ESU336M400AH8AA [KEMET]

Single-Ended Aluminum Electrolytic Capacitors;
ESU336M400AH8AA
型号: ESU336M400AH8AA
厂家: KEMET CORPORATION    KEMET CORPORATION
描述:

Single-Ended Aluminum Electrolytic Capacitors

文件: 总19页 (文件大小:4771K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single-Ended Aluminum Electrolytic Capacitors  
ESU Series, +105ºC  
Overview  
Applications  
KEMET’s ESU Series of aluminum electrolytic single-ended  
capacitors are designed for long life (up to 12,000 hours)  
applications.  
Typical applications include electronic lighting and power.  
Benefits  
• Long life, up to 12,000 hours  
• Operating temperature of up to +105°C  
• Safety vent on the capacitor base  
Click image above for interactive 3D content  
Open PDF in Adobe Reader for full functionality  
Part Number System  
ESU  
336  
M
160  
A
H8  
AA  
Capacitance  
Code (pF)  
Rated Voltage  
(VDC)  
Electrical  
Parameters  
Series  
Tolerance  
M = ±20%  
Size Code  
Packaging  
Single-Ended  
Aluminum  
Electrolytic  
First two digits  
represent  
significant figures  
for capacitance  
values. Last digit  
specifies the  
160 = 160  
200 = 200  
250 = 250  
350 = 350  
400 = 400  
450 = 450  
A = Standard  
See Dimension  
Table  
See Ordering  
Options Table  
number of zeros  
to be added.  
One world. One KEMET  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016  
1
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Ordering Options Table  
Lead Length  
(mm)  
Lead and  
Packaging Code  
Diameter  
Packaging Type  
Lead Type  
Standard Bulk Packaging Options  
Straight 20/15 Minimum  
Standard Auto-Insertion Packaging Options  
Bulk (bag)  
AA  
4 – 22  
Tape & Reel  
Formed to 2.5 mm  
H0 = 16±0.75  
LA  
KA  
4 – 5  
6.3  
Tape & Reel  
2.5 mm Lead  
Spacing  
H0 = 18.5±0.75  
Tape & Reel  
Ammo  
Formed to 5 mm  
H0 = 16±0.75  
H0 = 18.5±0.75  
H0 = 18.5±0.75  
JA  
EA  
EA  
8
5 mm Lead Spacing  
10 – 13  
Ammo  
7.5 mm Lead  
Spacing  
16 – 18  
Other Packaging Options  
Formed to 5 mm  
Straight  
Ammo  
Ammo  
Ammo  
H0 = 16±0.75  
DA  
EA  
FA  
4 – 8  
4 – 8  
H0 = 18.5±0.75  
Formed to 2.5  
mm  
H0 = 16±0.75  
4 – 5  
Tape & Reel  
Tape & Reel  
Formed to 5 mm  
H0 = 16±0.75  
JA  
4 – 6.3  
4 – 5, 8 – 18  
Straight  
H0 = 18.5±0.75  
KA  
Contact KEMET for other Lead and Packaging options  
Environmental Compliance  
As an environmentally conscious company, KEMET is working continuously with improvements concerning the environmental  
effects of both our capacitors and their production. In Europe (RoHS Directive) and in some other geographical areas like  
China, legislation has been put in place to prevent the use of some hazardous materials, such as lead (Pb), in electronic  
equipment. All products in this catalog are produced to help our customers’ obligations to guarantee their products and fulfill  
these legislative requirements. The only material of concern in our products has been lead (Pb), which has been removed  
from all designs to fulfill the requirement of containing less than 0.1% of lead in any homogeneous material. KEMET will  
closely follow any changes in legislation world wide and makes any necessary changes in its products, whenever needed.  
Some customer segments such as medical, military and automotive electronics may still require the use of lead in electrode  
coatings. To clarify the situation and distinguish products from each other, a special symbol is used on the packaging labels  
for RoHS compatible capacitors.  
Because of customer requirements, there may appear additional markings such as LF = Lead Free or LFW = Lead Free Wires  
on the label.  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016  
2
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Dimensions – Millimeters  
SꢂꢃE ꢄꢂEꢅ  
ꢆEꢇꢈꢂꢉAꢀ Eꢉꢃ ꢄꢂEꢅ  
ꢀꢀ+  
d
ꢀꢀ  
D
L
p
d
LL+/LL-  
Size Code  
Nominal  
Tolerance  
Nominal  
Tolerance  
Nominal  
Tolerance  
Nominal  
Tolerance  
Nominal  
Tolerance  
H8  
H4  
L3  
10  
10  
13  
13  
16  
16  
16  
16  
18  
18  
18  
18  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
16  
20  
20  
25  
20  
25  
32  
36  
25  
32  
36  
50  
+2.0/−0  
+2.0/−0  
+2.0/−0  
+2.0/−0  
+2.0/−0  
+2.0/−0  
+2.0/−0  
+2.0/−0  
+2.0/−0  
+2.0/−0  
+2.0/−0  
+2.0/−0  
5
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
0.6  
0.6  
0.6  
0.6  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
