X9260US24Z [INTERSIL]

Dual Digitally-Controlled Potentiometers; 双通道数字控制电位器
X9260US24Z
型号: X9260US24Z
厂家: Intersil    Intersil
描述:

Dual Digitally-Controlled Potentiometers
双通道数字控制电位器

转换器 电位器 电阻器 光电二极管
文件: 总23页 (文件大小:338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
X9260  
®
Dual Supply/Low Power/256-Tap/SPI bus  
Data Sheet  
August 29, 2006  
FN8170.3  
DESCRIPTION  
Dual Digitally-Controlled (XDCP™)  
Potentiometers  
The X9260 integrates  
potentiometer (XDCP) on  
integrated circuit.  
2
digitally controlled  
monolithic CMOS  
a
FEATURES  
• Dual–Two Separate Potentiometers  
• 256 Resistor Taps/pot–0.4% Resolution  
• SPI Serial Interface for Write, Read, and Transfer  
Operations of the Potentiometer  
Wiper Resistance, 100Ω typical @ V+ = 5V,  
V- = -5V  
• 4 Nonvolatile Data Registers for Each  
Potentiometer  
• Nonvolatile Storage of Multiple Wiper Positions  
• Power-on Recall. Loads Saved Wiper Position  
on Power-up.  
The digitally controlled potentiometer is implemented  
using 255 resistive elements in a series array.  
Between each element are tap points connected to the  
wiper terminal through switches. The position of the  
wiper on the array is controlled by the user through the  
SPI bus interface. Each potentiometer has associated  
with it a volatile Wiper Counter Register (WCR) and a  
four nononvolatile Data Registers that can be directly  
written to and read by the user. The contents of the  
WCR controls the position of the wiper on the resistor  
array though the switches. Power-up recalls the  
contents of the default Data Register (DR0) to the  
WCR.  
• Standby Current <5µA Max  
• V : 2.7V to 5.5V Operation  
CC  
50kΩ, 100kΩ Versions of End to End Resistance  
• 100 yr. Data Retention  
The XDCP can be used as  
a three-terminal  
• Endurance: 100,000 Data Changes per Bit per  
Register  
• 24 Ld SOIC  
potentiometer or as a two terminal variable resistor in  
a wide variety of applications including control,  
parameter adjustments, and signal processing.  
• Low Power CMOS  
• Power Supply V  
= 2.7V to 5.5V  
CC  
V+ = 2.7V to 5.5V  
V- = -2.7V to -5.5V  
• Pb-Free Plus Anneal Available (RoHS Compliant)  
FUNCTIONAL DIAGRAM  
V
V
R
R
H1  
CC  
+
H0  
Write  
Read  
Address  
Data  
Status  
Transfer  
Inc/Dec  
Power-on Recall  
Bus  
SPI  
Bus  
Interface  
Wiper Counter  
Interface  
and Control  
Registers (WCR)  
Data Registers  
(DR0-DR3)  
Control  
V
V-  
R
R
R
R
L1  
SS  
W0  
L0  
W1  
50kΩ or 100kΩ versions  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
XDCP is a trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2005, 2006. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners  
1
X9260  
Ordering Information  
POTENTIOMETER  
PART  
MARKING  
ORGANIZATION TEMPERATURE  
PART NUMBER  
X9260TS24I  
V
LIMITS (V)  
(kΩ)  
RANGE (°C)  
-40 to +85  
-40 to +85  
PACKAGE  
PKG. DWG. #  
M24.3  
CC  
X9260TS I  
5 ±10%  
100  
24 Ld SOIC (300 mil)  
X9260TS24IZ (Note)  
X9260TS ZI  
24 Ld SOIC (300 mil)  
(Pb-free)  
M24.3  
X9260US24  
X9260US  
50  
100  
50  
0 to +70  
0 to +70  
24 Ld SOIC (300 mil)  
M24.3  
M24.3  
X9260US24Z (Note)  
X9260US Z  
24 Ld SOIC (300 mil)  
(Pb-free)  
X9260TS24I-2.7  
X9260TS G  
2.7 to 5.5  
-40 to +85  
-40 to +85  
24 Ld SOIC (300 mil)  
M24.3  
M24.3  
X9260TS24IZ-2.7 (Note) X9260TS ZG  
24 Ld SOIC (300 mil)  
(Pb-free)  
X9260US24-2.7  
X9260US F  
0 to +70  
0 to +70  
24 Ld SOIC (300 mil)  
M24.3  
M24.3  
X9260US24Z-2.7 (Note) X9260US ZF  
24 Ld SOIC (300 mil)  
(Pb-free)  
*Add "T1" suffix for tape and reel.  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
DETAILED FUNCTIONAL DIAGRAM  
R
R
R
H0  
L0 W0  
V
V
CC  
+
Power-on  
Recall  
Pot 0  
R
R
0
1
Wiper  
Counter  
Register  
(WCR)  
HOLD  
CS  
SCK  
SO  
SI  
A0  
A1  
INTERFACE  
AND  
CONTROL  
CIRCUITRY  
R
R
2
3
50K  
Ω
and 100K  
Ω
256-taps  
8
Power-on  
Recall  
Data  
WP  
R
R
0
1
Wiper  
Counter  
Register  
(WCR)  
Resistor  
Array  
Pot 1  
R
R
2
3
V
R
R R  
SS  
L1 H1 W1  
V-  
FN8170.3  
August 29, 2006  
2
X9260  
CIRCUIT LEVEL APPLICATIONS  
SYSTEM LEVEL APPLICATIONS  
• Vary the gain of a voltage amplifier  
