IXDD509D1TR [IXYS]

9 Ampere Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown;
IXDD509D1TR
型号: IXDD509D1TR
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

9 Ampere Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown

文件: 总14页 (文件大小:407K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IXDD509 / IXDE509  
9 Ampere Low-Side Ultrafast MOSFET Drivers  
with Enable for fast, controlled shutdown  
Features  
General Description  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-Up Protected up to 9 Amps  
• High 9A peak output current  
• Wide operating range: 4.5V to 30V  
-55°Cto+125°CExtendedoperating  
temperature  
• Ability to disable output under faults  
• High capacitive load drive capability:  
1800pF in <15ns  
TheIXDD509andIXDE509arehighspeedhighcurrentgate  
drivers specifically designed to drive the largest IXYS  
MOSFETs & IGBTs to their minimum switching time and  
maximumparcticalfrequencylimits. TheIXDD509and  
IXDE509 can source and sink 9 Amps of Peak Current  
while producing voltage rise and fall times of less than  
30ns. The inputs of the Drivers are compatible with TTL or  
CMOS and are virtually immune to latch up over the entire  
operatingrange.Patented*designinnovationseliminate  
crossconductionandcurrent"shoot-through".Improved  
speedanddrivecapabilitiesarefurtherenhancedby  
matched rise and fall times.  
• Matched rise and fall times  
• Low propagation delay time  
• Lowoutputimpedance  
TheIXDD509andIXDE509incorporateauniqueabilityto  
disable the output under fault conditions. When a logical  
low is forced into the Enable input, both final output stage  
MOSFETs, (NMOS and PMOS) are turned off. As a result,  
the output of the IXDD509 or IXDE509 enters a tristate high  
impedance mode and with additional circuitry, achieves a  
Soft Turn-Off of the MOSFET/IGBT when a short circuit is  
detected. This helps prevent damage that could occur to  
the MOSFET/IGBT if it were to be switched off abruptly due  
toadv/dtover-voltagetransient.  
• Low supply current  
Applications  
• DrivingMOSFETsandIGBTs  
• Limiting di/dt under short circuit  
• Motorcontrols  
• Linedrivers  
• Pulsegenerators  
• Local power ON/OFF switch  
• Switch mode power supplies (SMPS)  
• DCtoDCconverters  
• Pulsetransformerdriver  
• Class D switching amplifiers  
• Powerchargepumps  
TheIXDD509andIXDE509areavailableinthe8-PinP-DIP  
(PI) package, the 8-Pin SOIC (SIA) package, and the 6-  
Lead DFN (D1) package, (which occupies less than 65% of  
the board area of the 8-Pin SOIC).  
*United States Patent 6,917,227  
OrderingInformation  
Package  
Type  
Pack  
Qty  
50  
94  
2500  
56  
2500  
50  
94  
2500  
56  
2500  
Part Number  
Description  
Packing Style  
Tube  
Configuration  
IXDD509PI  
IXDD509SIA  
IXDD509SIAT/R 9A Low Side Gate Driver I.C.  
IXDD509D1  
IXDD509D1T/R  
IXDE509PI  
IXDE509SIA  
IXDE509SIAT/R 9A Low Side Gate Driver I.C.  
9A Low Side Gate Driver I.C.  
9A Low Side Gate Driver I.C.  
8-Pin PDIP  
8-Pin SOIC  
8-Pin SOIC  
6-Lead DFN  
6-Lead DFN  
8-Pin PDIP  
8-Pin SOIC  
8-Pin SOIC  
6-Lead DFN  
6-Lead DFN  
Tube  
Non-Inverting  
with Enable  
13” Tape and Reel  
2” x 2” Waffle Pack  
13” Tape and Reel  
Tube  
9A Low Side Gate Driver I.C.  
9A Low Side Gate Driver I.C.  
9A Low Side Gate Driver I.C.  
9A Low Side Gate Driver I.C.  
Tube  
Inverting  
with Enable  
13” Tape and Reel  
2” x 2” Waffle Pack  
13” Tape and Reel  
IXDE509D1  
IXDE509D1T/R  
9A Low Side Gate Driver I.C.  
9A Low Side Gate Driver I.C.  