Nominal  
Nominal  
Nominal  
Nominal  
Nominal  
Nominal  
Nominal  
Nominal  
Nominal  
Nominal  
Nominal  
Nominal  
20/15  
20/15  
20/15  
20/15  
20/15  
20/15  
20/15  
20/15  
20/15  
20/15  
20/15  
20/15  
Minimum  
Minimum  
Minimum  
Minimum  
Minimum  
Minimum  
Minimum  
Minimum  
Minimum  
Minimum  
Minimum  
Minimum  
5
5
L4  
5
M5  
M7  
M2  
M3  
N5  
N1  
N2  
N9  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016  
3
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Performance Characteristics  
Item  
Performance Characteristics  
Capacitance Range  
Capacitance Tolerance  
Rated Voltage  
6.3 – 330 µF  
±20% at 120 Hz/20°C  
160 – 450 VDC  
Life Test  
8,000 – 10,000 hours (see conditions in Test Methods & Performance)  
Operating Temperature  
−25°C to +105°C  
I ≤ 0.04 CV +100 µA  
Leakage Current  
C = rated capacitance (µF), V = rated voltage (VDC). Voltage applied for 2 minutes at 20°C.  
Impedance Z Characteristics at 120 Hz  
Rated Voltage (VDC)  
160  
3
200  
3
250  
3
350  
5
400  
5
450  
6
Z (−25°C)/Z (20°C)  
Compensation Factor of Ripple Current (RC) vs. Frequency  
Rated Voltage (VDC)  
120 Hz  
1 kHz  
10 kHz  
100 kHz  
Coefficient  
0.50  
0.80  
0.90  
1.00  
Test Method & Performance  
Conditions  
Load Life Test  
Shelf Life Test  
105°C  
105°C  
Temperature  
Can Ø = 10.0 mm  
Can Ø ≥ 12.5 mm  
10,000 hours  
12,000 hours  
Test Duration  
1,000 hours  
Ripple Current  
Voltage  
Maximum ripple current specified at 100 kHz 105°C  
No ripple current applied  
No voltage applied  
The sum of DC voltage and the peak AC voltage must not exceed  
the rated voltage of the capacitor  
Performance  
The following specifications will be satisfied when the capacitor is restored to 20°C:  
Within ±20% of the initial value  
Capacitance Change  
Dissipation Factor  
Leakage Current  
Does not exceed 200% of the specified value  
Does not exceed specified value  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016  
4
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Shelf Life  
The capacitance, ESR and impedance of a capacitor will not change significantly after extended storage periods, however the  
leakage current will very slowly increase.  
KEMET's E-series aluminum electrolytic capacitors should not be stored in high temperatures or where there is a high level of  
humidity.  
The suitable storage condition for KEMET's E-series aluminum electrolytic capacitors is +5 to +35ºC and less than 75% in  
relative humidity.  
KEMET's E-series aluminum electrolytic capacitors should not be stored in damp conditions such as water, saltwater spray or  
oil spray.  
KEMET's E-series aluminum electrolytic capacitors should not be stored in an environment full of hazardous gas (hydrogen  
sulphide , sulphurous acid gas, nitrous acid, chlorine gas, ammonium, etc.)  
KEMET's E-series aluminum electrolytic capacitors should not be stored under exposure to ozone, ultraviolet rays or  
radiation.  
If a capacitor has been stored for more than 18 months under these conditions and it shows increased leakage current,  
then a treatment by voltage application is recommended.  
Re-age (Reforming) Procedure  
Apply the rated voltage to the capacitor at room temperature for a period of one hour, or until the leakage current has fallen  
to a steady value below the specified limit. During re-aging a maximum charging current of twice the specified leakage  
current or 5 mA (whichever is greater) is suggested.  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016  
5
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Table 1 – Ratings & Part Number Reference  
Rated  
DF  
RC  
LC 20ºC  
2 Minutes  
(µA)  
Capacitance  
120 Hz 20°C  
(µF)  
Case Size  
D x L (mm)  
VDC  
120 Hz 20°C  
(tan δ %)  
100 kHz  
105°C (mA)  
Part Number  
160  
160  
160  
160  
160  
160  
160  
160  
200  
200  
200  
200  
200  
200  
200  
200  
250  
250  
250  
250  
250  
250  
250  
250  
350  
350  
350  
350  
350  
350  
400  
400  
400  
400  
400  
400  
400  
400  
450  
450  
450  
450  
450  
450  
450  
33  
47  
68  
100  
150  
220  
330  
560  
22  
33  
47  
68  
100  
150  
220  
390  
10  
22  
33  
47  
100  
150  
220  
330  
6.8  
10  
22  
33  
47  
68  
6.8  
10  
22  
33  
47  
10 x 16  
10 x 20  
13 x 20  
13 x 25  
16 x 25  
16 x 32  
18 x 36  
18 x 50  
10 x 16  
10 x 20  
13 x 20  