• Adjust the contrast in LCD displays  
• Provide programmable dc reference voltages for  
comparators and detectors  
• Control the power level of LED transmitters in  
communication systems  
• Control the volume in audio circuits  
• Set and regulate the DC biasing point in an RF  
power amplifier in wireless systems  
• Trim out the offset voltage error in a voltage  
amplifier circuit  
• Control the gain in audio and home entertainment  
systems  
• Set the output voltage of a voltage regulator  
• Provide the variable DC bias for tuners in RF  
wireless systems  
• Trim the resistance in Wheatstone bridge circuits  
• Control the gain, characteristic frequency and  
Q-factor in filter circuits  
• Set the operating points in temperature control  
systems  
• Set the scale factor and zero point in sensor signal  
conditioning circuits  
• Control the operating point for sensors in industrial  
systems  
• Vary the frequency and duty cycle of timer ICs  
• Trim offset and gain errors in artificial intelligent  
systems  
• Vary the dc biasing of a pin diode attenuator in RF  
circuits  
• Provide a control variable (I, V, or R) in feedback  
circuits  
PIN CONFIGURATION  
SOIC  
HOLD  
SCK  
NC  
SO  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
A0  
NC  
3
NC  
NC  
V+  
NC  
4
NC  
5
V-  
6
X9260  
V
V
7
CC  
SS  
R
R
8
W1  
L0  
R
R
H0  
9
H1  
R
R
W0  
10  
11  
12  
15  
14  
L1  
A1  
SI  
CS  
WP  
13  
FN8170.3  
August 29, 2006  
3
X9260  
PIN ASSIGNMENTS  
Pin  
(SOIC)  
Symbol  
SO  
Function  
1
2
Serial Data Output for SPI bus  
Device Address for SPI bus.  
No Connect.  
A0  
3
NC  
4
NC  
No Connect.  
5
NC  
No Connect.  
6
V+  
Analog Supply Voltage (Positive)  
System Supply Voltage  
Low Terminal for Potentiometer 0.  
High Terminal for Potentiometer 0.  
Wiper Terminal for Potentiometer 0.  
Device Address for SPI bus.  
Hardware Write Protect  
Serial Data Input for SPI bus  
Device Address for SPI bus.  
Low Terminal for Potentiometer 1.  
High Terminal for Potentiometer 1.  
Wiper Terminal for Potentiometer 1.  
System Ground  
7
V
CC  
8
R
L0  
H0  
W0  
9
R
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
R
CS  
WP  
SI  
A1  
R
L1  
H1  
W1  
R
R
V
SS  
V-  
NC  
Analog Supply Voltage (Negative)  
No Connect  
NC  
No Connect  
NC  
No Connect  
SCK  
HOLD  
Serial Clock for SPI bus  
Device select. Pause the SPI serial bus.  
PIN DESCRIPTIONS  
Bus Interface Pins  
SERIAL OUTPUT (SO)  
HOLD (HOLD)  
HOLD is used in conjunction with the CS pin to select  
the device. Once the part is selected and a serial  
sequence is underway, HOLD may be used to pause  
the serial communication with the controller without  
resetting the serial sequence. To pause, HOLD must  
be brought LOW while SCK is LOW. To resume  
communication, HOLD is brought HIGH, again while  
SCK is LOW. If the pause feature is not used, HOLD  
should be held HIGH at all times.  
SO is a serial data output pin. During a read cycle,  
data is shifted out on this pin. Data is clocked out by  
the falling edge of the serial clock.  
SERIAL INPUT  
SI is the serial data input pin. All opcodes, byte  
addresses and data to be written to the pots and pot  
registers are input on this pin. Data is latched by the  
rising edge of the serial clock.  
DEVICE ADDRESS (A1 - A0)  
The address inputs are used to set the 4-bit slave  
address. A match in the slave address serial data  
stream must be made with the address input in order  
to initiate communication with the X9260.  
SERIAL CLOCK (SCK)  
The SCK input is used to clock data into and out of the  
X9260.  
CHIP SELECT (CS)  
When CS is HIGH, the X9260 is deselected and the  
SO pin is at high impedance, and (unless an internal  
write cycle is underway) the device will be in the  
FN8170.3  
August 29, 2006  
4
X9260  
standby state. CS LOW enables the X9260, placing it  
in the active power mode. It should be noted that after  
a power-up, a HIGH to LOW transition on CS is  
required prior to the start of any operation.  
HARDWARE WRITE PROTECT INPUT (WP)  
The WP pin when LOW prevents nonvolatile writes to  
the Data Registers.  
