IRF1010EPBF [KERSEMI]

Advanced Process Technology Ultra Low On-Resistance; 先进的工艺技术超低导通电阻
IRF1010EPBF
型号: IRF1010EPBF
厂家: Kersemi Electronic Co., Ltd.    Kersemi Electronic Co., Ltd.
描述:

Advanced Process Technology Ultra Low On-Resistance
先进的工艺技术超低导通电阻

文件: 总8页 (文件大小:3121K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRF1010EPbF  
l Advanced Process Technology  
l Ultra Low On-Resistance  
l Dynamic dv/dt Rating  
l 175°C Operating Temperature  
l Fast Switching  
D
VDSS = 60V  
RDS(on) = 12mΩ  
G
l Fully Avalanche Rated  
l Lead-Free  
ID = 84A‡  
S
Description  
AdvancedHEXFET® PowerMOSFETsfromInternational  
Rectifierutilizeadvancedprocessingtechniquestoachieve  
extremelylowon-resistancepersiliconarea. Thisbenefit,  
combined with the fast switching speed and ruggedized  
device design that HEXFET power MOSFETs are well  
knownfor,providesthedesignerwithanextremelyefficient  
andreliabledeviceforuseinawidevarietyofapplications.  
The TO-220 package is universally preferred for all  
commercial-industrial applications at power dissipation  
levels to approximately 50 watts. The low thermal  
resistance and low package cost of the TO-220 contribute  
to its wide acceptance throughout the industry.  
TO-220AB  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current   
84‡  
59  
A
330  
PD @TC = 25°C  
Power Dissipation  
200  
W
W/°C  
V
Linear Derating Factor  
1.4  
VGS  
IAR  
Gate-to-Source Voltage  
± 20  
Avalanche Current  
50  
17  
A
EAR  
dv/dt  
TJ  
Repetitive Avalanche Energy  
Peak Diode Recovery dv/dt ƒ  
Operating Junction and  
mJ  
V/ns  
4.0  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
Mounting torque, 6-32 or M3 srew  
°C  
300 (1.6mm from case )  
10 lbf•in (1.1N•m)  
Thermal Resistance  
Parameter  
Junction-to-Case  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
Typ.  
–––  
0.50  
–––  
Max.  
Units  
RθJC  
RθCS  
RθJA  
0.75  
–––  
62  
°C/W  
1
www.kersemi.com  
07/04/07  
IRF1010EPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
60 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.064 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
––– ––– 12  
mVGS = 10V, ID = 50A  
„
2.0  
69  
––– 4.0  
––– –––  
V
S
VDS = VGS, ID = 250µA  
VDS = 25V, ID = 50A„  
VDS = 60V, VGS = 0V  
Forward Transconductance  
––– ––– 25  
––– ––– 250  
––– ––– 100  
––– ––– -100  
––– ––– 130  
––– ––– 28  
––– ––– 44  
IDSS  
Drain-to-Source Leakage Current  
µA  
nA  
VDS = 48V, VGS = 0V, TJ = 150°C  
VGS = 20V  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
IGSS  
VGS = -20V  
Qg  
ID = 50A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
nC VDS = 48V  
VGS = 10V, See Fig. 6 and 13  
–––  
–––  
–––  
–––  
12 –––  
78 –––  
48 –––  
53 –––  
VDD = 30V  
ID = 50A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 3.6Ω  
VGS = 10V, See Fig. 10 „  
Between lead,  
6mm (0.25in.)  
from package  
and center of die contact  
VGS = 0V  
D
S
4.5  
LD  
LS  
Internal Drain Inductance  
Internal Source Inductance  
–––  
–––  
–––  
–––  
nH  
G
7.5  
Ciss  
Coss  
Crss  
EAS  
Input Capacitance  
––– 3210 –––  
––– 690 –––  
––– 140 –––  
Output Capacitance  
VDS = 25V  
Reverse Transfer Capacitance  
Single Pulse Avalanche Energy‚  
pF  
ƒ = 1.0MHz, See Fig. 5  
––– 1180320† mJ IAS = 50A, L = 260µH  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
IS  
––– –––  
––– –––  
84‡  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)  
integral reverse  
p-n junction diode.  
330  
S
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
––– ––– 1.3  
––– 73 110  
––– 220 330  
V
TJ = 25°C, IS = 50A, VGS = 0V „  
TJ = 25°C, IF = 50A  
ns  
Qrr  
ton  
nC di/dt = 100A/µs „  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by  
„ Pulse width 400µs; duty cycle 2%.  
This is a typical value at device destruction and represents  
operation outside rated limits.  
† This is a calculated value limited to TJ = 175°C .  
‡ Calculated continuous current based on maximum allowable  
max. junction temperature. (See fig. 11)  
‚ Starting TJ = 25°C, L = 260µH  
RG = 25, IAS = 50A, VGS =10V (See Figure 12)  
ƒ ISD 50A, di/dt 230A/µs, VDD V(BR)DSS  
TJ 175°C  
,
junction temperature. Package limitation current is 75A.  
www.kersemi.com  
2
IRF1010EPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
VGS  
15V  
TOP  
TOP  
10V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
BOTTOM 4.5V  
BOTTOM 4.5V  
4.5V  
4.5V  
20µs PULSE WIDTH  
°
T = 175 C  
J
20µs PULSE WIDTH  
°
T = 25 C  
J
1
0.1  
0.1  
1
10  
100  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
3.0  
84A  
=
I
D
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
°
T = 25 C  
J
°
T = 175 C  
J
100  
V
= 25V  
DS  
20µs PULSE WIDTH  
V
=10V  
GS  
10  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
°
4
5
6
7
8
9
10  
11  
T , Junction Temperature ( C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
3
www.kersemi.com  
IRF1010EPbF  
6000  
V
C
= 0V,  
f = 1 MHZ  
GS  
20  
16  
12  
8
= C + C  
,
C
ds  
SHORTED  
I = 50A  
D
iss  
gs  
gd  
C
= C  
5000  
4000  
3000  
2000  
1000  
0
rss  
gd  
V
V
V
= 48V  
= 30V  
= 12V  
DS  
DS  
DS  
C
= C + C  
ds gd  
oss  
Ciss  
Coss  
Crss  
4
FOR TEST CIRCUIT  
SEE FIGURE 13  
1
10  
100  
0
0
20  
40  
60  
80  
100  
120  
140  
V
, Drain-to-Source Voltage (V)  
DS  
Q , Total Gate Charge (nC)  
G
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
°
T = 175 C  
J
100µsec  
1msec  
°
T = 25 C  
J
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
10msec  
100  
V
= 0 V  
GS  
0.1  
0.0  
1
0.6  
1.2  
1.8  
2.4  
1
10  
1000  
V
,Source-to-Drain Voltage (V)  
SD  
V
, Drain-toSource Voltage (V)  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.kersemi.com  
IRF1010EPbF  
100  
80  
60  
40  
20  
0
RD  
VDS  
LIMITED BY PACKAGE  
VGS  
D.U.T.  
RG  
+VDD  
-
VGS  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 10a. Switching Time Test Circuit  
V
DS  
90%  
25  
50  
75  
100  
125  
150  
175  
°
T , Case Temperature ( C)  
C
10%  
V
GS  
Fig 9. Maximum Drain Current Vs.  
t
t
r
t
t
f
d(on)  
d(off)  
Case Temperature  
Fig 10b. Switching Time Waveforms  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
P
2
DM  
t
1
SINGLE PULSE  
(THERMAL RESPONSE)  
0.02  
0.01  
t
2
Notes:  
1. Duty factor D =  
t / t  
1
2. Peak T = P  
x Z  
+ T  
thJC C  
J
DM  
0.01  
0.00001  
0.0001  
0.001  
0.01  
0.1  
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
5
www.kersemi.com  
IRF1010EPbF  
800  
600  
400  
200  
0
I
D
15V  
TOP  
20A  
35A  
BOTTOM 50A  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2
VGS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
°
Starting T , Junction Temperature ( C)  
J
Fig 12c. Maximum Avalanche Energy  
Vs. Drain Current  
I
AS  
Fig 12b. Unclamped Inductive Waveforms  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
Q
G
+
VGS  
V
DS  
D.U.T.  
-
Q
Q
GD  
GS  
V
GS  
V
G
3mA  
I
I
D
G
Current Sampling Resistors  
Charge  
Fig 13b. Gate Charge Test Circuit  
Fig 13a. Basic Gate Charge Waveform  
www.kersemi.com  
6
IRF1010EPbF  
Peak Diode Recovery dv/dt Test Circuit  
+
ƒ
-
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T*  
+
‚
-
„
-
+

