IXDI509 [IXYS]

9 Ampere Low-Side Ultrafast MOSFET Drivers;
IXDI509
型号: IXDI509
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

9 Ampere Low-Side Ultrafast MOSFET Drivers

文件: 总12页 (文件大小:354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IXDI509 / IXDN509  
9 Ampere Low-Side Ultrafast MOSFET Drivers  
Features  
General Description  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-Up protected up to 9 Amps  
• High 9A peak output current  
• Wide operating range: 4.5V to 30V  
-55°Cto+125°Cextendedoperating  
temperature  
TheIXDI509andIXDN509arehighspeedhighcurrentgate  
drivers specifically designed to drive the largest IXYS  
MOSFETs & IGBTs to their minimum switching time and  
maximumpracticalfrequencylimits. TheIXDI509and  
IXDN509 can source and sink 9 Amps of peak current while  
producing voltage rise and fall times of less than 30ns. The  
inputs of the drivers are compatible with TTL or CMOS and  
are virtually immune to latch up over the entire operating  
range. Patented*designinnovationseliminatecross  
conductionandcurrent"shoot-through".Improvedspeed  
and drive capabilities are further enhanced by matched rise  
and fall times.  
• High capacitive load drive  
capability: 1800pF in <15ns  
• Matched rise and fall times  
• Low propagation delay time  
• Lowoutputimpedance  
• Low supply current  
TheIXDI509isconfiguredasaInvertingGateDriver,andthe  
IXDN509isconfiguredasaNon-InvertingGateDriver.  
Applications  
• DrivingMOSFETsandIGBTs  
• Motorcontrols  
• Linedrivers  
TheIXDI509andIXDN509areeachavailableinthe8-PinP-  
DIP (PI) package, the 8-Pin SOIC (SIA) package, and the  
6-Lead DFN (D1) package, (which occupies less than 65%  
of the board area of the 8-Pin SOIC).  
• Pulsegenerators  
• Local power ON/OFF switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCconverters  
• Pulsetransformerdriver  
• Class D switching amplifiers  
• Powerchargepumps  
*United States Patent 6,917,227  
OrderingInformation  
Package  
Type  
Pack  
Qty  
50  
94  
2500  
56  
2500  
50  
94  
2500  
56  
2500  
Part Number  
Description  
Packing Style  
Tube  
Configuration  
IXDI509PI  
9A Low Side Gate Driver I.C.  
9A Low Side Gate Driver I.C.  
9A Low Side Gate Driver I.C.  
9A Low Side Gate Driver I.C.  
9A Low Side Gate Driver I.C.  
9A Low Side Gate Driver I.C.  
9A Low Side Gate Driver I.C.  
8-Pin PDIP  
8-Pin SOIC  
8-Pin SOIC  
6-Lead DFN  
6-Lead DFN  
8-Pin PDIP  
8-Pin SOIC  
8-Pin SOIC  
6-Lead DFN  
6-Lead DFN  
IXDI509SIA  
IXDI509SIAT/R  
IXDI509D1  
IXDI509D1T/R  
IXDN509PI  
IXDN509SIA  
IXDN509SIAT/R 9A Low Side Gate Driver I.C.  
IXDN509D1  
IXDN509D1T/R  
Tube  
Inverting  
13” Tape and Reel  
2” x 2” Waffle Pack  
13” Tape and Reel  
Tube  
Tube  
Non-Inverting  
13” Tape and Reel  
2” x 2” Waffle Pack  
13” Tape and Reel  
9A Low Side Gate Driver I.C.  
9A Low Side Gate Driver I.C.  
NOTE: All parts are lead-free and RoHS Compliant  
Copyright © 2007 IXYS CORPORATION All rights reserved  
DS99670A(10/07)  
First Release  
IXDI509 / IXDN509  
Figure 1 - IXDI509 Inverting 9A Gate Driver Functional Block Diagram  
Vcc  
Vcc  
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
OUT  
GND  
IN  
GND  
Figure 2 - IXDN509 Non-Inverting 9A Gate Driver Functional Block Diagram  
Vcc  
Vcc  
P
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
OUT  
GND  
IN  
N
GND  
* United States Patent 6,917,227  
2
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDI509 / IXDN509  
Operating Ratings (2)  
Absolute Maximum Ratings (1)  
Parameter  
Value  
Parameter  
Value  
Supply Voltage  
AllOtherPins  
JunctionTemperature  
StorageTemperature  
LeadTemperature(10Sec)  