PRINCIPLES OF OPERATION  
Serial Interface  
The X9260 supports the SPI interface hardware  
conventions. The device is accessed via the SI input  
with data clocked in on the rising SCK. CS must be  
LOW and the HOLD and WP pins must be HIGH  
during the entire operation.  
Potentiometer Pins  
R , R  
H
L
The R and R pins are equivalent to the terminal  
H
L
connections on a mechanical potentiometer. Since  
there are 2 potentiometers, there are 2 sets of R and  
H
R such that R and R are the terminals of POT 0  
L
H0  
L0  
and so on.  
The SO and SI pins can be connected together, since  
they have three state outputs. This can help to reduce  
system pin count.  
R
W
The wiper pin are equivalent to the wiper terminal of a  
mechanical potentiometer. Since there are  
2
Array Description  
potentiometers, there are 2 sets of R such that R  
W
W0  
The X9260 is comprised of a resistor array (See  
Figure 1). The array contains the equivalent of 255  
discrete resistive segments that are connected in  
series. The physical ends of each array are equivalent  
to the fixed terminals of a mechanical potentiometer  
is the terminals of POT 0 and so on.  
Supply Pins  
SYSTEM SUPPLY VOLTAGE (V ) AND SUPPLY  
CC  
(R and R inputs).  
H
L
GROUND (V  
)
SS  
At both ends of each array and between each resistor  
segment is a CMOS switch connected to the wiper  
The V  
pin is the system ground.  
pin is the system supply voltage. The V  
CC  
SS  
(R ) output. Within each individual array only one  
W
switch may be turned on at a time.  
Analog Supply Voltages (V+ and V-)  
These supplies are the analog voltage supplies for the  
potentiometer. The V+ supply is tied to the wiper  
switches while the V- supply is used to bias the  
switches and the internal P+ substrate of the  
integrated circuit. Both of these supplies set the  
voltage limits of the potentiometer.  
These switches are controlled by a Wiper Counter  
Register (WCR). The 8-bits of the WCR (WCR[7:0])  
are decoded to select, and enable, one of 256  
switches (See Table 1).  
Power-up and Down Requirements.  
At all times, the voltages on the potentiometer pins  
must be less than V+ and more than V-. During power-  
up and power-down, VCC, V+, and V- must reach their  
Other Pins  
NO CONNECT  
final values within 1msecs of each other. The V  
ramp rate spec is always in effect.  
CC  
No connect pins should be left floating. This pins are  
used for Intersil manufacturing and testing purposes.  
FN8170.3  
August 29, 2006  
5
X9260  
Figure 1. Detailed Potentiometer Block Diagram  
One of Two Potentiometers  
SERIAL DATA PATH  
SERIAL  
BUS  
INPUT  
R
H
FROM INTERFACE  
CIRCUITRY  
C
O
U
N
T
REGISTER 1  
(DR1)  
REGISTER 0  
(DR0)  
8
8
PARALLEL  
BUS  
INPUT  
E
R
REGISTER 2  
(DR2)  
REGISTER 3  
(DR3)  
D
E
C
O
D
E
WIPER  
COUNTER  
REGISTER  
(WCR)  
INC/DEC  
LOGIC  
IF WCR = 00[H] THEN R = R  
W
L
H
UP/DN  
IF WCR = FF[H] THEN R = R  
UP/DN  
CLK  
W
R
L
MODIFIED SCK  
R
W
DEVICE DESCRIPTION  
Data Registers (DR)  
Each potentiometer has four 8-bit nonvolatile Data  
Registers. These can be read or written directly by the  
host. Data can also be transferred between any of the  
four Data Registers and the associated Wiper Counter  
Register. All operations changing data in one of the  
Data Registers is a nonvolatile operation and will take  
a maximum of 10ms.  
Wiper Counter Register (WCR)  
The X9260 contains two Wiper Counter Registers, one  
for each DCP potentiometer. The Wiper Counter  
Register can be envisioned as a 8-bit parallel and  
serial load counter with its outputs decoded to select  
one of 256 switches along its resistor array. The  
contents of the WCR can be altered in four ways: it  
may be written directly by the host via the Write Wiper  
Counter Register instruction (serial load); it may be  
written indirectly by transferring the contents of one of  
four associated data registers via the XFR Data  
Register instruction (parallel load); it can be modified  
one step at a time by the Increment/Decrement  
instruction (See Instruction section for more details).  
Finally, it is loaded with the contents of its Data  
Register zero (DR0) upon power-up.  
If the application does not require storage of multiple  
settings for the potentiometer, the Data Registers can  
be used as regular memory locations for system  
parameters or user preference data.  
Bits [7:0] are used to store one of the 256 wiper  
positions or data (0~255).  
Status Register (SR)  
This 1-bit Status Register is used to store the system  
status.  
The Wiper Counter Register is a volatile register; that  
is, its contents are lost when the X9260 is powered-  
down. Although the register is automatically loaded  
with the value in DR0 upon power-up, this may be  
different from the value present at power-down.  