13 x 25  
16 x 25  
16 x 32  
18 x 32  
18 x 50  
10 x 16  
10 x 20  
13 x 20  
13 x 20  
16 x 25  
18 x 25  
18 x 36  
18 x 50  
10 x 16  
10 x 20  
13 x 20  
13 x 25  
16 x 25  
16 x 32  
10 x 16  
10 x 20  
13 x 20  
16 x 25  
16 x 20  
16 x 32  
18 x 32  
18 x 50  
10 x 20  
13 x 20  
13 x 25  
16 x 25  
16 x 36  
16 x 36  
18 x 50  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
500  
580  
720  
311.2  
400.8  
535.2  
740.0  
1060.0  
1508.0  
2212.0  
3684.0  
276.0  
364.0  
476.0  
644.0  
900.0  
1300.0  
1860.0  
3220.0  
200.0  
320.0  
430.0  
570.0  
1100.0  
1600.0  
2300.0  
3400.0  
195.2  
240.0  
408.0  
562.0  
758.0  
1052.0  
208.8  
260.0  
452.0  
628.0  
520  
ESU336M160AH8(1)  
ESU476M160AH4(1)  
ESU686M160AL3(1)  
ESU107M160AL4(1)  
ESU157M160AM7(1)  
ESU227M160AM2(1)  
ESU337M160AN2(1)  
ESU567M160AN9(1)  
ESU226M200AH8(1)  
ESU336M200AH4(1)  
ESU476M200AL3(1)  
ESU686M200AL4(1)  
ESU107M200AM7(1)  
ESU157M200AM2(1)  
ESU227M200AN1(1)  
ESU397M200AN9(1)  
ESU106M250AH8(1)  
ESU226M250AH4(1)  
ESU336M250AL3(1)  
ESU476M250AL3(1)  
ESU107M250AM7(1)  
ESU157M250AN5(1)  
ESU227M250AN2(1)  
ESU337M250AN9(1)  
ESU685M350AH8(1)  
ESU106M350AH4(1)  
ESU226M350AL3(1)  
ESU336M350AL4(1)  
ESU476M350AM7(1)  
ESU686M350AM2(1)  
ESU685M400AH8(1)  
ESU106M400AH4(1)  
ESU226M400AL3(1)  
ESU336M400AM7(1)  
ESU476M400AM5(1)  
ESU476M400AM2(1)  
ESU686M400AN1(1)  
ESU107M400AN9(1)  
ESU106M450AH4(1)  
ESU156M450AL3(1)  
ESU226M450AL4(1)  
ESU336M450AM7(1)  
ESU476M450AM3(1)  
ESU686M450AM3(1)  
ESU107M450AN9(1)  
970  
1120  
1300  
1380  
2086  
500  
520  
660  
720  
1120  
1620  
2080  
3380  
320  
500  
800  
980  
1530  
1940  
2753  
3912  
280  
350  
650  
900  
1000  
1100  
140  
180  
430  
520  
852  
700  
870  
47  
68  
100  
10  
15  
22  
33  
47  
68  
852.0  
1188.0  
1700.0  
280.0  
370.0  
496.0  
694.0  
946.0  
1324.0  
1900.0  
1290  
180  
380  
500  
560  
880  
1110  
1560  
100  
Rated  
Capacitance  
VDC  
Case Size  
DF  
RC  
LC  
Part Number  
(1) Insert packaging code. See Ordering Options Table for available options.  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016  
6
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Mounting Positions (Safety Vent)  
In operation, electrolytic capacitors will always conduct a leakage current which causes electrolysis. The oxygen produced by  
electrolysis will regenerate the dielectric layer but, at the same time, the hydrogen released may cause the internal pressure  
of the capacitor to increase. The overpressure vent (safety vent) ensures that the gas can escape when the pressure reaches  
a certain value. All mounting positions must allow the safety vent to work properly.  
Installing  
• A general principle is that lower-use temperatures result in a longer, useful life of the capacitor. For this reason, it should  
be ensured that electrolytic capacitors are placed away from heat-emitting components. Adequate space should be  
allowed between components for cooling air to circulate, particularly when high ripple current loads are applied. In any  
case, the maximum category temperature must not be exceeded.  
• Do not deform the case of capacitors or use capacitors with a deformed case.  
• Verify that the connections of the capacitors are able to insert on the board without excessive mechanical force.  
• If the capacitors require mounting through additional means, the recommended mounting accessories shall be used.  
• Verify the correct polarization of the capacitor on the board.  
• Verify that the space around the pressure relief device is according to the following guideline:  
Case Diameter  
Space Around Safety Vent  
≤ 16 mm  
> 2 mm  
> 16 to ≤ 40 mm  
> 3 mm  
> 5 mm  
> 40 mm  
It is recommended that capacitors always be mounted with the safety device uppermost or in the upper part of the capacitor.  
• If the capacitors are stored for a long time, the leakage current must be verified. If the leakage current is superior to the  
value listed in this catalog, the capacitors must be reformed. In this case, they can be reformed by application of the rated  
voltage through a series resistor approximately 1 kΩ for capacitors with VR ≤ 160 V (5 W resistor) and 10 kΩ for the other  
rated voltages.  
• In the case of capacitors connected in series, a suitable voltage sharing must be used.  