35 V  
Operating Supply Voltage  
OperatingTemperatureRange  
PackageThermalResistance*  
4.5V to 30V  
-55 °C to 125°C  
-0.3 V to VCC + 0.3V  
150 °C  
-65 °C to 150 °C  
300°C  
8-PinPDIP  
(PI)  
θ
(typ) 125°C/W  
8-PinSOIC  
6-LeadDFN  
6-LeadDFN  
6-LeadDFN  
(SIA)  
(D1)  
(D1)  
(D1)  
θJJ--AA(typ) 200°C/W  
θ
(typ) 125-200°C/W  
θJ-A(max) 2.0°C/W  
θJJ--CS(typ) 6.3°C/W  
Electrical Characteristics @ TA = 25 oC (3)  
Unless otherwise noted, 4.5V VCC 30V .  
All voltage measurements with respect to GND. IXD_509 configured as described in Test Conditions. (4)  
Symbol Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
V
2.4  
4.5V VCC 18V  
4.5V VCC 18V  
VIH  
VIL  
High input voltage  
0.8  
VCC + 0.3  
10  
V
Low input voltage  
-5  
-10  
V
VIN  
Input voltage range  
Input current  
0V VIN VCC  
µA  
V
IIN  
VCC - 0.025  
VOH  
VOL  
ROH  
ROL  
IPEAK  
High output voltage  
Low output voltage  
High state output resistance  
Low state output resistance  
Peak output current  
0.025  
1
V
VCC = 18V  
VCC = 18V  
VCC = 15V  
0.6  
0.4  
0.8  
9
A
Limited by package power  
dissipation  
IDC  
Continuous output current  
2
A
CLOAD =10,000pF VCC=18V  
45  
40  
35  
30  
30  
ns  
ns  
ns  
ns  
V
tR  
tF  
Rise time  
25  
23  
CLOAD =10,000pF VCC=18V  
CLOAD =10,000pF VCC=18V  
CLOAD =10,000pF VCC=18V  
Fall time  
18  
19  
18  
tONDLY  
On-time propagation delay  
tOFFDLY Off-time propagation delay  
4.5  
VCC  
ICC  
Power supply voltage  
Power supply current  
VCC = 18V, VIN =0V  
VIN = 3.5V  
75  
3
75  
µA  
mA  
mA  
1
VIN = VCC  
IXYS reserves the right to change limits, test conditions, and dimensions.  
3
IXDI509 / IXDN509  
Electrical Characteristics @ temperatures over -55 oC to 125 oC (3)  
Unless otherwise noted, 4.5V VCC 30V , Tj < 150oC  
All voltage measurements with respect to GND. IXD_502 configured as described in Test Conditions. All specifications are for one channel.  
(4)  
Symbol Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
V
VIH  
High input voltage  
2.4  
4.5V VCC 18V  
4.5V VCC 18V  
VIL  
Low input voltage  
Input voltage range  
Input current  
0.8  
VCC + 0.3  
10  
V
VIN  
-5  
-10  
V
IIN  
0V VIN VCC  
µA  
V
VOH  
VOL  
ROH  
ROL  
IDC  
High output voltage  
Low output voltage  
VCC – 0.025  
0.025  
2
V
High state output resistance VCC = 18V  
Low state output resistance VCC = 18V  
Continuous output current  
1.5  
1
A
tR  
Rise time  
CLOAD =10,000pF VCC =18V  
60  
60  
55  
40  
30  
ns  
ns  
ns  
ns  
V
tF  
Fall time  
CLOAD =10,000pF VCC =18V  
CLOAD =10,000pF VCC =18V  
CLOAD =10,000pF VCC =18V  
tONDLY  
tOFFDLY  
VCC  
ICC  
On-time propagation delay  
Off-time propagation delay  
Power supply voltage  
Power supply current  
4.5  
18  
VCC =18V, VIN = 0V  
0.13  
3
0.13  
µA  
mA  
mA  
VIN = 3.5V  
VIN = VCC  
Notes:  
1. Operating the device beyond the parameters listed as “Absolute Maximum Ratings” may cause permanent damage  
to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
2. The device is not intended to be operated outside of the Operating Ratings.  
3. Electrical Characteristics provided are associated with the stated Test Conditions.  
4. Typical values are presented in order to communicate how the device is expected to perform, but not necessarily to  
highlight any specific performance limits within which the device is guaranteed to function.  
* The following notes are meant to define the conditions for the θJ-A, θJ-C and θJ-S values:  
1) TheθJ-A (typ)isdefinedasjunctiontoambient. TheθJ-A ofthestandardsingledie8-LeadPDIPand8-LeadSOICaredominatedbythe  
