNITS  
VIL  
VIH  
IIL1  
Input Low Voltage  
Vss 0.5  
2.0  
0.8  
Vcc+1  
100  
10  
V
V
Input High Voltage  
Input or I/O Low Leakage Current  
0V VIN VIL (MAX.)  
µA  
µA  
V
IIH  
Input or I/O High Leakage Current 3.5V VIN VCC  
VOL  
VOH  
IOL  
Output Low Voltage  
IOL = MAX. Vin = VIL or VIH  
0.4  
Output High Voltage  
IOH = MAX. Vin = VIL or VIH  
2.4  
V
Low Level Output Current  
High Level Output Current  
Output Short Circuit Current  
16  
mA  
mA  
mA  
IOH  
IOS2  
3.2  
130  
VCC = 5V VOUT = 0.5V TA = 25°C  
30  
COMMERCIAL  
ICC  
Operating Power  
VIL = 0.5V VIH = 3.0V  
L-4/-5/-7  
90  
90  
75  
45  
140  
130  
90  
mA  
mA  
mA  
mA  
Supply Current  
ftoggle = 15MHz Outputs Open L-10  
L-15/-25  
Q-10/-15/-25  
55  
INDUSTRIAL  
ICC  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V  
L-7/-10  
90  
75  
160  
130  
mA  
mA  
ftoggle = 15MHz Outputs Open L-15/-20/-25  
1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.  
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester  
ground degradation. Characterized but not 100% tested.  
3) Typical values are at Vcc = 5V and TA = 25 °C  
6
Specifications GAL22V10D  
AC Switching Characteristics  
Over Recommended Operating Conditions  
COM  
-4  
COM  
-5  
COM/IND  
-7  
TEST  
DESCRIPTION  
Input or I/O to Combinatorial Output  
PARAM  
COND.1  
UNITS  
MIN. MAX. MIN. MAX. MIN. MAX.  
tpd  
tco  
tcf2  
tsu  
th  
A
A
1
4
1
5
1
7.5  
4.5  
3
ns  
ns  
ns  
ns  
Clock to Output Delay  
1
3.5  
2.5  
1
4
1
Clock to Feedback Delay  
2.5  
3
3
4.5  
Setup Time, Input or Fdbk before Clk↑  
Hold Time, Input or Fdbk after Clk↑  
0
0
0
ns  
A
Maximum Clock Frequency with  
External Feedback, 1/(tsu + tco)  
167  
142.8  
111  
MHz  
fmax3  
A
A
Maximum Clock Frequency with  
Internal Feedback, 1/(tsu + tcf)  
200  
250  
166  
200  
133  
166  
MHz  
MHz  
Maximum Clock Frequency with  
No Feedback  
twh  
twl  
B
Clock Pulse Duration, High  
Clock Pulse Duration, Low  
Input or I/O to Output Enabled  
2
2
1
5
2.5  
2.5  
1
6
3
3
1
ns  
ns  
ns  
ten  
7.5  
tdis  
tar  
C
A
Input or I/O to Output Disabled  
1
1
5
1
1
5.5  
5.5  
1
1
7.5  
9
ns  
ns  
Input or I/O to Asynch. Reset of Reg.  
4.5  
tarw  
tarr  
Asynch. Reset Pulse Duration  
4.5  
3
4.5  
4
7
5
5
ns  
ns  
ns  
Asynch. Reset to ClkRecovery Time  
Synch. Preset to ClkRecovery Time  
tspr  
3
4
1) Refer to Switching Test Conditions section.  
2) Calculated from fmax with internal feedback. Refer to fmax Description section.  
3) Refer to fmax Description section. Characterized initially and after any design or process changes that may affect these  
parameters.  
Capacitance (TA = 25°C, f = 1.0 MHz)  
SYMBOL  
PARAMETER  
Input Capacitance  
I/O Capacitance  
MAXIMUM*  
UNITS  
pF  
TEST CONDITIONS  
VCC = 5.0V, VI = 2.0V  
VCC = 5.0V, VI/O = 2.0V  
CI  
8
8
CI/O  
pF  
*Characterized but not 100% tested.  
7
SpecificationsGAL22V10D
AC Switching Characteristics  
Over Recommended Operating Conditions  
COM / IND COM / IND  
IND  
-20  
COM / IND  
-25  
-10  
-15  
TEST  
COND.1  
DESCRIPTION  
PARAM.  
UNITS  
MIN. MAX. MIN. MAX. MIN. MAX.  
MIN. MAX.  
tpd  
tco  
tcf2  
A
A
Input or I/O to Comb. Output  
Clock to Output Delay  
1
1
10  
7
3
2
15  
8
3
2
20  
10  
8
3
2
25  
15  
13  
ns  
ns  
ns  
Clock to Feedback Delay  
2.5  
2.5  
tsu  
th  
A
Setup Time, Input or Fdbk before Clk↑  
Hold Time, Input or Fdbk after Clk↑  
6
0
10  
0
12  
0
15  
0
ns  
ns  
Maximum Clock Frequency with  
External Feedback, 1/(tsu + tco)  
83.3  
55.5  
41.6  
33.3  
MHz  
fmax3  
A
A
Maximum Clock Frequency with  
Internal Feedback, 1/(tsu + tcf)  
110  
125  
80  
45.4  
50  
35.7  
38.5  
MHz  
MHz  
Maximum Clock Frequency with  
No Feedback  
83.3  
twh  
twl  
B
Clock Pulse Duration, High  
4
4
1
1
1
8
8
8
10  
9
6
6
15  
15  
20  
10  
10  
3
20  
20  
25  
13  
13  
3
25  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Pulse Duration, Low  
ten  
tdis  
tar  
Input or I/O to Output Enabled  
Input or I/O to Output Disabled  
Input or I/O to Asynch. Reset of Reg.  
Asynch. Reset Pulse Duration  
Asynch. Reset to ClkRecovery Time  
Synch. Preset to ClkRecovery Time  
3
C
3
3
3
A
13  
3
3
3
tarw  
tarr  
tspr  
15  
10  
10  
20  
20  
14  
25  
25  
15  
1) Refer to Switching Test Conditions section.  
2) Calculated from fmax with internal feedback. Refer to fmax Description section.  
3) Refer to fmax Description section.  
Capacitance (TA = 25°C, f = 1.0 MHz)  