NOTE: All parts are lead-free and RoHS Compliant  
Copyright © 2007 IXYS CORPORATION All rights reserved  
DS99679A(10/07)  
First Release  
IXDD509 / IXDE509  
Figure 1 - IXDD509 9A Non-Inverting Gate Driver Functional Block Diagram  
Vcc  
Vcc  
200K  
P
N
ANTI-CROSS  
CONDUCTION  
OUT  
GND  
IN  
CIRCUIT
*
EN  
GND  
Figure 2 - IXDE509 Inverting 9A Gate Driver Functional Block Diagram  
Vcc  
Vcc  
200K  
P
N
ANTI-CROSS  
CONDUCTION  
OUT  
GND  
IN  
CIRCUIT *  
*
EN  
GND  
* United States Patent 6,917,227  
2
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDD509 / IXDE509  
Operating Ratings (2)  
Absolute Maximum Ratings (1)  
Parameter  
Value  
Parameter  
Value  
Supply Voltage  
All Other Pins (unless specified  
otherwise)  
JunctionTemperature  
StorageTemperature  
LeadTemperature(10Sec)  
35 V  
Operating Supply Voltage  
OperatingTemperatureRange  
PackageThermalResistance*  
4.5V to 30V  
-55 °C to 125°C  
-0.3 V to VCC + 0.3V  
150 °C  
-65 °C to 150 °C  
300°C  
8-PinPDIP  
(PI)  
θ
(typ) 125°C/W  
8-PinSOIC  
6-LeadDFN  
6-LeadDFN  
6-LeadDFN  
(SIA)  
(D1)  
(D1)  
(D1)  
θJJ--AA(typ) 200°C/W  
θ
(typ) 125-200°C/W  
θJ-A(max) 2.0°C/W  
θJJ--CS(typ) 6.3°C/W  
Electrical Characteristics @ TA = 25o C (3)  
Unless otherwise noted, 4.5V VCC 30V .  
All voltage measurements with respect to GND. IXD_509 configured as described in Test Conditions.  
(4)  
Symbol  
VIH, VENH  
VIL, VENL  
VIN  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
V
High input & EN voltage  
Low input & EN voltage  
Input voltage range  
Enable voltage range  
Input current  
2.4  
4.5V VCC 18V  
4.5V VCC 18V  
0.8  
VCC + 0.3  
VCC + 0.3  
10  
V
-5  
-.3  
V
VEN  
V
IIN  
-10  
0V VIN VCC  
µA  
V
VOH  
High output voltage  
Low output voltage  
VCC - 0.025  
VOL  
0.025  
1
V
ROH  
High state output  
resistance  
VCC = 18V  
0.6  
ROL  
Low state output  
resistance  
Peak output current  
A
A
VCC = 18V  
VCC = 15V  
0.4  
9
0.8  
IPEAK  
IDC  
Limited by package power  
dissipation  
Continuous output current  
2
tR  
Rise time  
Fall time  
CLOAD =10,000pF VCC =18V  
ns  
ns  
25  
23  
45  
40  
tF  
CLOAD =10,000pF VCC =18V  
tONDLY  
On-time propagation  
delay  
Off-time propagation  
delay  
Enable to output high  
delay time  
Disable to output high  
impedance delay time  
Power supply voltage  
C
LOAD =10,000pF VCC =18V  
LOAD =10,000pF VCC =18V  
18  
35  
ns  
tOFFDLY  
tENOH  
tDOLD  
C
19  
25  
30  
50  
ns  
ns  
VCC =18V  
VCC =18V  
60  
18  
80  
30  
ns  
V
VCC  
ICC  
4.5  
Power supply current  
VCC = 18V, VIN = 0V  
75  
3
75  
µA  
mA  
mA  
VIN = 3.5V  
VIN = VCC  
1
IXYS reserves the right to change limits, test conditions, and dimensions.  
3
IXDD509 / IXDE509  
Electrical Characteristics @ temperatures over -55 oC to 125 oC (3)  
Unless otherwise noted, 4.5V VCC 30V , Tj < 150oC  
All voltage measurements with respect to GND. IXD_502 configured as described in Test Conditions. All specifications are for one channel.  
(4)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
VIH  
VIL  
High input voltage  
Low input voltage  
Input voltage range  
Input current  
2.4  
V
V
4.5V VCC 18V  
4.5V VCC 18V  
0.8  
CC + 0.3  
10  
-5  
V
V
µA  
V
VIN  
IIN  
-10  
0V VIN VCC  
V
CC - 0.025  
VOH  
VOL  
High output voltage  
Low output voltage  
0.025  
2
V
High state output  
resistance  
Low state output  
resistance  
Continuous output  
current  
VCC = 18V  
VCC = 18V  
ROH  
ROL  
IDC  
1.5  
1
A
60  
60  
ns  
ns  
ns  