resistanceofthepackage,andtheIXD_5XXaretypical. Thevaluesforthesepackagesarenaturalconvectionvalueswithverticalboards  
and the values would be lower with forced convection. For the 6-Lead DFN package, the θJ-A value supposes the DFN package is  
soldered on a PCB. The θJ-A (typ) is 200 °C/W with no special provisions on the PCB, but because the center pad provides a low  
thermal resistance to the die, it is easy to reduce the θJ-A by adding connected copper pads or traces on the PCB. These can reduce  
the θJ-A (typ) to 125 °C/W easily, and potentially even lower. The θJ-A for DFN on PCB without heatsink or thermal management will  
vary significantly with size, construction, layout, materials, etc. This typical range tells the user what he is likely to get if he does no  
thermalmanagement.  
2) θJ-C (max) is defined as juction to case, where case is the large pad on the back of the DFN package. The θJ-C values are generally not  
publishedforthePDIPandSOICpackages. TheθJ-CfortheDFNpackagesareimportanttoshowthelowthermalresistancefromjunctionto  
thedieattachpadonthebackoftheDFN, --andaguardbandhasbeenaddedtobesafe.  
3) TheθJ-S (typ)isdefinedasjunctiontoheatsink,wheretheDFNpackageissolderedtoathermalsubstratethatismountedonaheatsink.  
Thevaluemustbetypicalbecausethereareavarietyofthermalsubstrates. ThisvaluewascalculatedbasedoneasilyavailableIMSinthe  
U.S.orEurope,andnotapremiumJapaneseIMS. A4mildialectricwithathermalconductivityof2.2W/mCwasassumed. Theresultwas  
given as typical, and indicates what a user would expect on a typical IMS substrate, and shows the potential low thermal resistance for the  
DFNpackage.  
4
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDI509 / IXDN509  
Pin Description  
PIN  
1, 8  
2
SYMBOL  
FUNCTION  
Supply Voltage  
Input  
DESCRIPTION  
Power supply input voltage. These pins provide power to the  
entire device. The range for this voltage is 4.5V to 30V.  
Input drive signal, TTL or CMOS compatible.  
V
CC  
IN  
Driver output. For application purposes, these pins are  
connected, through a resistor, to the gate of a MOSFET/IGBT.  
The device ground pins. Internally connected to all circuitry,  
these pins provide ground reference for the entire chip and  
should be connected to a low noise analog ground plane for  
optimum performance.  
6, 7  
OUT  
GND  
Output  
4, 6  
Ground  
CAUTION: Follow proper ESD procedures when handling and assembling this component.  
PinConfigurations  
8 PIN DIP (PI)  
8 PIN DIP (PI)  
8 PIN SOIC (SIA)  
8 PIN SOIC (SIA)  
1
2
8
7
6
5
1
2
8
7
6
5
VCC  
OUT  
OUT  
GND  
VCC  
OUT  
OUT  
GND  
I
I
VCC  
IN  
VCC  
IN  
X
D
I
5
0
9
X
D
N
5
0
9
3
3
N/C  
N/C  
4
4
GND  
GND  
6LEADDFN(D1)  
(Bottom View)  
6LEADDFN(D1)  
(Bottom View)  
I
I
6
5
4
IN  
6
5
4
IN  
VCC  
1
2
3
VCC  
1
2
3
X
D
I
5
0
9
X
D
N
5
0
9
OUT  
GND  
N/C  
GND  
OUT  
GND  
N/C  
GND  
NOTE: Solder tabs on bottom of DFN packages are grounded  
Figure 3 - Characteristics Test Diagram  
5.0V  
Vcc  
10uF  
0V  
IXDI414  
0V  
IXDI509  
Vcc  
0V  
IXDN509  
C
LOAD  
Agilent 1147A  
Current Probe  
5
IXDI509 / IXDN509  
Figure 4 - Timing Diagrams  
Inverting (IXDI509) Timing Diagram  
5V  
90%  
2.5V  
INPUT  
10%  
0V  
PWMIN  
tONDLY  
tOFFDLY  
tF  
tR  
VCC  
90%  
OUTPUT  
10%  
0V  
Non-Inverting (IXDN509) Timing Diagram  
5V  
90%  
INPUT  
2.5V  
10%  
0V  
PWMIN  
tOFFDLY  
tONDLY  
tR  
t
F
Vcc  
90%  
OUTPUT  
10%  
0V  
IXYS reserves the right to change limits, test conditions, and dimensions.  
6
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDI509 / IXDN509  
Typical Performance Characteristics  
Fig. 5  
Fig. 6  
Rise Time vs. Supply Voltage  
Fall Time vs. Supply Voltage  