SYMBOL  
PARAMETER  
Input Capacitance  
I/O Capacitance  
MAXIMUM*  
UNITS  
TEST CONDITIONS  
VCC = 5.0V, VI = 2.0V  
VCC = 5.0V, VI/O = 2.0V  
CI  
8
8
pF  
pF  
CI/O  
*Characterized but not 100% tested.  
8
SpecificationsGAL22V10C
1
Absolute Maximum Ratings  
Recommended Operating Conditions  
Commercial Devices:  
Supply voltage VCC ....................................... -0.5 to +7V  
Ambient Temperature (TA) ............................. 0 to +75°C  
Supply voltage (VCC)  
with Respect to Ground ..................... +4.75 to +5.25V  
Input voltage applied ........................... -2.5 to VCC +1.0V  
Off-state output voltage applied .......... -2.5 to VCC +1.0V  
Storage Temperature .................................-65 to 150°C  
Ambient Temperature with  
Industrial Devices:  
Ambient Temperature (TA) ............................-40 to 85°C  
Supply voltage (VCC)  
Power Applied .........................................-55 to 125°C  
1. Stresses above those listed under the Absolute Maximum  
Ratingsmay cause permanent damage to the device. These  
are stress only ratings and functional operation of the device  
at these or at any other conditions above those indicated in  
the operational sections of this specification is not implied  
(while programming, follow the programming specifications).  
with Respect to Ground ..................... +4.50 to +5.50V  
DC Electrical Characteristics  
Over Recommended Operating Conditions (Unless Otherwise Specified)  
SYMBOL  
PARAMETER  
CONDITION  
MIN.  
TYP.3  
MAX. UNITS  
VIL  
VIH  
IIL1  
Input Low Voltage  
Vss 0.5  
2.0  
0.8  
Vcc+1  
100  
10  
V
V
Input High Voltage  
Input or I/O Low Leakage Current  
0V VIN VIL (MAX.)  
µA  
µA  
V
IIH  
Input or I/O High Leakage Current 3.5V VIN VCC  
VOL  
VOH  
IOL  
Output Low Voltage  
IOL = MAX. Vin = VIL or VIH  
0.5  
Output High Voltage  
IOH = MAX. Vin = VIL or VIH  
2.4  
V
Low Level Output Current  
High Level Output Current  
Output Short Circuit Current  
16  
mA  
mA  
mA  
IOH  
IOS2  
3.2  
130  
VCC = 5V VOUT = 0.5V TA = 25°C  
30  
COMMERCIAL  
ICC  
Operating Power Supply Current  
VIL = 0.5V VIH = 3.0V  
L-5  
90  
90  
150  
140  
mA  
mA  
ftoggle = 15MHz Outputs Open  
L-7  
L-10  
90  
130  
mA  
INDUSTRIAL  
ICC  
Operating Power Supply Current  
VIL = 0.5V VIH = 3.0V  
L-7/-10  
90  
160  
mA  
ftoggle = 15MHz Outputs Open  
1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.  
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester  
ground degradation. Characterized but not 100% tested.  
3) Typical values are at Vcc = 5V and TA = 25 °C  
9
SpecificationsGAL22V10C
AC Switching Characteristics  
Over Recommended Operating Conditions  
COM  
-5  
COM/IND  
COM/IND  
COM  
-10  
IND  
-10  
-7 (PLCC) -7 (PDIP)  
TEST  
COND.1  
DESCRIPTION  
PARAM  
UNITS  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
tpd  
tco  
tcf2  
tsu  
th  
A
A
Input or I/O to Combinatorial Output  
Clock to Output Delay  
1
1
5
4
1
1
7.5  
4.5  
3
1
1
7.5  
4.5  
3
3
2
10  
7
1
1
10  
7
ns  
ns  
ns  
ns  
Clock to Feedback Delay  
3
3
4.5  
5
7
2.5  
7
2.5  
Setup Time, Input or Fdbk before Clk↑  
Hold Time, Input or Fdbk after Clk↑  
0
0
0
0
0
ns  
A
Maximum Clock Frequency with  
External Feedback, 1/(tsu + tco)  
142.8  
111  
105  
71.4  
71.4  
MHz  
fmax3  
A
A
Maximum Clock Frequency with  
Internal Feedback, 1/(tsu + tcf)  
166  
200  
133  
166  
125  
105  
105  
105  
105  
MHz  
MHz  
Maximum Clock Frequency with  
No Feedback  
142.8  
twh  
twl  
B
Clock Pulse Duration, High  
2.5  
2.5  
1
6
3
3
1
1
1
7
5
5
7.5  
7.5  
9
3.5  
3.5  
1
7.5  
7.5  
9
4
4
10  
9
4
4
10  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Pulse Duration, Low  
ten  
tdis  
tar  
Input or I/O to Output Enabled  
Input or I/O to Output Disabled  
Input or I/O to Asynch. Reset of Reg.  
Asynch. Reset Pulse Duration  
Asynch. Reset to ClkRecovery Time  
Synch. Preset to ClkRecovery Time  
3
1
C
1
6
1
3
1
A
1
5.5  
1
3
13  
1
13  
tarw  
tarr  
tspr  
5.5  
4
7
8
8
5
8
8
4
5
10  
10  
1) Refer to Switching Test Conditions section.  
2) Calculated from fmax with internal feedback. Refer to fmax Description section.  
3) Refer to fmax Description section. Characterized initially and after any design or process changes that may affect these  
parameters.  
Capacitance (TA = 25°C, f = 1.0 MHz)  
SYMBOL  
PARAMETER  
Input Capacitance  
I/O Capacitance  
MAXIMUM*  