tR  
tF  
Rise time  
Fall time  
CLOAD =10,000pF VCC =18V  
CLOAD =10,000pF VCC =18V  
On-time propagation  
delay  
Off-time propagation  
delay  
Enable to output high  
delay time  
Disable to output high  
impedance delay time  
tONDLY  
tOFFDLY  
tENOH  
CLOAD =10,000pF VCC =18V  
55  
ns  
ns  
ns  
V
CLOAD =10,000pF VCC =18V  
40  
60  
V
CC = 18V  
CC = 18V  
100  
tDOLD  
V
4.5  
18  
30  
VCC  
ICC  
Power supply voltage  
Power supply current  
VCC = 18V, VIN = 0V  
0.13  
3
0.13  
µA  
mA  
mA  
VIN = 3.5V  
VIN = VCC  
Notes:  
1. Operating the device beyond the parameters listed as “Absolute Maximum Ratings” may cause permanent  
damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device  
reliability.  
2. The device is not intended to be operated outside of the Operating Ratings.  
3. Electrical Characteristics provided are associated with the stated Test Conditions.  
4. Typical values are presented in order to communicate how the device is expected to perform, but not necessarily  
to highlight any specific performance limits within which the device is guaranteed to function.  
* The following notes are meant to define the conditions for the θJ-A, θJ-C and θJ-S values:  
1) TheθJ-A (typ)isdefinedasjunctiontoambient. TheθJ-A ofthestandardsingledie8-LeadPDIPand8-LeadSOICaredominatedbythe  
resistanceofthepackage,andtheIXD_5XXaretypical. Thevaluesforthesepackagesarenaturalconvectionvalueswithverticalboards  
and the values would be lower with forced convection. For the 6-Lead DFN package, the θJ-A value supposes the DFN package is  
soldered on a PCB. The θJ-A (typ) is 200 °C/W with no special provisions on the PCB, but because the center pad provides a low  
thermal resistance to the die, it is easy to reduce the θJ-A by adding connected copper pads or traces on the PCB. These can reduce  
the θJ-A (typ) to 125 °C/W easily, and potentially even lower. The θJ-A for DFN on PCB without heatsink or thermal management will  
vary significantly with size, construction, layout, materials, etc. This typical range tells the user what he is likely to get if he does no  
thermalmanagement.  
2) θJ-C (max) is defined as juction to case, where case is the large pad on the back of the DFN package. The θJ-C values are generally not  
publishedforthePDIPandSOICpackages. TheθJ-CfortheDFNpackagesareimportanttoshowthelowthermalresistancefromjunctionto  
thedieattachpadonthebackoftheDFN, --andaguardbandhasbeenaddedtobesafe.  
3) TheθJ-S (typ)isdefinedasjunctiontoheatsink,wheretheDFNpackageissolderedtoathermalsubstratethatismountedonaheatsink.  
Thevaluemustbetypicalbecausethereareavarietyofthermalsubstrates. ThisvaluewascalculatedbasedoneasilyavailableIMSinthe  
U.S.orEurope,andnotapremiumJapaneseIMS. A4mildialectricwithathermalconductivityof2.2W/mCwasassumed. Theresultwas  
given as typical, and indicates what a user would expect on a typical IMS substrate, and shows the potential low thermal resistance for the  
DFNpackage.  
4
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDD509 / IXDE509  
PinDescription  
PIN  
1,8  
2
SYMBOL  
FUNCTION  
Supply Voltage  
Input  
DESCRIPTION  
Power supply input voltage. These pins provide power to  
the entire device. The range for this voltage is from 4.5V to  
30V.  
V
CC  
IN  
Input signal-TTL or CMOS compatible.  
The device ENABLE pin. This pin, when driven low,  
disables the chip, forcing a high impedance state at the  
output. EN can be pulled high by a resistor.  
3
EN  
Enable  