35  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
10000pF  
5400pF  
10000pF  
5400pF  
1000pF  
100pF  
1000pF  
100pF  
0
0
0
0
5
10  
15  
20  
25  
30  
35  
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 7  
Fig. 8  
Rise / Fall Time vs. Temperature  
VSUPPLY = 15V CLOAD = 1000pF  
Rise Time vs. Capacitive Load  
8
7
6
5
4
3
2
1
35  
5V  
30  
25  
20  
15  
10  
5
15V  
30V  
0
0
-50  
0
50  
100  
150  
100  
1000  
10000  
Load Capacitance (pF)  
Temperature (C)  
Fig. 10  
Fig. 9  
Fall Time vs. Capacitive Load  
Input Threshold Levels vs. Supply Voltage  
2.5  
2
35  
30  
25  
20  
15  
10  
5
5V  
Positive going input  
15V  
30V  
1.5  
1
Negative going input  
0.5  
0
0
100  
1000  
10000  
0
5
10  
15  
20  
25  
30  
35  
Load Capacitance (pF)  
Supply Voltage (V)  
7
IXDI509 / IXDN509  
Fig. 12  
Fig. 11  
Propagation Delay vs. Supply Voltage  
Rising Input, CLOAD = 1000pF  
Input Threshold Levels vs. Temperature  
VSUPPLY = 15V  
3
40  
35  
30  
25  
20  
15  
10  
5
2.5  
2
1.5  
1
Positive going input  
Negative going input  
0.5  
0
0
0
5
10  
15  
20  
25  
30  
35  
-50  
0
50  
100  
150  
Temperature (C)  
Supply Voltage (V)  
Fig. 14  
Fig. 13  
Propagation Delay vs. Temperature  
VSUPPLY = 15V CLOAD = 1000pF  
Propagation Delay vs. Supply Voltage  
Falling Input, CLOAD = 1000pF  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Negative going input  
Positve going input  
0
0
-50  
0
50  
100  
150  
0
5
10  
15  
20  
25  
30  
35  
Temeprature (C)  
Supply Voltage (V)  
Fig. 16  
Quiescent Current vs. Temperature  
VSUPPLY = 15V  
Fig. 15  
Quiescent Current vs. Supply Voltage  
10000  
1000  
100  
10  
1000  
Inverting / Non-inverting, Input= "1"  
100  
10  
Inverting / Non-Inverting  
Input = "1"  
Inverting, Input= "0"  
Inverting  
Input = "0"  
1
Non-inverting, Input= "0"  
1
Non-inverting  
Input = "0"  
0.1  
0.01  
0.1  
0.01  
-50  
0
50  
100  
150  
0
5
10  
15  
20  
25  
30  
35  
Temperature (C)  
Supply Voltage (V)  
8
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDI509 / IXDN509  
Fig. 18  
Fig. 17  
Supply Current vs. Frequency  
VSUPPLY = 5V  
Supply Current vs. Capacitive Load  
VSUPPLY = 5V  
2MHz  
1MHz  
100  
100  
10000pF  
5400pF  
1000pF  
100pF  
10  
1
10  
1
100kHz  
10kHz  
0.1  
0.1  
0.01  
0.01  
10  
100  
1000  
10000  
100  
1000  
10000  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 19  
Fig. 20  
Supply Current vs. Frequency  
SUPPLY = 15V  
Supply Current vs. Capacitive Load  
V
VSUPPLY = 15V  
1000  
100  
10  
1000  
10000pF  
5400pF  
2MHz  
1MHz  
100  
10  
1
1000pF  
100pF  
100kHz  
10kHz  
1
0.1  
0.1  
100  
1000  
10000  
10  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
Fig. 21  
Fig. 22  
Supply Current vs. Capacitive Load  
VSUPPLY = 30V  
Supply Current vs. Frequency  
VSUPPLY = 30V  
1000  
1000  
2MHz  
1MHz  
10000pF  
5400pF  
1000pF  
100pF  
100  
10  
1
100  
10  
1
100kHz  
10kHz  
0.1  
0.1  
100  
1000  
10000  
10  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
9
IXDI509 / IXDN509  
Fig. 24  
Fig. 23  
Output Sink Current vs. Supply Voltage  
Output Source Current vs. Supply Voltage  
0
25  
-5  
-10  
-15  
-20  
-25  
20  
15  
10  
5
0
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 25  
Fig. 26  
Output Source Current vs. Temperature  
VSUPPLY = 15V  
Output Sink Current vs. Temperature  
VSUPPLY = 15V  
12  
10  
8
0
-2  
-4  
-6  
6
-8  
4
-10  
-12  
-14  
2
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (C)  
Temperature (C)  
Fig. 28  
Fig. 27  
Low State Output Resistance vs. Supply Voltage  
High State Output Resistance vs. Supply Voltage  
1.4  
1.2  
1