UNITS  
pF  
TEST CONDITIONS  
VCC = 5.0V, VI = 2.0V  
VCC = 5.0V, VI/O = 2.0V  
CI  
8
8
CI/O  
pF  
*Characterized but not 100% tested.  
10  
SpecificationsGAL22V10B
1
Absolute Maximum Ratings  
Recommended Operating Conditions  
Commercial Devices:  
Supply voltage VCC ....................................... -0.5 to +7V  
Ambient Temperature (TA) ............................. 0 to +75°C  
Supply voltage (VCC)  
with Respect to Ground ..................... +4.75 to +5.25V  
Input voltage applied ........................... -2.5 to VCC +1.0V  
Off-state output voltage applied .......... -2.5 to VCC +1.0V  
Storage Temperature .................................-65 to 150°C  
Ambient Temperature with  
Industrial Devices:  
Ambient Temperature (TA) ............................-40 to 85°C  
Supply voltage (VCC)  
Power Applied .........................................-55 to 125°C  
1. Stresses above those listed under the Absolute Maximum  
Ratingsmay cause permanent damage to the device. These  
are stress only ratings and functional operation of the device  
at these or at any other conditions above those indicated in  
the operational sections of this specification is not implied  
(while programming, follow the programming specifications).  
with Respect to Ground ..................... +4.50 to +5.50V  
DC Electrical Characteristics  
Over Recommended Operating Conditions (Unless Otherwise Specified)  
SYMBOL  
PARAMETER  
CONDITION  
MIN.  
TYP.3  
MAX. UNITS  
VIL  
VIH  
IIL1  
Input Low Voltage  
Vss 0.5  
2.0  
0.8  
Vcc+1  
100  
10  
V
V
Input High Voltage  
Input or I/O Low Leakage Current  
0V VIN VIL (MAX.)  
µA  
µA  
V
IIH  
Input or I/O High Leakage Current 3.5V VIN VCC  
VOL  
VOH  
IOL  
Output Low Voltage  
IOL = MAX. Vin = VIL or VIH  
0.5  
Output High Voltage  
IOH = MAX. Vin = VIL or VIH  
2.4  
V
Low Level Output Current  
High Level Output Current  
Output Short Circuit Current  
16  
mA  
mA  
mA  
IOH  
IOS2  
3.2  
130  
VCC = 5V VOUT = 0.5V TA = 25°C  
30  
COMMERCIAL  
ICC  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V  
L-7  
90  
90  
75  
45  
140  
130  
90  
mA  
mA  
mA  
mA  
ftoggle = 15MHz Outputs Open  
L-10/-15  
L-25  
Q-15/-25  
55  
INDUSTRIAL  
ICC  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V  
L-15/-20/-25  
90  
150  
mA  
ftoggle = 15MHz Outputs Open  
1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.  
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester  
ground degradation. Characterized but not 100% tested.  
3) Typical values are at Vcc = 5V and TA = 25 °C  
11  
SpecificationsGAL22V10B
AC Switching Characteristics  
AC SWITCHING CHARACTERISTICS  
Over Recommended Operating Conditions  
COM  
-7  
COM  
-10  
COM / IND  
-15  
IND  
-20  
COM / IND  
-25  
TEST  
COND.1  
DESCRIPTION  
PARAM.  
UNITS  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
MIN. MAX.  
tpd  
tco  
tcf2  
tsu1  
tsu2  
th  
A
A
Input or I/O to Comb. Output  
Clock to Output Delay  
3
2
7.5  
5
3
2
10  
7
3
15  
8
3
20  
10  
8
3
25  
15  
13  
ns  
ns  
ns  
ns  
ns  
2
2
2
Clock to Feedback Delay  
2.5  
7
2.5  
10  
10  
2.5  
14  
14  
15  
15  
Setup Time, Input or Fdbk before Clk6.5  
Setup Time, SP before Clock↑  
10  
10  
Hold Time, Input or Fdbk after Clk↑  
0
0
0
0
0
ns  
A
Maximum Clock Frequency with  
External Feedback, 1/(tsu + tco)  
87  
71.4  
55.5  
41.6  
33.3  
MHz  
fmax3  
A
A
Maximum Clock Frequency with  
Internal Feedback, 1/(tsu + tcf)  
111  
111  
105  
105  
80  
45.4  
50  
35.7  
38.5  
MHz  
MHz  
Maximum Clock Frequency with  
No Feedback  
83.3  
twh  
twl  
B
Clock Pulse Duration, High  
4
4
3
3
3
8
8
8
4
4
10  
9
6
6
15  
15  
20  
10  
10  
3
20  
20  
25  
13  
13  
3
25  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Pulse Duration, Low  
ten  
tdis  
tar  
Input or I/O to Output Enabled  
Input or I/O to Output Disabled  
Input or I/O to Asynch. Reset of Reg.  
Asynch. Reset Pulse Duration  
Asynch. Reset to ClkRecovery Time  
3
3
C
8
3
3
3
3
A
13  
3
13  
3
3
3
tarw  
tarr  
tspr  
8
15  
10  
10  
20  
20  
14  
25  
25  
15  
8
Synch. Preset to ClkRecovery Time 10  
10  
1) Refer to Switching Test Conditions section.  
2) Calculated from fmax with internal feedback. Refer to fmax Description section.  
3) Refer to fmax Description section.  
Capacitance (TA = 25°C, f = 1.0 MHz)  
SYMBOL  
PARAMETER  
Input Capacitance  
I/O Capacitance  
MAXIMUM*  
UNITS  
TEST CONDITIONS  