Driver Output. For application purposes, these pins are  
connected, through a resistor, to Gate of a MOSFET/IGBT.  
The device ground pins. Internally connected to all circuitry,  
these pins provide ground reference for the entire chip and  
should be connected to a low noise analog ground plane for  
optimum performance.  
6,7  
4,8  
OUT  
Output  
GND  
Ground  
CAUTION: Follow proper ESD procedures when handling and assembling this component.  
PINCONFIGURATIONS  
8 PIN DIP (PI)  
8 PIN DIP (PI)  
8 PIN SOIC (SIA)  
8 PIN SOIC (SIA)  
1
2
8
7
6
5
1
2
8
7
6
VCC  
OUT  
OUT  
GND  
VCC  
OUT  
OUT  
GND  
I
I
VCC  
IN  
VCC  
IN  
X
D
E
5
0
9
X
D
D
5
0
9
3
3
EN  
EN  
4
4
GND  
GND  
5
6LEADDFN(D1)  
(Bottom View)  
6LEADDFN(D1)  
(Bottom View)  
I
I
6
5
4
IN  
6
5
4
IN  
VCC  
1
2
3
VCC  
1
2
3
X
D
E
5
0
9
X
D
D
5
0
9
OUT  
GND  
EN  
OUT  
GND  
EN  
GND  
GND  
NOTE: Solder tabs on bottoms of DFN packages are grounded  
Figure 3 - Characteristics Test Diagram  
IN  
V
OUT  
Vcc  
V
5V  
0V  
IXDD  
0V  
Vcc  
8
7
6
5
1
2
3
4
0V  
Vcc  
0.01uf  
IXDE  
10uf  
Agilent 1147A  
Current Probe  
VIN  
CLOAD  
IXYS reserves the right to change limits, test conditions, and dimensions.  
5
IXDD509 / IXDE509  
Figure 4 - Timing Diagrams  
Non-Inverting (IXDD509) Timing Diagram  
5V  
90%  
INPUT  
2.5V  
10%  
0V  
PWMIN  
tOFFDLY  
tONDLY  
tR  
t
F
Vcc  
90%  
OUTPUT  
10%  
0V  
Inverting (IXDE509) Timing Diagram  
5V  
90%  
2.5V  
INPUT  
10%  
0V  
PWMIN  
tONDLY  
tOFFDLY  
tF  
tR  
VCC  
90%  
OUTPUT  
10%  
0V  
6
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDD509 / IXDE509  
Typical Performance Characteristics  
Fig. 6  
Fig. 5  
Rise Time vs. Supply Voltage  
Fall Time vs. Supply Voltage  
35  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
10000pF  
5400pF  
10000  
5400p  
1000  
100  
1000pF  
100pF  
0
0
0
0
5
10  
15  
20  
25  
30  
35  
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
SupplyVoltage(V)  
Fig. 7  
Rise / Fall Time vs. Temperature  
SUPPLY = 15V CLOAD = 1000pF  
Fig. 8  
V
Rise Time vs. Capacitive Load  
35  
30  
25  
20  
15  
10  
5
8
7
6
5
4
3
2
1
0
5V  
15V  
30V  
0
-50  
0
50  
100  
150  
100  
1000  
10000  
Load Capacitance (pF)  
Temperature (C)  
Fig. 9  
Fig. 10  
Fall Time vs. Capacitive Load  
Input Threshold Levels vs. Supply Voltage  
2.5  
35  
30  
25  
20  
15  
10  
5
2
1.5  
1
5
Positive going input  
Negative going input  
15V  
30  
0.5  
0
0
0
100  
1000  
10000  
5
10  
15  
20  
25  
30  
35  
Load Capacitance (pF)  
Supply Voltage (V)  
IXYS reserves the right to change limits, test conditions, and dimensions.  
7
IXDD509 / IXDE509  
Fig. 12  
Fig. 11  
Propagation Delay vs. Supply Voltage  
Rising Input, CLOAD = 1000pF  
Input Threshold Levels vs. Temperature  
VSUPPLY = 15V  
3
2.5  
2
40  
35  
30  
25  
20  
15  
10  
5
Positive going input  
Negative going input  
1.5  
1
0.5  
0
0
0
5
10  
15  
20  
25  
30  
35  
-50  
0
50  
100  
150  
Temperature (C)  
Supply Voltage (V)  
Propagation Delay vs. Temperature  
Fig. 14  
Fig. 13  
Propagation Delay vs. Supply Voltage  
Falling Input, CLOAD = 1000pF  
VSUPPLY = 15V CLOAD = 1000pF  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
Negative going input  
Positve going input  
0
0
0
5
10  
15  
20  
25  
30  
35  
-50  
0
50  
100  
150  
Supply Voltage (V)  
Temeprature (C)  
Fig. 16  
Fig. 15  
Quiescent Current vs. Temperature  
VSUPPLY = 15V  
Quiescent Current vs. Supply Voltage  
10000  
1000  
100  
10  
Inverting / Non-inverting, Input= "1"  
1000  