Power-up guidelines are recommended to ensure  
proper loadings of the DR0 value into the WCR.  
WIP: Write In Progress status bit, read only.  
– When WIP = 1, indicates that high-voltage write  
cycle is in progress.  
– When WIP = 0, indicates that no high-voltage write  
cycle is in progress.  
FN8170.3  
August 29, 2006  
6
X9260  
Table 5. Wiper Counter Register, WCR (8-bit), WCR[7:0]: Used to store the current wiper position (Volatile, V).  
WCR7  
V
WCR6  
V
WCR5  
V
WCR4  
V
WCR3  
V
WCR2  
V
WCR1  
V
WCR0  
V
(MSB)  
(LSB)  
Table 5. Data Register, DR (8-bit), Bit [7:0]: Used to store wiper positions or data (Nonvolatile, NV).  
Bit 7  
NV  
Bit 6  
NV  
Bit 5  
NV  
Bit 4  
NV  
Bit 3  
NV  
Bit 2  
NV  
Bit 1  
NV  
Bit 0  
NV  
MSB  
LSB  
DEVICE DESCRIPTION  
Instructions  
command sequence. Only the device which slave  
address matches the incoming device address sent  
by the master executes the instruction. The A3 - A0  
inputs can be actively driven by CMOS input signals  
IDENTIFICATION BYTE ( ID AND A )  
or tied to V  
or V  
.
CC  
SS  
The first byte sent to the X9260 from the host,  
following a CS going HIGH to LOW, is called the  
Identification Byte. The most significant four bits of the  
slave address are a device type identifier. The ID[3:0]  
bits is the device id for the X9260; this is fixed as  
0101[B] (refer to Table 3).  
INSTRUCTION BYTE ( I[3:0] )  
The next byte sent to the X9260 contains the instruction  
and register pointer information. The three most  
significant bits are used provide the instruction opcode  
(I[3:0]). The RB and RA bits point to one of the four  
Data Registers of each associated XDCP. The least  
significant bit points to one of two Wiper Counter  
Registers or Pots.The format is shown below in Table 4.  
The AD[3:0] bits in the ID byte is the internal slave  
address. The physical device address is defined by  
the state of the A3 - A0 input pins. The slave address  
is externally specified by the user. The X9260  
compares the serial data stream with the address  
input state; a successful compare of both address bits  
is required for the X9260 to successfully continue the  
Table 3. Identification Byte Format  
Device Type  
Identifier  
Slave Address  
ID3  
0
ID2  
1
ID1  
0
ID0  
1
A3  
A2  
A1  
A0  
(MSB)  
(LSB)  
Table 4. Instruction Byte Format  
Data  
Pot Selection  
(WCR Selection)  
Instruction  
Opcode  
Register  
Selection  
I3  
I2  
I1  
I0  
RB  
RA  
0
P0  
(MSB)  
(LSB)  
FN8170.3  
August 29, 2006  
7
X9260  
DEVICE DESCRIPTION  
Instructions  
XFR Data Register to Wiper Counter Register –  
This transfers the contents of one specified Data  
Register to the associated Wiper Counter Register.  
Four of the ten instructions are three bytes in length.  
These instructions are:  
XFR Wiper Counter Register to Data Register –  
This transfers the contents of the specified Wiper  
Counter Register to the specified associated Data  
Register.  
Read Wiper Counter Register – read the current  
wiper position of the selected potentiometer,  
Global XFR Data Register to Wiper Counter  
Register – This transfers the contents of all speci-  
fied Data Registers to the associated Wiper Counter  
Registers.  
Write Wiper Counter Register – change current  
wiper position of the selected potentiometer,  
Read Data Register – read the contents of the  
selected Data Register;  
Global XFR Wiper Counter Register to Data  
Register – This transfers the contents of all Wiper  
Counter Registers to the specified associated Data  
Registers.  
Write Data Register – write a new value to the  
selected Data Register.  
Read Status - This command returns the contents  
of the WIP bit which indicates if the internal write  
cycle is in progress.  
INCREMENT/DECREMENT COMMAND  
The basic sequence of the three byte instructions is  
illustrated in Figure 3. These three-byte instructions  
exchange data between the WCR and one of the Data  
Registers. A transfer from a Data Register to a WCR is  
essentially a write to a static RAM, with the static RAM  
controlling the wiper position. The response of the  
The final command is Increment/Decrement (See  
Figures 6 and 7). The Increment/Decrement command  
is different from the other commands. Once the  
command is issued and the X9260 has responded  
with an acknowledge, the master can clock the  
selected wiper up and/or down in one segment steps;  
thereby, providing a fine tuning capability to the host.  
wiper to this action will be delayed by t  
. A transfer  
WRL  
from the WCR (current wiper position), to a Data  
Register is a write to nonvolatile memory and takes a  
For each SCL clock pulse (t  
the selected wiper will move one resistor segment  
) while SI is HIGH,  
HIGH  
minimum of t  
to complete. The transfer can occur  
towards the R terminal. Similarly, for each SCL clock  
pulse while SI is LOW, the selected wiper will move  
WR  
H
between one of the two potentiometers and one of its  
associated registers; or it may occur globally, where  
the transfer occurs between all potentiometers and  
one associated register. The Read Status Register  
instruction is the only unique format (See Figure 5).  
one resistor segment towards the R terminal. A  
L
detailed illustration of the sequence and timing for this  
operation are shown. See Instruction format for more  
details.  