VCC = 5.0V, VI = 2.0V  
VCC = 5.0V, VI/O = 2.0V  
CI  
8
8
pF  
pF  
CI/O  
*Characterized but not 100% tested.  
12  
Specifications GAL22V10  
Switching Waveforms  
INPUT or  
I/O FEEDBACK  
INPUT or  
I/O FEEDBACK  
VALID INPUT  
VALID INPUT  
tsu  
th  
t
pd  
CLK  
COMBINATORIAL  
OUTPUT  
tco  
REGISTERED  
OUTPUT  
Combinatorial Output  
1/  
fmax  
(external fdbk)  
Registered Output  
INPUT or  
I/O FEEDBACK  
t
dis  
ten  
OUTPUT  
CLK  
1/  
f
max (internal fdbk)  
su  
Input or I/O to Output Enable/Disable  
t
cf  
t
REGISTERED  
FEEDBACK  
fmax with Feedback  
t
w l  
tw h  
CLK  
1/  
fm a x  
(w/o fdbk)  
Clock Width  
INPUT or  
I/O FEEDBACK  
DRIVING AR  
INPUT or  
I/O FEEDBACK  
DRIVING SP  
t
arw  
t
su  
t
h
tspr  
CLK  
CLK  
t
arr  
t
co  
REGISTERED  
OU TPUT  
REGISTERED  
OUTPUT  
t
ar  
Synchronous Preset  
Asynchronous Reset  
13  
Specifications GAL22V10  
fmax Descriptions  
C L K  
CLK  
LOGIC  
ARRAY  
LOGIC  
ARR AY  
REGISTER  
REGISTER  
t
s u  
tc o  
fmax with External Feedback 1/(tsu+tco)  
t
cf  
pd  
t
Note: fmax with external feedback is cal-  
culated from measured tsu and tco.  
fmax with Internal Feedback 1/(tsu+tcf)  
CLK  
Note: tcf is a calculated value, derived by sub-  
tracting tsu from the period of fmax w/internal  
feedback (tcf = 1/fmax - tsu). The value of tcf is  
used primarily when calculating the delay from  
clocking a register to a combinatorial output  
(through registered feedback), as shown above.  
For example, the timing from clock to a combi-  
natorial output is equal to tcf + tpd.  
LOGIC  
REGISTER  
ARRAY  
t
su + th  
fmax with No Feedback  
Note: fmax with no feedback may be less  
than 1/(twh + twl). This is to allow for a  
clock duty cycle of other than 50%.  
14  
Specifications GAL22V10  
Switching Test Conditions  
GAL22V10D-4 Output Load Conditions (see figure below)  
Input Pulse Levels  
GND to 3.0V  
Input Rise and D-4/-5/-7, C-5  
1.5ns 10% 90%  
2.0ns 10% 90%  
Test Condition  
R1  
CL  
Fall Times  
D-10/-15/-20/-25  
B & C-7/-10  
A
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
50pF  
50pF  
50pF  
50pF  
50pF  
B
Z to Active High at 1.9V  
B-15/-20/-25 3ns  
10% 90%  
1.5V  
Z to Active Low at 1.0V  
Active High to Z at 1.9V  
Active Low to Z at 1.0V  
Input Timing Reference Levels  
Output Timing Reference Levels  
Output Load  
C
1.5V  
See Figure  
3-state levels are measured 0.5V from steady-state active  
level.  
+1.45V  
Output Load Conditions (except D-4) (see figure below)  
TEST POINT  
R1  
Test Condition  
R1  
R2  
CL  
FROM OUTPUT (O/Q)  
UNDER TEST  
A
300Ω  
390Ω  
390Ω  
390Ω  
390Ω  
390Ω  
50pF  
50pF  
50pF  
5pF  
Z0 = 50, CL*  
B
Active High  
Active Low  
Active High  
Active Low  
300Ω  
C
300Ω  
5pF  
+5V  
R
1
FROM OUTPUT (O/Q)  
UNDER TEST  
TEST POINT  
C L*  
R
2
*C L INCLUDES TEST FIXTURE AND PROBE CAPACITANCE  
15  
Specifications GAL22V10  
Electronic Signature  
Output Register Preload  
An electronic signature (ES) is provided in every GAL22V10  
device. It contains 64 bits of reprogrammable memory that can  
contain user-defined data. Some uses include user ID codes,  
revision numbers, or inventory control. The signature data is  
always available to the user independent of the state of the se-  
curity cell.  
When testing state machine designs, all possible states and state  
transitions must be verified in the design, not just those required  
in the normal machine operations. This is because certain events  
may occur during system operation that throw the logic into an  
illegal state (power-up, line voltage glitches, brown-outs, etc.). To  
test a design for proper treatment of these conditions, a way must  
be provided to break the feedback paths, and force any desired  
(i.e., illegal) state into the registers. Then the machine can be  
sequenced and the outputs tested for correct next state condi-  
tions.  
The electronic signature is an additional feature not present in  
other manufacturers' 22V10 devices. To use the extra feature of  
the user-programmable electronic signature it is necessary to  
choose a Lattice Semiconductor 22V10 device type when com-  
piling a set of logic equations. In addition, many device program-  
mers have two separate selections for the device, typically a  
GAL22V10 and a GAL22V10-UES (UES = User Electronic Sig-  
nature) or GAL22V10-ES. This allows users to maintain compat-  
ibility with existing 22V10 designs, while still having the option to  