In the case of balancing resistors, the approximate resistance value can be calculated as: R = 60/C  
KEMET recommends, nevertheless, to ensure that the voltage across each capacitor does not exceed its rated voltage.  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016  
7
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Application and Operation Guidelines  
Electrical Ratings:  
Capacitance (ESC)  
Simplified equivalent circuit diagram of an electrolytic capacitor  
The capacitive component of the equivalent series circuit (Equivalent Series Capacitance ESC) is determined by applying an  
alternate voltage of ≤ 0.5 V at a frequency of 120 or 100 Hz and 20°C (IEC 384-1, 384-4).  
Temperature Dependence of the Capacitance  
Capacitance of an electrolytic capacitor depends upon  
temperature: with decreasing temperature the viscosity  
Capacitance Change vs. Temperature  
(typical value)  
of the electrolyte increases, thereby reducing its  
conductivity.  
Capacitance will decrease if temperature decreases.  
Furthermore, temperature drifts cause armature  
dilatation and, therefore, capacitance changes (up to 20%  
depending on the series considered, from 0 to 80°C). This  
phenomenon is more evident for electrolytic capacitors  
than for other types.  
Temperature (°C)  
Frequency Dependence of the Capacitance  
Effective capacitance value is derived from the impedance  
curve, as long as impedance is still in the range where the  
Capacitance Change vs. Frequency  
(typical value)  
capacitance component is dominant.  
1
C = Capacitance (F)  
f = Frequency (Hz)  
Z = Impedance (Ω)  
C =  
2π fZ  
Frequency (kHz)  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016  
8
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Dissipation Factor tan δ (DF)  
Dissipation Factor tan δ is the ratio between the active and reactive power for a sinusoidal waveform voltage. It can be  
thought of as a measurement of the gap between an actual and ideal capacitor.  
reactive  
δ
ideal  
actual  
active  
Tan δ is measured with the same set-up used for the series capacitance ESC.  
tan δ = ω x ESC x ESR where:  
ESC = Equivalent Series Capacitance  
ESR = Equivalent Series Resistance  
Dissipation Factor vs. Frequency  
(typical value)  
Frequency (kHz)  
Dissipation Factor vs. Temperature  
(typical value)  
Temperature (°C)  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016  
9
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Equivalent Series Inductance (ESL)  
Equivalent Series Inductance or Self Inductance results from the terminal configuration and internal design of the capacitor.  
Capacitor Eꢀuiꢁalent ꢅnternal Circuit  
Eꢀuiꢁalent  
Series  
Eꢀuiꢁalent  
Series  
Eꢀuiꢁalent  
Series  
Capacitance  
ꢂESCꢃ  
ꢄesistance  
ꢂESꢄꢃ  
ꢅnductance  
ꢂESꢆꢃ  
Equivalent Series Resistance (ESR)  
Equivalent Series Resistance is the resistive component of the equivalent series circuit. ESR value depends on frequency and  
temperature and is related to the tan δ by the following equation:  
ESR = Equivalent Series Resistance (Ω)  
tan δ  
tan δ = Dissipation Factor  
ESR =  
2πf ESC ESC = Equivalent Series Capacitance (F)  
f = Frequency (Hz)  
Tolerance limits of the rated capacitance must be taken into account when calculating this value.  
ESR Change vs. Frequency  
(typical value)  
Frequency (kHz)  
ESR Change vs. Temperature  
(typical value)  
Temperature (°C)  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016 10  
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Impedance (Z)  
Impedance of an electrolytic capacitor results from a circuit formed by the following individual equivalent series  
components:  
e  
Co  
Ce  
Co = Aluminum oxide capacitance (surface and thickness of the dielectric)  
Re = Resistance of electrolyte and paper mixture (other resistances not depending on the frequency are not considered: tabs,  
plates, etc.)  
Ce = Electrolyte soaked paper capacitance  
L = Inductive reactance of the capacitor winding and terminals  
Impedance of an electrolytic capacitor is not a constant quantity that retains its value under all conditions; it changes  
depending on frequency and temperature.  
Impedance as a function of frequency (sinusoidal waveform) for a certain temperature can be represented as follows:  
om  
1,000  
100  
C e  
1  
ωω  
ωω  
10  
e  
ω  
A
1
1ωω C o  
ωω  
C
01  
01  
1
10  
100  
1,000  
10,000  
 