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Supply Voltage (V)  
10  
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDI509 / IXDN509  
Supply Bypassing, Grounding Practices And Output Lead inductance  
When designing a circuit to drive a high speed MOSFET  
utilizing the IXD_509, it is very important to observe certain  
design criteria in order to optimize performance of the driver.  
Particular attention needs to be paid to Supply Bypassing,  
Grounding, and minimizing the Output Lead Inductance.  
Say, forexample, weareusingtheIXD_509tochargea5000pF  
capacitive load from 0 to 25 volts in 25ns.  
Using the formula: IC=C(V/t), where V=25V C=5000pF &  
t=25ns, we can determine that to charge 5000pF to 25 volts  
in25ns willtakeaconstantcurrentof5A. (Inreality,thecharging  
current won’t be constant, and will peak somewhere around  
8A).  
SUPPLYBYPASSING  
In order for our design to turn the load on properly, the IXD_509  
must be able to draw this 5A of current from the power supply  
in the 25ns. This means that there must be very low impedance  
between the driver and the power supply. The most common  
method of achieving this low impedance is to bypass the power  
supply at the driver with a capacitance value that is an order of  
magnitude larger than the load capacitance. Usually, this  
would be achieved by placing two different types of bypassing  
capacitors, with complementary impedance curves, very close  
to the driver itself. (These capacitors should be carefully  
selected and should have low inductance, low resistance and  
high-pulse current-service ratings). Lead lengths may radiate  
at high frequency due to inductance, so care should be taken  
to keep the lengths of the leads between these bypass  
capacitors and the IXD_509 to an absolute minimum.  
GROUNDING  
In order for the design to turn the load off properly, the IXD_509  
must be able to drain this 5A of current into an adequate  
grounding system. There are three paths for returning current  
that need to be considered: Path #1 is between the IXD_509  
and its load. Path #2 is between the IXD_509 and its power  
supply. Path #3 is between the IXD_509 and whatever logic is  
driving it. All three of these paths should be as low in resistance  
and inductance as possible, and thus as short as practical. In  
addition, every effort should be made to keep these three  
ground paths distinctly separate. Otherwise, the returning  
ground current from the load may develop a voltage that would  
have a detrimental effect on the logic line driving the IXD_509.  
OUTPUTLEADINDUCTANCE  
Of equal importance to Supply Bypassing and Grounding are  
issues related to the Output Lead Inductance. Every effort  
should be made to keep the leads between the driver and its  
load as short and wide as possible. If the driver must be placed  
farther than 0.2” (5mm) from the load, then the output leads  
should be treated as transmission lines. In this case, a twisted-  
pair should be considered, and the return line of each twisted  
pair should be placed as close as possible to the ground pin  
of the driver, and connected directly to the ground terminal of the  
load.  
11  
IXDI509 / IXDN509  
A2  
b
b2  
b3  
c
D
D1  
E
E1  
e
eA  
eB  
L
E
H
B
C
D
E
e
H
h
L
M
N
D
A
A1  
e
B
h X 45  
N
L
C
M
0.035 [0.90]  
0.137 [3.48]  
0.197±0.005 [5.00±0.13]  
IXYS Corporation  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
www.ixys.com  
S0.002^0.000;  
o
[S0.05^0.00;o  
]
0.018 [0.47]  
0.100 [2.54]  
IXYS Semiconductor GmbH  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
12  
Copyright © 2007 IXYS CORPORATION All rights reserved  