use the GAL device's extra feature.  
The GAL22V10 device includes circuitry that allows each regis-  
tered output to be synchronously set either high or low. Thus, any  
present state condition can be forced for test sequencing. If  
necessary, approved GAL programmers capable of executing test  
vectors perform output register preload automatically.  
Input Buffers  
The JEDEC map for the GAL22V10 contains the 64 extra fuses  
for the electronic signature, for a total of 5892 fuses. However,  
the GAL22V10 device can still be programmed with a standard  
22V10 JEDEC map (5828 fuses) with any qualified device pro-  
grammer.  
GAL22V10 devices are designed with TTL level compatible in-  
put buffers. These buffers have a characteristically high imped-  
ance, and present a much lighter load to the driving logic than bi-  
polar TTL devices.  
The input and I/O pins also have built-in active pull-ups. As a re-  
sult, floating inputs will float to a TTL high (logic 1). However,  
Lattice Semiconductor recommends that all unused inputs and  
tri-stated I/O pins be connected to an adjacent active input, Vcc,  
or ground. Doing so will tend to improve noise immunity and  
reduce Icc for the device. (See equivalent input and I/O schemat-  
ics on the following page.)  
Security Cell  
A security cell is provided in every GAL22V10 device to prevent  
unauthorized copying of the array patterns. Once programmed,  
this cell prevents further read access to the functional bits in the  
device. This cell can only be erased by re-programming the  
device, so the original configuration can never be examined once  
this cell is programmed. The Electronic Signature is always avail-  
able to the user, regardless of the state of this control cell.  
Typical Input Current  
0
Latch-Up Protection  
GAL22V10 devices are designed with an on-board charge pump  
to negatively bias the substrate. The negative bias is of sufficient  
magnitude to prevent input undershoots from causing the circuitry  
to latch. Additionally, outputs are designed with n-channel pullups  
instead of the traditional p-channel pullups to eliminate any pos-  
sibility of SCR induced latching.  
- 2 0  
- 4 0  
- 6 0  
0
1 . 0  
2 . 0  
3 . 0  
4 . 0  
5 . 0  
Input Voltage (Volts)  
Device Programming  
GAL devices are programmed using a Lattice Semiconductor-  
approved Logic Programmer, available from a number of manu-  
facturers (see the the GAL Development Tools section). Com-  
plete programming of the device takes only a few seconds. Eras-  
ing of the device is transparent to the user, and is done automati-  
cally as part of the programming cycle.  
16  
Specifications GAL22V10  
Power-Up Reset  
Vcc (min.)  
Vcc  
t
su  
CLK  
t
wl  
t
pr  
Internal Register  
Reset to Logic "0"  
INTERNAL REGISTER  
Q - OUTPUT  
ACTIVE LOW  
OUTPUT REGISTER  
Device Pin  
Reset to Logic "1"  
Device Pin  
Reset to Logic "0"  
ACTIVE HIGH  
OUTPUT REGISTER  
Circuitry within the GAL22V10 provides a reset signal to all reg-  
isters during power-up. All internal registers will have their Q out-  
puts set low after a specified time (tpr, 1µs MAX). As a result, the  
state on the registered output pins (if they are enabled) will be  
either high or low on power-up, depending on the programmed  
polarity of the output pins. This feature can greatly simplify state  
machine design by providing a known state on power-up. The  
timing diagram for power-up is shown below. Because of the asyn-  
chronous nature of system power-up, some conditions must be  
met to guarantee a valid power-up reset of the GAL22V10. First,  
the Vcc rise must be monotonic. Second, the clock input must  
be at static TTL level as shown in the diagram during power up.  
The registers will reset within a maximum of tpr time. As in nor-  
mal system operation, avoid clocking the device until all input and  
feedback path setup times have been met. The clock must also  
meet the minimum pulse width requirements.  
Input/Output Equivalent Schematics  
PIN  
PIN  
Feedback  
Vcc  
Active Pull-up  
Circuit  
Active Pull-up  
Circuit  
(Vref Typical = 3.2V)  
(Vref Typical = 3.2V)  
Vcc  
Tri-State  
Control  
Vcc  
Vcc  
Vref  
Vref  
ESD  
Protection  
Circuit  
PIN  
Data  
Output  
PIN  
ESD  
Protection  
Circuit  
Feedback  
(To Input Buffer)  
Typical Input  
Typical Output  
17  
Specifications GAL22V10  