• Capacitive reactance predominates at low frequencies  
• With increasing frequency, capacitive reactance Xc = 1/ωCo decreases until it reaches the order of magnitude of  
electrolyte resistance Re(A)  
• At even higher frequencies, resistance of the electrolyte predominates: Z = Re (A - B)  
• When the capacitor’s resonance frequency is reached (ω0), capacitive and inductive reactance mutually cancel each other  
1/ωCe = ωL, ω0 = C√1/LCe  
• Above this frequency, inductive reactance of the winding and its terminals (XL = Z = ωL) becomes effective and leads to  
an increase in impedance  
Generally speaking, it can be estimated that Ce ≈ 0.01 Co.  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016 11  
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Impedance (Z) cont’d  
Impedance as a function of frequency (sinusoidal waveform) for different temperature values can be represented as follows  
(typical values):  
Z (ohm)  
10 µF  
1000  
100  
-40°C  
10  
1
20°C  
85°C  
0.1  
0.1  
1
10  
100  
1000  
10000  
F (KHz)  
Re is the most temperature-dependent component of an electrolytic capacitor equivalent circuit. Electrolyte resistivity will  
decrease if temperature rises.  
In order to obtain a low impedance value throughout the temperature range, Re must be as little as possible. However, Re  
values that are too low indicate a very aggressive electrolyte, resulting in a shorter life of the electrolytic capacitor at high  
temperatures. A compromise must be reached.  
Leakage Current (LC)  
Due to the aluminum oxide layer that serves as a dielectric, a small current will continue to flow even after a DC voltage has  
been applied for long periods. This current is called leakage current.  
A high leakage current flows after applying voltage to the capacitor then decreases in a few minutes, e.g., after prolonged  
storage without any applied voltage. In the course of continuous operation, the leakage current will decrease and reach an  
almost constant value.  
After a voltage-free storage the oxide layer may deteriorate, especially at high temperature. Since there are no leakage  
currents to transport oxygen ions to the anode, the oxide layer is not regenerated. The result is that a higher than normal  
leakage current will flow when voltage is applied after prolonged storage.  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016 12  
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Leakage Current (LC) cont’d  
As the oxide layer is regenerated in use, the leakage current will  
gradually decrease to its normal level.  
The relationship between the leakage current and voltage applied  
at constant temperature can be shown schematically as follows:  
Where:  
VF = Forming voltage  
If this level is exceeded, a large quantity of heat and gas will be  
generated and the capacitor could be damaged.  
VR = Rated Voltage  
ꢂ  
S  
ꢃ  
This level represents the top of the linear part of the curve.  
VS = Surge voltage  
This lies between VR and VF. The capacitor can be subjected to VS for short periods only.  
Electrolytic capacitors are subjected to a reforming process before acceptance testing. The purpose of this preconditioning  