100  
10  
Inverting / Non-Inverting  
Input = "1"  
Inverting, Input= "0"  
Inverting  
Input = "0"  
1
Non-inverting, Input= "0"  
1
Non-inverting  
Input = "0"  
0.1  
0.01  
0.1  
0.01  
-50  
0
50  
100  
150  
0
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Temperature (C)  
8
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDD509 / IXDE509  
Fig. 17  
Fig. 18  
Supply Current vs. Capacitive Load  
VSUPPLY = 5V  
Supply Current vs. Frequency  
VSUPPLY = 5V  
100  
10000pF  
5400pF  
2MHz  
1MHz  
100  
1000pF  
100pF  
10  
1
10  
1
100kH  
10 k Hz  
0.1  
0.1  
0.01  
0.01  
100  
1000  
10000  
10  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
Fig. 19  
Fig. 20  
Supply Current vs. Frequency  
Supply Current vs. Capacitive Load  
VSUPPLY = 15V  
VSUPPLY = 15V  
1000  
1000  
10000pF  
5400pF  
2M Hz  
1M Hz  
100  
10  
1
100  
10  
1000pF  
100pF  
10 0 k Hz  
10 k Hz  
1
0.1  
100  
1000  
10000  
0.1  
10  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
Supply Current vs. Frequency  
SUPPLY = 30V  
Fig. 22  
Fig. 21  
SupplyCurrent vs. CapacitiveLoad  
V
VSUPPLY= 30V  
1000  
1000  
2MHz  
1MHz  
10000pF  
5400pF  
1000pF  
100pF  
100  
10  
1
100  
10  
1
100kHz  
10kHz  
0.1  
10  
0.1  
100  
1000  
10000  
100  
1000  
10000  
Frequency (kHz)  
Load Capacitance (pF)  
IXYS reserves the right to change limits, test conditions, and dimensions.  
9
IXDD509 / IXDE509  
Fig. 24  
Fig. 23  
Output Sink Current vs. Supply Voltage  
Output Source Current vs. Supply Voltage  
0
25  
20  
15  
10  
5
-5  
-10  
-15  
-20  
-25  
0
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Supply Voltage (V)  
Output Sink Current vs. Temperature  
VSUPPLY = 15V  
Fig. 25  
Output Source Current vs. Temperature  
VSUPPLY = 15V  
Fig. 26  
12  
10  
8
0
-2  
-4  
-6  
6
-8  
4
-10  
-12  
-14  
2
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (C)  
Temperature (C)  
Fig. 28  
Fig. 27  
Low State Output Resistance vs. Supply Voltage  
High State Output Resistance vs. Supply Voltage  
1.2  
1.4  
1.2  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Supply Voltage (V)  
10  
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDD509 / IXDE509  
Fig. 29  
Fig. 30  
ENABLE Threshold vs. Temperature  
VSUPPLY = 15V  
ENABLE Threshold vs. Supply Voltage  
2.5  
2
1.8  
1.6  
1.4  
1.2  
1
2
1.5  
1
0.8  
0.6  
0.4  
0.2  
0
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
-50  
0
50  
100  
150  
Supply Voltage (V)  
Temperature (C)  
Fig. 31  
Fig. 32  
ENABLE Propagation vs. Temperature  
VSUPPLY = 15V  
ENABLE Propagation Time vs. Supply Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
Negative going ENABLE to high impedance state  
Negative going ENABLE to high impedance state  
60  
40  
Positive going ENABLE to output ON  
Positve going ENABLE to output ON  
20  
0
0
5
10  
15  
20  
25  
30  
35  
-50  
0
50  
100  
150  
Supply Voltage (V)  
Temperature (C)  
Figure 33 - Typical Application Short Circuit di/dt Limit  
IXYS reserves the right to change limits, test conditions, and dimensions. 11  
IXDD509 / IXDE509  
APPLICATIONS INFORMATION  
Short Circuit di/dt Limit  
by the inductance of the wire connecting the source resistor to  
ground. (Those glitches might cause false triggering of the  
comparator).  
A short circuit in a high-power MOSFET module such as the  
VM0580-02F, (580A, 200V), as shown in Figure 27, can cause  
the current through the module to flow in excess of 1500A for  