GAL22V10D-4/-5/-7/-10L (PLCC): Typical AC and DC Characteristic Diagrams  
Normalized Tpd vs Vcc  
Normalized Tsu vs Vcc  
Normalized Tco vs Vcc  
1.1  
1.1  
1.1  
RISE  
FALL  
RISE  
FALL  
1.05  
1.05  
1.05  
RISE  
FALL  
1
0.95  
0.9  
1
0.95  
0.9  
1
0.95  
0.9  
4.5  
4.75  
5
5.25  
5.5  
4.5  
4.75  
5
5.25  
5.5  
4.5  
4.75  
5
5.25  
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Voltage (V)  
Normalized Tpd vs Temp  
Normalized Tco vs Temp  
Normalized Tsu vs Temp  
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
1.2  
1.1  
RISE  
FALL  
RISE  
FALL  
RISE  
FALL  
1
0.9  
0.9  
0.8  
0.9  
-55  
0.8  
-25  
0
25  
50  
75  
100  
125  
-55  
-25  
0
25  
50  
75  
100  
125  
-55  
-25  
0
25  
50  
75  
100  
125  
Temperature (deg. C)  
Temperature (deg. C)  
Temperature (deg. C)  
Delta Tpd vs # of Outputs  
Switching  
Delta Tco vs # of Outputs  
Switching  
0
-0.1  
-0.2  
-0.3  
0
-0.1  
-0.2  
-0.3  
-0.4  
RISE  
FALL  
RISE  
FALL  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
Number of Outputs Switching  
Number of Outputs Switching  
Delta Tpd vs Output Loading  
Delta Tco vs Output Loading  
12  
12  
RISE  
FALL  
RISE  
FALL  
8
4
8
4
0
0
-4  
-4  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Loading (pF)  
Output Loading (pF)  
18  
Specifications GAL22V10  
GAL22V10D-4/-5/-7/-10L (PLCC): Typical AC and DC Characteristic Diagrams  
Voh vs Ioh  
Vol vs Iol  
Voh vs Ioh  
3.95  
3.85  
3.75  
3.65  
3.55  
3.45  
3.35  
3.25  
3.15  
4
3
2
1
0
0.6  
0.4  
0.2  
0
0.00  
1.00  
2.00  
3.00  
4.00  
5.00  
0
5
10 15 20 25 30 35 40 45 50 55 60  
0
5
10  
15  
20  
25  
30  
35  
40  
Ioh(mA)  
Ioh(mA)  
Iol (mA)  
Normalized Icc vs Vcc  
Normalized Icc vs Temp  
Normalized Icc vs Freq  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
1.2  
1.15  
1.1  
1.05  
1
0.9  
0.8  
0.7  
0.9  
0.8  
0.95  
4.5  
4.75  
5
5.25  
5.5  
-55  
-25  
0
25  
50  
88  
100 125  
1
15  
25  
50  
75  
100  
Supply Voltage (V)  
Temperature (deg. C)  
Frequency (MHz)  
Delta Icc vs Vin (1 input)  
Input Clamp (Vik)  
6
5
0
20  
4
3
2
1
0
40  
60  
80  
100  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
-3  
-2.5  
-2  
-1.5  
-1  
-0.5  
1
Vin (V)  
Vik (V)  
19  
Specifications GAL22V10  
GAL22V10D-7/10L (PDIP): Typical AC and DC Characteristic Diagrams  
Normalized Tpd vs Vcc  
Normalized Tsu vs Vcc  
Normalized Tco vs Vcc  
1.2  
1.1  
1
1.1  
1.05  
1
1.1  
1.05  
1
RISE  
FALL  
RISE  
FALL  
RISE  
FALL  
0.9  
0.8  
0.95  
0.9  
0.95  
4.5  
4.75  
5
5.25  
5.5  
4.5  
4.75  
5
5.25  
5.5  
4.5  
4.75  
5
5.25  
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Voltage (V)  
Normalized Tsu vs Temp  
Normalized Tpd vs Temp  
Normalized Tco vs Temp  
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
1.2  
1.1  
1
RISE  
FALL  
RISE  
FALL  
RISE  
FALL  
0.9  
0.9  
0.8  
0.9  
0.8  
0.8  
-55  
-25  
0
25  
50  
75  
100 125  
-55  
-25  
0
25  
50  
75  
100 125  
-55  
-25  
0
25  
50  
75  
100 125  
Temperature (deg. C)  
Temperature (deg. C)  
Temperature (deg. C)  
Delta Tpd vs # of Outputs  
Switching  
Delta Tco vs # of Outputs  
Switching  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
RISE  
RISE  
FALL  
FALL  
-1.1  
-1.1  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
Number of Outputs Switching  
Number of Outputs Switching  
Delta Tpd vs Output Loading  
Delta Tco vs Output Loading  
12  
8
12  
8
RISE  
FALL  
RISE  
FALL  
4
4
0
0
-4  
0
-4  
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Loading (pF)  
Output Loading (pF)  
20  
Specifications GAL22V10  
GAL22V10D-7/10L (PDIP): Typical AC and DC Characteristic Diagrams  
Vol vs Iol  
Voh vs Ioh  
Voh vs Ioh  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4
3
2
1
0
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
2.9  
2.8  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
0.00  
1.00  
2.00  
3.00  
4.00  
5.00  
Ioh (mA)  
Iol (mA)  
Ioh (mA)  
Normalized Icc vs Vcc  
Normalized Icc vs Temp  
Normalized Icc vs Freq  
1.15  
1.1  
1.3  
1.2  
1.1  
1
1.2  
1.15  
1.1  
1.05  
1
1.05  
1
0.95  
0.9  
0.9  
0.8  
0.7  
0.85  
0.95  
4.5  
4.75  
5
5.25  
5.5  
-55  
0
25  
100  
1
15  
25  
50  
75  
100  
Supply Voltage (V)  
Temperature (deg. C)  
Frequency (MHz)  
Input Clamp (Vik)  
Delta Isb vs Vin (1 input)  
10  
9
8
7
6
5
4
3
2
1
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
-2.5  
-2  
-1.5  
-1  
-0.5  
0
Vin (V)  
Vik (V)  
21  