is to ensure that the same initial conditions are maintained when comparing different products.  
Ripple Current (RC)  
The maximum ripple current value depends on:  
• Ambient temperature  
• Surface area of the capacitor (heat dissipation area)  
tan δ or ESR  
• Frequency  
The capacitor’s life depends on the thermal stress.  
Frequency Dependence of the Ripple Current  
ESR and, thus, the tan δ depend on the frequency of the applied voltage. This indicates that the allowed ripple current is also  
a function of the frequency.  
Temperature Dependence of the Ripple Current  
The data sheet specifies maximum ripple current at the upper category temperature for each capacitor.  
Expected Life Calculation  
Expected life depends on operating temperature according  
Expected Life Calculation Chart  
to the following formula: L = Lo x 2 (To-T)/10  
Where:  
L:  
Expected life  
Lo:  
Load life at maximum permissible operating  
temperature  
T:  
To:  
Actual operating temperature  
Maximum permissible operating temperature  
This formula is applicable between 40°C and To.  
Expected life (h)  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016 13  
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Packaging Quantities  
Bulk  
Auto-insertion  
Size  
Code  
Diameter Length  
Standard  
Leads  
(mm)  
(mm)  
Cut Leads  
Ammo  
Tape & Reel  
H8  
H4  
L3  
10  
10  
13  
13  
16  
16  
16  
16  
18  
18  
18  
18  
16  
20  
20  
25  
20  
25  
32  
36  
25  
32  
36  
50  
3000  
2400  
2000  
1600  
1000  
1000  
800  
4000  
3000  
2000  
1600  
500  
700  
700  
500  
500  
300  
300  
300  
300  
300  
1200  
1200  
L4  
M5  
M7  
M2  
M3  
N5  
N1  
N2  
N9  
500  
500  
600  
500  
800  
500  
500  
500  
500  
500  
500  
500  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016 14  
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Marking  
ꢂEꢃEꢁ ꢄogo  
ꢅolarity Stripe ꢆꢇ  
ꢀated Capacitance  
ꢀated ꢈoltage  
ꢆꢈꢉCꢇ  
Series, ꢀated  
ꢁemperature  
ꢉate Code  
ꢃontꢊꢋꢌꢍearꢋ  
ꢃanuꢎacturing  
ꢏnternal Codes  
*Y = Year  
Code  
01  
02  
03  
04  
05  
06  
07  
08  
09  
Year  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
2018  
2019  
*M = Month  
Code  
01  
02  
2
03  
04  
4
05  
06  
6
07  
7
08  
8
09  
9
10  
10  
11  
11  
12  
12  
Month  
1
3
5
Construction  
Deꢀaiꢁed ꢂrꢃꢄꢄ Seꢅꢀiꢃn  
ꢅnsulating End ꢑisc  
ꢃead  
ꢁuꢂꢂer Seal  
ꢅnsulating Sleeꢆe  
Aluminum Can  
ꢊitꢋ Saꢌety ꢍent  
ꢄerminal ꢄaꢂ  
ꢀargin  
ꢄerminal ꢄaꢂs  
Aluminum Can  
ꢅnsulating Sleeꢆe  
ꢉolarity Stripe ꢇꢈ  
ꢉaper Spacer ꢅmpregnated  
ꢊitꢋ Electrolyte  
ꢇꢎirst ꢃayerꢈ  
ꢃead ꢇ+ꢈ  
ꢉaper Spacer ꢅmpregnated  
ꢊitꢋ Electrolyte  
ꢁuꢂꢂer Seal  
ꢇꢄꢋird ꢃayerꢈ  
Anode Aluminum ꢎoil, Etcꢋed,  
Coꢆered ꢊitꢋ Aluminum ꢏꢐide  
ꢇSecond ꢃayerꢈ  
Catꢋode Aluminum ꢎoil,  
Etcꢋed ꢇꢎourtꢋ ꢃayerꢈ  
ꢃead ꢇꢈ  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016 15  
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Taping for Automatic Insertion Machines  
ꢀormed to 5 mm  
ꢀꢁead and pacꢂaging code ꢃA and ꢄAꢅ  
+10  
ꢀormed to ꢁꢂ5 mm  
ꢀꢁead and pacꢂaging code ꢁA and ꢃAꢄ  
+10  
 