相关型号:

IXDI509D1

Buffer/Inverter Based MOSFET Driver, 9A, CMOS, PDSO6, 4 X 5 MM, ROHS COMPLIANT, DFN-6
IXYS

IXDI509D1T/R

Buffer/Inverter Based MOSFET Driver, 9A, CMOS, PDSO6, 4 X 5 MM, ROHS COMPLIANT, DFN-6
IXYS

IXDI509PI

Buffer/Inverter Based MOSFET Driver, 9A, CMOS, PDIP8, 0.300 INCH, ROHS COMPLIANT, MS-001BA, PLASTIC, DIP-8
IXYS

IXDI509SIA

Buffer/Inverter Based MOSFET Driver, 9A, CMOS, PDSO8, 0.150 INCH, ROHS COMPLIANT, MS-012AA, SOP-8
IXYS

IXDI509SIAT/R

Buffer/Inverter Based MOSFET Driver, 9A, CMOS, PDSO8, 0.150 INCH, ROHS COMPLIANT, MS-012AA, SOP-8
IXYS

IXDI514

14 Ampere Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI514D1

14 Ampere Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI514D1T/R

Buffer/Inverter Based MOSFET Driver, 14A, CMOS, 4 X 5 MM, ROHS COMPLIANT, DFN-6
IXYS

IXDI514D1TR

14 Ampere Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI514PI

14 Ampere Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI514SIA

14 Ampere Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI514SIAT/R

Buffer/Inverter Based MOSFET Driver, 14A, CMOS, PDSO8, 0.150 INCH, ROHS COMPLIANT, MS-012AA, SOIC-8
IXYS