Specifications GAL22V10  
GAL22V10D-10Q and Slower (L & Q): Typical AC and DC Characteristic Diagrams  
Normalized Tpd vs Vcc  
Normalized Tsu vs Vcc  
Normalized Tco vs Vcc  
1.1  
1.05  
1
1.2  
1.1  
1
1.15  
1.1  
1.05  
1
RISE  
FALL  
RISE  
FALL  
RISE  
FALL  
0.95  
0.9  
0.9  
0.8  
0.95  
0.9  
4.5  
4.75  
5
5.25  
5.5  
4.5  
4.75  
5
5.25  
5.5  
4.5  
4.75  
5
5.25  
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Voltage (V)  
Normalized Tsu vs Temp  
Normalized Tco vs Temp  
Normalized Tpd vs Temp  
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
1.45  
1.35  
1.25  
1.15  
1.05  
0.95  
0.85  
0.75  
RISE  
FALL  
RISE  
FALL  
RISE  
FALL  
0.9  
0.9  
0.8  
0.8  
-55 -25  
0
25  
50  
75  
100 125  
-55  
-25  
0
25  
50  
75  
100 125  
-55  
-25  
0
25  
50  
75  
100 125  
Temperature (deg. C)  
Temperature (deg. C)  
Temperature (deg. C)  
Delta Tpd vs # of Outputs  
Switching  
Delta Tco vs # of Outputs  
Switching  
0
-0.4  
-0.8  
0
-0.4  
-0.8  
-1.2  
RISE  
FALL  
RISE  
FALL  
-1.2  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
Number of Outputs Switching  
Number of Outputs Switching  
Delta Tpd vs Output Loading  
Delta Tco vs Output Loading  
20  
16  
12  
8
20  
16  
12  
8
RISE  
FALL  
RISE  
FALL  
4
4
0
0
-4  
-8  
-4  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Loading (pF)  
Output Loading (pF)  
22  
Specifications GAL22V10  
GAL22V10DQ-10 and Slower (L & Q): Typical AC and DC Characteristic Diagrams  
Vol vs Iol  
Voh vs Ioh  
Voh vs Ioh  
0.6  
0.4  
0.2  
0
4.5  
4
4.5  
4
3.5  
3
2.5  
2
3.5  
3
1.5  
1
0.5  
0
2.5  
0
20  
40  
60  
0.00  
1.00  
2.00  
3.00  
4.00  
5.00  
0
5
10  
15  
20  
25  
30  
35  
40  
Ioh (mA)  
Ioh (mA)  
Iol (mA)  
Normalized Icc vs Vcc  
Normalized Icc vs Temp  
Normalized Icc vs Freq  
1.2  
1.1  
1
1.35  
1.25  
1.15  
1.05  
0.95  
0.85  
0.75  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.9  
4.5  
4.75  
5
5.25  
5.5  
-55  
-25  
0
25  
50  
88  
100 125  
1
15  
25  
50  
75  
100  
Supply Voltage (V)  
Temperature (deg. C)  
Frequency (MHz)  
Input Clamp (Vik)  
Delta Icc vs Vin (1 input)  
0
7
6
5
4
3
2
1
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
-2.5  
-2  
-1.5  
-1  
-0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Vik (V)  
Vin (V)  
23  
Specifications GAL22V10  
GAL22V10C-5/-7/-10: Typical AC and DC Characteristic Diagrams  
Normalized Tpd vs Vcc  
Normalized Tsu vs Vcc  
Normalized Tco vs Vcc  
1.2  
1.1  
1
1.2  
1.1  
1
1.2  
1.1  
1
RISE  
FALL  
PT H->L  
PT L->H  
PT H->L  
PT L->H  
0.9  
0.8  
0.9  
0.8  
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Voltage (V)  
Normalized Tsu vs Temp  
Normalized Tpd vs Temp  
Normalized Tco vs Temp  
1.4  
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
RISE  
FALL  
PT H->L  
PT L->H  
PT H->L  
PT L->H  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
-55  
-25  
0
25  
50  
75  
100 125  
-55  
-25  
0
25  
50  
75  
100 125  
-55  
-25  
0
25  
50  
75  
100 125  
Temperature (deg. C)  
Temperature (deg. C)  
Temperature (deg. C)  
Delta Tpd vs # of Outputs  
Switching  
Delta Tco vs # of Outputs  
Switching  
0
-0.25  
-0.5  
0
-0.25  
-0.5  
-0.75  
-1  
RISE  
FALL  
RISE  
FALL  
-0.75  
-1  
-1.25  
-1.5  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
Number of Outputs Switching  
Number of Outputs Switching  
Delta Tpd vs Output Loading  
Delta Tco vs Output Loading  
12  
10  
8
12  
10  
8
RISE  
FALL  
RISE  
FALL  
6
6
4
4
2
2
0
0
-2  
0
-2  
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Loading (pF)  
Output Loading (pF)  
24  
Specifications GAL22V10  
GAL22V10C-5/-7/-10: Typical AC and DC Characteristic Diagrams  
Vol vs Iol  
Voh vs Ioh  
Voh vs Ioh  
3
2.5  
2
5
4
3
2
1
0
4
3.75  
3.5  
1.5  
1
3.25  
3
0.5  
0
0.00  
20.00  
40.00  
60.00  
80.00 100.00  
0.00 10.00 20.00 30.00 40.00 50.00 60.00  
0.00  
1.00  
2.00  
3.00  
4.00  
Iol (mA)  
Ioh(mA)  
Ioh(mA)  
Normalized Icc vs Vcc  
Normalized Icc vs Temp  
Normalized Icc vs Freq.  
1.20  
1.10  
1.00  
0.90  
0.80  
1.2  
1.30  
1.20  
1.10  
1.00  
0.90  
1.1  
1
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
-55  
-25  
0
25  
50  
75  
100 125  
0
25  
50  
75  
100  
Supply Voltage (V)  
Temperature (deg. C)  
Frequency (MHz)  
Input Clamp (Vik)  
Delta Icc vs Vin (1 input)  
0
10  
10  
8
6
4
2
0
20  
30  
40  
50  
60  
70  
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00  
-2.50  