Four instructions require a two-byte sequence to  
complete. These instructions transfer data between  
the host and the X9260; either between the host and  
one of the data registers or directly between the host  
and the Wiper Counter Register. These instructions  
are:  
FN8170.3  
August 29, 2006  
8
X9260  
Figure 2. Two-Byte Instruction Sequence  
CS  
SCK  
SI  
0
0
0
0
0
0
1
0
1
A1 A0  
ID3 ID2 ID1 ID0  
Device ID  
RB RA  
P0  
I3  
I2  
I1 I0  
Register  
Address  
Instruction  
Opcode  
Pot/WCR  
Address  
Internal  
Address  
Figure 3. Three-Byte Instruction Sequence (Write)  
CS  
SCL  
SI  
0
0
0
0
0
1
0
1
0
ID3 ID2 ID1 ID0  
A1 A0  
RB RA  
P0  
I3 I2  
I0  
D7 D6 D5 D4 D3 D2 D1 D0  
I1  
WCR[7:0]  
or  
Data Register Bit [7:0]  
Internal  
Address  
Instruction  
Opcode  
Register  
Address  
Pot/WCR  
Address  
Device ID  
Figure 4. Three-Byte Instruction Sequence (Read)  
CS  
SCL  
SI  
0
0
0
0
0
1
0
1
X
X
X
X
X
X
X
0
X
ID3 ID2 ID1 ID0  
Device ID  
A1 A0  
I2 I1  
RB RA  
P0  
I3  
I0  
Don’t Care  
Internal  
Address  
Pot/WCR  
Address  
Instruction  
Opcode  
Register  
Address  
S0  
D7 D6 D5 D4 D3 D2 D1 D0  
WCR[7:0]  
or  
Data Register Bit [7:0]  
FN8170.3  
August 29, 2006  
9
X9260  
Figure 5. Three-Byte Instruction Sequence (Read Status Register)  
CS  
SCL  
SI  
1
0
0
0
0
0
0
1
0
1
0
0
0
0
1
0
1
0
0
0
ID3 ID2 ID1 ID0  
I3  
A1 A0  
I2 I1 I0  
RB RA  
P0  
WIP  
Internal  
Address  
Instruction  
Opcode  
Register  
Address  
Pot/WCR  
Address  
Status  
Bit  
Device ID  
Figure 6. Increment/Decrement Instruction Sequence  
CS  
SCL  
SI  
0
0
0
0
0
1
0
1
0
ID3 ID2 ID1 ID0  
Device ID  
I2 I3  
I0  
A1 A0  
I1  
RB RA  
P0  
I
I
D
E
C
1
I
D
E
C
n
N
C
1
N
C
2
N
C
n
Internal  
Address  
Instruction  
Opcode  
Pot/WCR  
Address  
Register  
Address  
Figure 7. Increment/Decrement Timing Limits  
t
WRID  
SCK  
SI  
VOLTAGE OUT  
R
W
INC/DEC CMD ISSUED  
FN8170.3  
August 29, 2006  
10  
X9260  
Table 5. Instruction Set  
Instruction  
Instruction Set  
I0 RB RA  
I3  
I2  
I1  
0
P0  
Operation  
Read Wiper Counter  
Register  
1
0
0
1
0
1
0
1
0
0
0
1/0 Read the contents of the Wiper Counter  
Register pointed to by P0  
Write Wiper Counter  
Register  
1
1
1
1
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1/0 Write new value to the Wiper Counter  
Register pointed to by P0  
Read Data Register  
1/0 1/0  
1/0 1/0  
1/0 1/0  
1/0 Read the contents of the Data Register  
pointed to by P0 and RB - RA  
Write Data Register  
1/0 Write new value to the Data Register  
pointed to by P0 and RB - RA  
XFR Data Register to  
Wiper Counter Register  
1/0 Transfer the contents of the Data Register  
pointed to by P0 and RB - RA to its  
associated Wiper Counter Register  
XFR Wiper Counter  
Register to Data Register  
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
0
1/0 1/0  
1/0 1/0  
1/0 1/0  
0
0
0
0
1/0 Transfer the contents of the Wiper Counter  
Register pointed to by P0 to the Data  
Register pointed to by RB - RA  
Global XFR Data Registers  
to Wiper Counter Registers  
0
Transfer the contents of the Data Registers  
pointed to by RB - RA of all four pots to their  
respective Wiper Counter Registers  
Global XFR Wiper Counter  
Registers to Data Register  
0
Transfer the contents of both Wiper Counter  
Registers to their respective data Registers  
pointed to by RB - RA of all four pots  
Increment/Decrement  
Wiper Counter Register  
0
0
1/0 Enable Increment/decrement of the Control  
Latch pointed to by P0  
Note: 1/0 = data is one or zero  
FN8170.3  
August 29, 2006  
11  
X9260  
INSTRUCTION FORMAT  
Read Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
WCR  
Addresses  
Wiper Position  
(Sent by X9260 on SO)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
W
C
R
W
C
R
7
W W W W W W  
C C C C C C  
R R R R R R  
0
1
0
1
0
0 A1 A0 1  
0
0
1
0
0
0 P0  