 
-10  
-10  
10 ꢀaꢁimum  
10 ꢀaꢁimum  
1  
p
1  
p
t
t
0  
0  
0  
0  
d
ounting tape  
d
ounting tape  
Adesie tape  
Adesie tape  
Straigꢀt ꢁeads ꢂꢃiameterꢄ ꢅ – ꢆ mmꢇ  
ꢀead and pacꢁaging code EA and ꢂA  
Straigꢀt ꢁeads ꢂꢃiameter ꢄ ꢅꢆ  
ꢀead and pacꢁaging code EA and ꢂA  
 
+10  
-10  
+10  
-10  
 
p
10 ꢀaꢁimum  
10 ꢀaꢁimum  
1  
p
1  
t
t
0  
0  
ounting tape  
Adesie tape  
d
0  
0  
d
ounting tape  
Adesie tape  
Dimensions  
(mm)  
D
L
p
d
P
P0 P1 P2  
W
W0  
W1  
W2  
H0 H1  
I
D0  
t
Tolerance  
+0.5  
4
+0.8/-0.2 ±0.05 ±1 .0 ±0 .3 ±0 .7 ±1 .3 +1/-0.5 ±0.5 Maximum Maximum ±0.75 ±0.5 Maximum ±0.2 ±0.2  
5-7  
≤7  
>7  
5-7  
≤7  
>7  
≤7  
>7  
≤7  
>7  
5-7  
≤7  
>7  
≤7  
>7  
≤7  
>7  
2.5  
2.5  
2.5  
5
0.45 12.7 12.7 5.1 6.35 18  
0.45 12.7 12.7 5.1 6.35 18  
0.5 12.7 12.7 5.1 6.35 18  
0.45 12.7 12.7 3.85 6.35 18  
0.45 12.7 12.7 3.85 6.35 18  
0.5 12.7 12.7 3.85 6.35 18  
0.5 12.7 12.7 3.85 6.35 18  
0.5 12.7 12.7 3.85 6.35 18  
0.5 12.7 12.7 3.85 6.35 18  
0.5 12.7 12.7 3.85 6.35 18  
0.45 12.7 12.7 5.6 6.35 18  
0.45 12.7 12.7 5.35 6.35 18  
0.5 12.7 12.7 5.35 6.35 18  
0.5 12.7 12.7 5.1 6.35 18  
0.5 12.7 12.7 5.1 6.35 18  
0.5 12.7 12.7 4.6 6.35 18  
0.5 12.7 12.7 4.6 6.35 18  
0.6 12.7 12.7 3.85 6.35 18  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
16 18.5  
16 18.5  
16 18.5  
16 18.5  
16 18.5  
16 18.5  
16 18.5  
16 18.5  
16 18.5  
16 18.5  
18.5  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
1
Formed to  
2.5 mm  
5
4
5
5
5
Formed to  
5 mm  
5
6
5
5
8
4
5
5
1.5  
2
18.5  
2
18.5  
2.5  
2.5  
3.5  
3.5  
5
18.5  
6
8
18.5  
18.5  
Straight leads  
18.5  
10 12-25  
12  
18.5  
1
1
1
1
1
1
5
0.6  
0.6  
0.6  
0.8  
0.8  
15  
15  
15  
30  
30  
15 3.85 7.5  
15 3.85 7.5  
15 3.85 7.5  
30 3.75 7.5  
30 3.75 7.5  
18  
18  
18  
18  
18  
18.5  
1
5
18.5  
1
13  
15-25  
5
18.5  
1
16  
18  
7.5  
7.5  
18.5  
1
18.5  
1
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016 16  
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Lead Taping & Packaging  
Ammo ꢀoꢁ  
ꢀeel  
Ammo  
Reel  
Case Size (mm)  
H
W
Maximum  
340  
T
Maximum  
42  
D
H
W
±2  
±0.5  
+1/-0.1  
4
5 x 5 – 7  
6.3 x 5 – 7  
8 x 5 – 9  
5 x 11  
230  
230  
275  
235  
230  
270  
235  
240  
250  
256  
250  
270  
285  
265  
340  
42  
340  
42  
340  
45  
340  
48  
6.3 x 11  
8 x 11  
340  
48  
340  
48  
350  
30  
50  
8 x 14 – 20  
10 x 12  
10 x 15 – 19  
10 x 22 – 25  
12  
340  
57  
340  
52  
340  
57  
340  
60  
340  
57  
13  
340  
62  
16  
340  
62  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016 17  
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
Construction Data  
The manufacturing process begins with the anode foil being  
electrochemically etched to increase the surface area and then  
“formed” to produce the aluminum oxide layer. Both the anode and  
cathode foils are then interleaved with absorbent paper and wound  
into a cylinder. During the winding process, aluminum tabs are  
attached to each foil to provide the electrical contact.  
Eꢀꢁended ꢂaꢁꢃꢄde  
Anꢀde ꢁꢀiꢂ  
ꢀꢁiꢂ ꢃaꢄꢅ  
The deck, complete with terminals, is attached to the tabs and then  
folded down to rest on top of the winding. The complete winding  
is impregnated with electrolyte before being housed in a suitable  
container, usually an aluminum can, and sealed. Throughout the  