-2.00  
-1.50  
-1.00  
-0.50  
0.00  
Vin (V)  
Vik (V)  
25  
Specifications GAL22V10  
GAL22V10B-7/-10/-15/-25L: Typical AC and DC Characteristic Diagrams  
Normalized Tpd vs Vcc  
Normalized Tsu vs Vcc  
Normalized Tco vs Vcc  
1.2  
1.1  
1
1.2  
1.1  
1
1.2  
1.1  
1
RISE  
FALL  
PT H->L  
PT L->H  
PT H->L  
PT L->H  
0.9  
0.8  
0.9  
0.8  
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Voltage (V)  
Normalized Tsu vs Temp  
Normalized Tpd vs Temp  
Normalized Tco vs Temp  
1.4  
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
PT H->L  
PT L->H  
PT H->L  
PT L->H  
RISE  
FALL  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
Temperature (deg. C)  
Temperature (deg. C)  
Temperature (deg. C)  
Delta Tpd vs # of Outputs  
Switching  
Delta Tco vs # of Outputs  
Switching  
0
-0.5  
-1  
0
-0.5  
-1  
RISE  
FALL  
RISE  
FALL  
-1.5  
-2  
-1.5  
-2  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
Number of Outputs Switching  
Number of Outputs Switching  
Delta Tpd vs Output Loading  
Delta Tco vs Output Loading  
12  
10  
8
12  
10  
8
RISE  
FALL  
RISE  
FALL  
6
6
4
4
2
2
0
0
-2  
-2  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Loading (pF)  
Output Loading (pF)  
26  
Specifications GAL22V10  
GAL22V10B-7/-10/-15/-25L: Typical AC and DC Characteristic Diagrams  
Vol vs Iol  
Voh vs Ioh  
Voh vs Ioh  
3
2.5  
2
5
4
3
2
1
0
4.5  
4.25  
4
1.5  
1
3.75  
3.5  
0.5  
0
0.00  
20.00  
40.00  
60.00  
80.00 100.00  
0.00 10.00 20.00 30.00 40.00 50.00 60.00  
0.00  
1.00  
2.00  
3.00  
4.00  
Iol (mA)  
Ioh(mA)  
Ioh(mA)  
Normalized Icc vs Vcc  
Normalized Icc vs Temp  
Normalized Icc vs Freq.  
1.20  
1.10  
1.00  
0.90  
0.80  
1.2  
1.20  
1.10  
1.00  
0.90  
0.80  
1.1  
1
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
-55  
-25  
0
25  
50  
75  
100 125  
0
25  
50  
75  
100  
Supply Voltage (V)  
Temperature (deg. C)  
Frequency (MHz)  
Input Clamp (Vik)  
Delta Icc vs Vin (1 input)  
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
8
6
4
2
0
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00  
-2.00  
-1.50  
-1.00  
-0.50  
0.00  
Vin (V)  
Vik (V)  
27  
Specifications GAL22V10  
GAL22V10B-15/-25Q: Typical AC and DC Characteristic Diagrams  
Normalized Tpd vs Vcc  
Normalized Tsu vs Vcc  
Normalized Tco vs Vcc  
1.2  
1.1  
1
1.2  
1.1  
1
1.2  
1.1  
1
0.9  
0.8  
0.9  
0.8  
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Voltage (V)  
Normalized Tsu vs Temp  
Normalized Tpd vs Temp  
Normalized Tco vs Temp  
1.4  
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
Temperature (deg. C)  
Temperature (deg. C)  
Temperature (deg. C)  
Delta Tpd vs # of Outputs  
Switching  
Delta Tco vs # of Outputs  
Switching  
0
-0.25  
-0.5  
0
-0.5  
-1  
-0.75  
-1  
-1.5  
-2  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
Number of Outputs Switching  
Number of Outputs Switching  
Delta Tpd vs Output Loading  
Delta Tco vs Output Loading  
12  
10  
8
14  
12  
10  
8
RISE  
FALL  
RISE  
FALL  
6
6
4
4
2
2
0
0
-2  
-2  
0
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
Output Loading (pF)  
Output Loading (pF)  
28  
Specifications GAL22V10  
GAL22V10B-15/-25Q: Typical AC and DC Characteristic Diagrams  
Vol vs Iol  
Voh vs Ioh  
Voh vs Ioh  
1
0.8  
0.6  
0.4  
0.2  
0
5
4
3
2
1
0
4
3.75  
3.5  
3.25  
3
0.00  
20.00  
40.00  
0.00  
1.00  
2.00  
3.00  
4.00  
0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00  
Iol (mA)  
Ioh(mA)  
Ioh(mA)  
Normalized Icc vs Vcc  
Normalized Icc vs Temp  
Normalized Icc vs Freq.  
1.20  
1.10  
1.00  
0.90  
0.80  
1.3  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
1.2  
1.1  
1
0.9  
0.8  
0.7  
4.50  
4.75  
5.00  
5.25  
5.50  
-55  
-25  
0
25  
75  
100  
125  
0
25  
50  
75  
100  
Supply Voltage (V)  
Temperature (deg. C)  
Frequency (MHz)  
Input Clamp (Vik)  
Delta Icc vs Vin (1 input)  
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
8
6
4
2
0
0.20 0.70 1.20 1.70 2.20 2.70 3.20 3.70  
-2.00  
-1.50  
-1.00  
-0.50  
0.00  
Vin (V)  
Vik (V)  
29  

相关型号:

22V10-15/BLA

Electrically-Erasable PLD
ETC

22V10CRPDB-15

UV-Erasable/OTP PLD
ETC

22V10CRPDB-20

UV-Erasable/OTP PLD
ETC

22V10CRPDB-25

UV-Erasable/OTP PLD
ETC

22V10CRPDB-30

UV-Erasable/OTP PLD
ETC

22V10CRPDC-15

UV-Erasable/OTP PLD
ETC

22V10CRPDC-20

UV-Erasable/OTP PLD
ETC
MAXWELL

22V10CRPDC-30

UV-Erasable/OTP PLD
ETC
MAXWELL

22V10CRPDE-20

UV-Erasable/OTP PLD
ETC
MAXWELL