5
4
3
2
1
0
6
Write Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
WCR  
Addresses  
Data Byte  
(Sent by Host on SI)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
W
C
R
W
C
R
7
W W W W W W  
C C C C C C  
R R R R R R  
0
1
0
1
0
0 A1 A0 1  
0
1
0
0
0
0 P0  
5
4 3 2 1 0  
6
Read Data Register (DR)  
Device Type  
CS  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
Data Byte  
(Sent by X9271 on SO)  
CS  
Rising  
Edge  
Identifier  
Falling  
Edge  
D
D D D D D D D  
0
1
0
1
0
0 A1 A0 1  
0
1
1 RB RA  
0
P0  
6
5 4 3 2 1 0  
7
Write Data Register (DR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
Data Byte  
(Sent by Host on SI)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
D
7
D D D D D D D  
0
1
0
1
0
0 A1 A0 1  
1
0
0 RB RA  
0
P0  
6
5 4 3 2 1 0  
Global Transfer Data Register (DR) to Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1
0
0
A1 A0 0 0 0 1 RB RA 0 0  
FN8170.3  
August 29, 2006  
12  
X9260  
Global Transfer Wiper Counter Register (WCR) to Data Register (DR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
0
1
0
1
0
0 A1 A0 1  
0
0
0 RB RA 0  
0
Transfer Wiper Counter Register (WCR) to Data  
Register (DR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
0
1
0
1 0 0 A1 A0 1 1 1 0 RB RA 0 P0  
Transfer Data Register (DR) to Wiper Counter Reg-  
ister (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1 0 0 A1 A0 1 1 0 1 RB RA 0 P0  
Increment/Decrement Wiper Counter Register  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
WCR  
Addresses  
Increment/Decrement  
(Sent by Master on SDA)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1
0
0 A1 A0 0  
0
1
0
X X 0 P0 I/D I/D  
.
.
.
. I/D I/D  
(WCR)  
Read Status Register (SR)  
Device Type  
Identifier  
Device  
Addresses  
A1 A0  
Instruction  
Opcode  
WCR  
Addresses  
Data Byte  
(Sent by X9260 on SO)  
WIP  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
Notes: (1) “A1 ~ A0”: stands for the device addresses sent by the master.  
(2) WPx refers to wiper position data in the Counter Register  
(2) “I”: stands for the increment operation, SI held HIGH during active SCK phase (high).  
(3) “D”: stands for the decrement operation, SI held LOW during active SCK phase (high).  
FN8170.3  
August 29, 2006  
13  
X9260  
ABSOLUTE MAXIMUM RATINGS  
COMMENT  
Temperature under bias........................ -65 to +135°C  
Storage temperature ............................. -65 to +150°C  
Voltage on SCK, SCL or any address input  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only; the functional operation of  
the device (at these or any other conditions above  
those listed in the operational sections of this  
specification) is not implied. Exposure to absolute  
maximum rating conditions for extended periods may  
affect device reliability.  
with respect to V ................................. -1V to +7V  
SS  
Voltage on V+ (referenced to V )........................10V  
SS  
Voltage on V- (referenced to V )........................-10V  
SS  
(V+) - (V-) ..............................................................12V  
Any V /R ..............................................................V+  
H
H
Any V /R .................................................................V-  
L
L
Lead temperature (soldering, 10 seconds)...... +300°C  
(10 seconds)..................................................±6mA  
I
W
RECOMMENDED OPERATING CONDITIONS  
(4)  
Temp  
Commercial  
Industrial  
Min.  
0°C  
Max.  
+70°C  
+85°C  
Device  
X9260  
Supply Voltage (V  
CC  
)
Limits  
5V ± 10%  
2.7V to 5.5V  
-40°C  
X9260-2.7  
V+  
V-  
2.7V to 5.5V  
-2.5V to -5.5V  
FN8170.3  
August 29, 2006  
14  
X9260  
POTENTIOMETER CHARACTERISTICS (Over recommended operating conditions unless otherwise stated.)  
Limits  
Symbol  
Parameter  
End to end resistance  
Power rating  
Min.  
Typ.  
Max.  