10µs or more prior to self-destruction due to thermal runaway.  
For this reason, some protection circuitry is needed to turn off  
the MOSFET module. However, if the module is switched off  
too fast, there is a danger of voltage transients occuring on the  
drain due to Ldi/dt, (where L represents total inductance in  
series with drain). If these voltage transients exceed the  
MOSFET's voltage rating, this can cause an avalanche break-  
down.  
The comparator's output should be connected to a SRFF(Set  
Reset Flip Flop). The flip-flop controls both the Enable signal,  
andthelowpowerMOSFETgate. PleasenotethatCMOS4000-  
series devices operate with a VCC range from 3 to 15 VDC, (with  
18 VDC being the maximum allowable limit).  
A low power MOSFET, such as the 2N7000, in series with a  
resistor, will enable the VMO580-02F gate voltage to drop  
gradually. The resistor should be chosen so that the RC time  
constant will be 100us, where "C" is the Miller capacitance of  
theVMO580-02F.  
TheIXDD509andIXDE509havetheuniquecapabilitytosoftly  
switch off the high-power MOSFET module, significantly  
reducing these Ldi/dt transients.  
For resuming normal operation, a Reset signal is needed at  
the SRFF's input to enable the IXDD509/IXDE509 again. This  
Reset can be generated by connecting a One Shot circuit  
between the IXDD509/IXDE509 Input signal and the SRFF  
restart input. The One Shot will create a pulse on the rise of the  
IXDD509/IXDE509 input, and this pulse will reset the SRFF  
outputs to normal operation.  
Thus, the IXDD509/IXDE509 help to prevent device destruction  
from both dangers; over-current, and avalanche breakdown  
due to di/dt induced over-voltage transients.  
The IXDD509/IXDE509 are designed to not only provide ±9A  
under normal conditions, but also to allow their outputs to go  
intoahighimpedancestate.ThispermitstheIXDD509/IXDE509  
output to control a separate weak pull-down circuit during  
detected overcurrent shutdown conditions to limit and sepa-  
rately control dVGS/dt gate turnoff. This circuit is shown in Figure  
34.  
When a short circuit occurs, the voltage drop across the low-  
value, current-sensing resistor, (Rs=0.005 Ohm), connected  
between the MOSFET Source and ground, increases. This  
triggers the comparator at a preset level. The SRFF drives a low  
input into the Enable pin disabling the IXDD509/IXDE509  
output. The SRFF also turns on the low power MOSFET,  
(2N7000).  
Referring to Figure 34, the protection circuitry should include  
a comparator, whose positive input is connected to the source  
of the VM0580-02. A low pass filter should be added to the input  
of the comparator to eliminate any glitches in voltage caused  
In this way, the high-power MOSFET module is softly turned off  
by the IXDD509/IXDE509, preventing its destruction.  
Figure 34 - Application Test Diagram  
+
VB  
Ld  
10uH  
-
IXDD509/IXDE509  
IXDD409  
Rd  
0.1ohm  
VCC  
VCCA  
Rg  
High_Power  
VMO580-02F  
OUT  
IN  
EN  
1ohm  
Rsh  
1600ohm  
+
-
+
-
VCC  
VIN  
GND  
GND  
Rs  
Low_Power  
2N7002/PLP  
Ls  
R+  
10kohm  
20nH  
One ShotCircuit  
0
Rcomp  
5kohm  
Comp  
LM339  
+
V+  
NAND  
CD4011A  
NOT2  
CD4049A  
C+  
100pF  
NOT1  
CD4049A  
V-  
-
Ccomp  
1pF  
Ros  
+
-
R
1Mohm  
REF  
Cos  
1pF  
Q
NOT3  
CD4049A  
NOR1  
CD4001A  
S
EN  
NOR2  
CD4001A  
SR Flip-Flop  
12  
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDD509 / IXDE509  
Supply Bypassing and Grounding Practices, Output Lead inductance  
OUTPUTLEADINDUCTANCE  