process, all materials inside the housing must be maintained at the  
highest purity and be compatible with the electrolyte.  
ꢀiꢁꢁꢂeꢁ  
ꢀaꢁꢂꢃde ꢄꢃiꢅ  
Each capacitor is aged and tested before being sleeved and packed.  
The purpose of aging is to repair any damage in the oxide layer  
and thus reduce the leakage current to a very low level. Aging is  
normally carried out at the rated temperature of the capacitor and  
is accomplished by applying voltage to the device while carefully  
controlling the supply current. The process may take several hours to  
complete.  
Eꢀꢁꢂing  
ꢀꢁrꢂing  
Winding  
Deꢀking  
Iꢀpregnaꢁiꢂn  
Aꢀꢀeꢁꢂꢃꢄ  
Aging  
Damage to the oxide layer can occur due to variety of reasons:  
• Slitting of the anode foil after forming  
• Attaching the tabs to the anode foil  
• Minor mechanical damage caused during winding  
A sample from each batch is taken by the quality department after  
completion of the production process. This sample size is controlled  
by the use of recognized sampling tables defined in BS 6001.  
The following tests are applied and may be varied at the request  
of the customer. In this case the batch, or special procedure, will  
determine the course of action.  
ꢀeꢁꢂing  
Electrical:  
• Leakage current  
• Capacitance  
• ESR  
• Impedance  
Tan Delta  
Mechanical/Visual:  
• Overall dimensions  
Torque test of mounting stud  
• Print detail  
• Box labels  
• Packaging, including packed  
quantity  
Sꢀeeving  
Paꢀking  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016 18  
Single-Ended Aluminum Electrolytic Capacitors – ESU Series, +105ºC  
KEMET Electronic Corporation Sales Offices  
For a complete list of our global sales offices, please visit www.kemet.com/sales.  
Disclaimer  
All product specifications, statements, information and data (collectively, the “Information”) in this datasheet are subject to change. The customer is responsible for  
checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.  
All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.  
Statements of suitability for certain applications are based on KEMET Electronics Corporation’s (“KEMET”) knowledge of typical operating conditions for such  
applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use.  
The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any  
technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET’s products is given gratis, and KEMET assumes no  
obligation or liability for the advice given or results obtained.  
Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component  
failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards  
(such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or  
property damage.  
Although all product–related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other  
measures may not be required.  
KEMET is a registered trademark of KEMET Electronics Corporation.  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com  
A4064_ESU • 10/18/2016 19  

相关型号:

ESU336M450AH8AA

Single-Ended Aluminum Electrolytic Capacitors
KEMET

ESVA0E107M

E/SV Series
NEC

ESVA0E157M

E/SV Series
NEC

ESVA0E476M

E/SV Series
NEC

ESVA0E686M

E/SV Series
NEC

ESVA0G107M

E/SV Series
NEC

ESVA0G226M

E/SV Series
NEC

ESVA0G336M

E/SV Series
NEC

ESVA0G476M

E/SV Series
NEC

ESVA0G686M

E/SV Series
NEC

ESVA0J106M

E/SV Series
NEC

ESVA0J107M

E/SV Series
NEC