±20  
50  
Unit  
%
Test Conditions  
25°C, each pot  
mW  
mA  
Ω
I
Wiper current  
±3  
W
R
Wiper resistance  
250  
Wiper current = ± 1mA,  
V+ = 3V; V- = -3V  
W
R
Wiper resistance  
Voltage on V+ pin  
150  
Ω
Wiper current = ± 1mA,  
V+ = 3V; V- = -3V  
W
Vv+  
Vv-  
X9260  
+4.5  
+2.7  
-5.5  
-5.5  
V-  
+5.5  
+5.5  
-4.5  
-2.7  
V+  
V
X9260-2.7  
X9260  
Voltage on V- pin  
V
V
X9260-2.7  
V
Voltage on any V /R or V /R  
H H L L  
pin  
TERM  
Noise  
-120  
0.4  
dBV  
%
Ref: 1kHz  
(4)  
Resolution  
(1)  
(3)  
Absolute linearity  
Relative linearity  
±1  
MI  
V
V
- V  
w(n)(expected)  
w(n)(actual)  
- [V  
(2)  
(3)  
MI  
±0.6  
]
w(n) + MI  
w(n + 1)  
Temperature coefficient  
±300  
ppm/°C  
ppm/°C  
Ratiometric Temperature  
Coefficient  
±20  
C /C /C  
W
Potentiometer Capacitances  
10/10/25  
pF  
See Circuit #3  
H
L
Notes: (1) Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a  
potentiometer.  
(2) Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a  
potentiometer. It is a measure of the error in step size.  
(3) MI = RTOT / 255 or (R - R ) / 255, single pot  
H
L
(4) During power-up V  
> V , V , and V .  
CC  
H L W  
(5) n = 0, 1, 2, …,255; m =0, 1, 2, …, 254.  
FN8170.3  
August 29, 2006  
15  
X9260  
D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)  
Limits  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
I
I
I
V
supply current  
400  
μA  
f
= 2.5 MHz, SO = Open, V  
= 6V  
= 6V  
CC1  
CC2  
SB  
CC  
SCK  
CC  
(active)  
Other Inputs = V  
SS  
V
supply current  
1
5
5
mA  
f
= 2.5MHz, SO = Open, V  
CC  
(nonvolatile write)  
SCK  
Other Inputs = V  
CC  
SS  
V
current (standby)  
μA  
SCK = SI = V , Addr. = V  
CS = V  
,
SS  
CC  
SS  
= 6V  
CC  
I
I
Input leakage current  
Output leakage current  
Input HIGH voltage  
Input LOW voltage  
10  
10  
μA  
μA  
V
V
V
= V to V  
SS CC  
LI  
IN  
= V to V  
SS CC  
LO  
OUT  
V
V
V
V
V
V
x 0.7  
V
+ 1  
IH  
CC  
-1  
CC  
x 0.3  
V
V
IL  
CC  
0.4  
Output LOW voltage  
Output HIGH voltage  
Output HIGH voltage  
V
I
I
I
= 3mA  
OL  
OH  
OH  
OL  
OH  
OH  
V
V
- 0.8  
V
= -1mA, V  
CC  
+3V  
+3V  
CC  
CC  
- 0.4  
V
= -0.4mA, V  
CC  
ENDURANCE AND DATA RETENTION  
Parameter  
Minimum endurance  
Data retention  
Min.  
Units  
100,000  
100  
Data changes per bit per register  
years  
CAPACITANCE  
Symbol  
Test  
Max.  
Units  
pF  
Test Conditions  
(6)  
C
Output capacitance (SO)  
Input capacitance (A0, A1, SI, CS, WP, HOLD, and SCK)  
8
6
V
V
= 0V  
OUT  
OUT  
= 0V  
(6)  
C
pF  
IN  
IN  
POWER-UP TIMING  
Symbol  
Parameter  
Power-up rate  
Min.  
Max.  
50  
Units  
(6)  
t V  
CC  
V
0.2  
V/ms  
ms  
r
CC  
Power-up to initiation of read operation  
(7)  
t
1
PUR  
POWER-UP AND DOWN REQUIREMENTS  
The are no restrictions on the sequencing of the bias supplies V , V+, and V- provided that all three supplies reach  
CC  
their final values within 1msec of each other. At all times, the voltages on the potentiometer pins must be less than V+  
and more than V-. The recall of the wiper position from nonvolatile memory is not in effect until all supplies reach their  
final value. The V  
ramp rate spec is always in effect.  
CC  
A.C. TEST CONDITIONS  
Input Pulse Levels  
Input rise and fall times  
Input and output timing level  
V
x 0.1 to V  
x 0.9  
CC  
CC  
10ns  
V
x 0.5  
CC  
Notes: (6) This parameter is not 100% tested  
(7) t and t are the delays required from the time the (last) power supply (V -) is stable until the specific instruction can be issued.  
PUR  
PUW  
CC  
These parameters are not 100% tested.  
FN8170.3  
August 29, 2006  
16  
X9260  
EQUIVALENT A.C. LOAD CIRCUIT  
5V  
1462Ω  
3V  
1382Ω  
SPICE MACROMODEL  
R
TOTAL  
R
R
L
H
SO pin  
SO pin  
C
C
W
C
L
L
10pF  
2714Ω  
1217Ω  
100pF  
100pF  
25pF  
10pF  
R
W
AC TIMING  
Symbol  
Parameter  
Min.  
Max.  