When designing a circuit to drive a high speed MOSFET  
utilizing the IXDD509/IXDE509, it is very important to keep  
certain design criteria in mind, in order to optimize  
performance of the driver. Particular attention needs to be  
paidtoSupplyBypassing,Grounding,andminimizingthe  
Output Lead Inductance.  
Of equal importance to Supply Bypassing and Grounding  
are issues related to the Output Lead Inductance. Every  
effort should be made to keep the leads between the  
driver and it’s load as short and wide as possible. If the  
driver must be placed farther than 0.2” from the load, then  
the output leads should be treated as transmission  
lines. In this case, a twisted-pair should be considered,  
and the return line of each twisted pair should be placed  
as close as possible to the ground pin of the driver, and  
connect directly to the ground terminal of the load.  
Say, for example, we are using the IXDD509 to charge a  
5000pF capacitive load from 0 to 25 volts in 25ns…  
Using the formula: I= C(∆V / t), where V=25V C=5000pF  
& t=25ns we can determine that to charge 5000pF to 25  
volts in 25ns will take a constant current of 5A. (In reality,  
the charging current won’t be constant, and will peak  
somewhere around 9A).  
SUPPLYBYPASSING  
In order for our design to turn the load on properly, the  
IXDD509 must be able to draw this 5A of current from the  
power supply in the 25ns. This means that there must be  
very low impedance between the driver and the power  
supply. The most common method of achieving this low  
impedance is to bypass the power supply at the driver with  
a capacitance value that is a magnitude larger than the  
load capacitance. Usually, this would be achieved by  
placing two different types of bypassing capacitors, with  
complementary impedance curves, very close to the driver  
itself. (These capacitors should be carefully selected, low  
inductance, low resistance, high-pulse current-service  
capacitors). Lead lengths may radiate at high frequency  
due to inductance, so care should be taken to keep the  
lengths of the leads between these bypass capacitors and  
the IXDD509 to an absolute minimum.  
GROUNDING  
In order for the design to turn the load off properly, the  
IXDD509 must be able to drain this 5A of current into an  
adequate grounding system. There are three paths for  
returning current that need to be considered: Path #1 is  
between the IXDD509 and it’s load. Path #2 is between the  
IXDD509 and it’s power supply. Path #3 is between the  
IXDD509 and whatever logic is driving it. All three of these  
paths should be as low in resistance and inductance as  
possible, and thus as short as practical. In addition, every  
effort should be made to keep these three ground paths  
distinctly separate. Otherwise, for instance, the returning  
ground current from the load may develop a voltage that  
would have a detrimental effect on the logic line driving the  
IXDD509.  
IXYS reserves the right to change limits, test conditions, and dimensions. 13  
IXDD509 / IXDE509  
A2  
b
b2  
b3  
c
D
D1  
E
E1  
e
eA  
eB  
L
E
H
B
C
D
E
e
H
h
L
M
N
D
A
A1  
e
B
h X 45  
N
L
C
M
0.035 [0.90]  
0.137 [3.48]  
0.197±0.005 [5.00±0.13]  
IXYS Corporation  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
www.ixys.com  
S0.002^0.000; o  
[S0.05^0.00;o  
]
0.018 [0.47]  
0.100 [2.54]  
IXYS Semiconductor GmbH  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
14  
Copyright © 2007 IXYS CORPORATION All rights reserved  