RG  
dv/dt controlled by RG  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
+
-
VDD  
VGS  
* Reverse Polarity of D.U.T for P-Channel  
Driver Gate Drive  
P.W.  
Period  
Period  
D =  
P.W.  
V
[
=10V  
] ***  
GS  
D.U.T. I Waveform  
SD  
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  
V
DD  
]
[
Re-Applied  
Voltage  
Body Diode  
Forward Drop  
Inductor Curent  
I
[
]
SD  
Ripple 5%  
*** VGS = 5.0V for Logic Level and 3V Drive Devices  
Fig 14. For N-channel HEXFET® power MOSFETs  
7
www.kersemi.com  
IRF1010EPbF  
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))  
TO-220AB Part Marking Information  
8
www.kersemi.com  

相关型号:

IRF1010ES

Power MOSFET(Vdss=60V, Rds(on)=12mohm, Id=84A)
INFINEON

IRF1010ESPBF

HEXFET Power MOSFET
INFINEON

IRF1010ESTRL

Power Field-Effect Transistor, 75A I(D), 60V, 0.012ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, PLASTIC, D2PAK-3
INFINEON

IRF1010ESTRLPBF

Power Field-Effect Transistor, 75A I(D), 60V, 0.012ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF1010ESTRR

Power Field-Effect Transistor, 75A I(D), 60V, 0.012ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, PLASTIC, D2PAK-3
INFINEON

IRF1010EZ

AUTOMOTIVE MOSFET
INFINEON

IRF1010EZL

AUTOMOTIVE MOSFET
INFINEON

IRF1010EZLPBF

AUTOMOTIVE MOSFET
INFINEON

IRF1010EZPBF

AUTOMOTIVE MOSFET
INFINEON

IRF1010EZPBF_15

Advanced Process Technology
INFINEON

IRF1010EZS

AUTOMOTIVE MOSFET
INFINEON