相关型号:

IXDD509PI

9 Ampere Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS

IXDD509SIA

9 Ampere Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS

IXDD509SIAT/R

Buffer/Inverter Based MOSFET Driver, 9A, CMOS, PDSO8, 0.150 INCH, ROHS COMPLIANT, MS-012AA, SOIC-8
IXYS

IXDD509SIATR

9 Ampere Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS

IXDD514

14 Ampere Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS

IXDD514D1

Buffer/Inverter Based MOSFET Driver, 14A, CMOS, PDSO6, 4 X 5 MM, ROHS COMPLIANT, DFN-6
IXYS

IXDD514D1T/R

Buffer/Inverter Based MOSFET Driver, 14A, CMOS, PDSO6, 4 X 5 MM, ROHS COMPLIANT, DFN-6
IXYS

IXDD514PI

Buffer/Inverter Based MOSFET Driver, 14A, CMOS, PDIP8, 0.300 INCH, ROHS COMPLIANT, PLASTIC, MS-001BA, DIP-8
IXYS

IXDD514SIA

Buffer/Inverter Based MOSFET Driver, 14A, CMOS, PDSO8, 0.500 INCH, ROHS COMPLIANT, MS-012AA, SOIC-8
IXYS

IXDD514SIAT/R

Buffer/Inverter Based MOSFET Driver, 14A, CMOS, PDSO8, 0.500 INCH, ROHS COMPLIANT, MS-012AA, SOIC-8
IXYS

IXDD604D2TR

4-Ampere Dual Low-Side Ultrafast MOSFET Drivers
CLARE

IXDD604PI

4-Ampere Dual Low-Side Ultrafast MOSFET Drivers
CLARE