Units  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
ns  
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
SSI/SPI clock frequency  
SSI/SPI clock cycle rime  
SSI/SPI clock high rime  
SSI/SPI clock low time  
Lead time  
2
SCK  
CYC  
WH  
WL  
LEAD  
LAG  
SU  
500  
200  
200  
250  
250  
50  
Lag time  
SI, SCK, HOLD and CS input setup time  
SI, SCK, HOLD and CS input hold time  
SI, SCK, HOLD and CS input rise time  
SI, SCK, HOLD and CS input fall time  
SO output disable time  
50  
H
2
RI  
2
FI  
0
0
250  
200  
DIS  
V
SO output valid time  
SO output hold time  
HO  
RO  
FO  
SO output rise time  
100  
100  
SO output fall time  
HOLD time  
400  
100  
100  
HOLD  
HSU  
HH  
HZ  
HOLD setup time  
HOLD hold time  
HOLD low to output in high Z  
HOLD high to output in low Z  
100  
100  
10  
LZ  
T
Noise suppression time constant at SI, SCK, HOLD and CS inputs  
I
t
t
t
CS deselect time  
WP, A0 setup time  
WP, A0 hold time  
2
0
0
CS  
WPASU  
WPAH  
FN8170.3  
August 29, 2006  
17  
X9260  
HIGH-VOLTAGE WRITE CYCLE TIMING  
Symbol  
Parameter  
Typ.  
Max.  
Units  
t
High-voltage write cycle time (store instructions)  
5
10  
ms  
WR  
XDCP TIMING  
Symbol  
Parameter  
Min. Max. Units  
t
t
Wiper response time after the third (last) power supply is stable  
Wiper response time after instruction issued (all load instructions)  
5
5
10  
10  
μs  
μs  
WRPO  
WRL  
SYMBOL TABLE  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from Low to  
High  
Will change  
from Low to  
High  
May change  
from High to  
Low  
Will change  
from High to  
Low  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
FN8170.3  
August 29, 2006  
18  
X9260  
TIMING DIAGRAMS  
Input Timing  
t
CS  
CS  
t
t
t
LAG  
LEAD  
t
CYC  
SCK  
...  
t
t
t
t
RI  
t
FI  
WL  
SU  
WH  
H
...  
MSB  
LSB  
SI  
High Impedance  
SO  
Output Timing  
CS  
SCK  
SO  
...  
...  
t
t
t
DIS  
V
HO  
MSB  
LSB  
ADDR  
SI  
Hold Timing  
CS  
t
t
HH  
HSU  
SCK  
...  
t
t
FO  
RO  
SO  
t
t
LZ  
HZ  
SI  
t
HOLD  
HOLD  
FN8170.3  
August 29, 2006  
19  
X9260  
XDCP Timing (for All Load Instructions)  
CS  
SCK  
...  
...  
t
WRL  
LSB  
MSB  
SI  
VWx  
High Impedance  
SO  
Write Protect and Device Address Pins Timing  
(Any Instruction)  
CS  
t
t
WPAH  
WPASU  
WP  
A0  
A1  
FN8170.3  
August 29, 2006  
20  
X9260  
APPLICATIONS INFORMATION  
Basic Configurations of Electronic Potentiometers  
+V  
R
V
R
RW  
I
THREE- TERMINAL POTENTIOMETER;  
VARIABLE VOLTAGE DIVIDER  
TWO-TERMINAL VARIABLE RESISTOR;  
VARIABLE CURRENT  
Application Circuits  
NONINVERTING AMPLIFIER  
VOLTAGE REGULATOR  
V
+
S
V
V
V (REG)  
O
317  
O
IN  
R
1
R
2
I
adj  
R
R
1
2
V
= (1+R /R )V  
V
(REG) = 1.25V (1+R /R )+I  
R
adj 2  
O
2
1
S
O
2
1
OFFSET VOLTAGE ADJUSTMENT  
COMPARATOR WITH HYSTERISIS  
R
R
2
1
V
+
S
V
V
S
O
100kΩ  
+
V
O
TL072  
R
R
1
2
10kΩ  
10kΩ  
+12V  
V
V
= {R /(R +R )} V (max)  
1 1 2 O  
UL  
LL  
10kΩ  
-12V  
= {R /(R +R )} V (min)  
1 1 2 O  
FN8170.3  
August 29, 2006  
21  
X9260  
Application Circuits (continued)  
ATTENUATOR  
FILTER  
C
V
+
S
R
V
R
R
2
O
1
+
R
V
O
V
S
3
R
2
R
4
R = R = R = R = 10kΩ  
1
2
3
4
R
1
G
= 1 + R /R  
2 1  
V
= G V  
S
O
O
fc = 1/(2πRC)  
-1/2 G +1/2  
INVERTING AMPLIFIER  
EQUIVALENT L-R CIRCUIT  
R
R
2
1
V
S
R
2
C
1
+
V
+
S
V
O
R
R
1
Z
IN  
V
= G V  
S
O
G = - R /R  
2
1
3
Z
= R + s R (R + R ) C = R + s Leq  
2 2 1 3 1 2  
IN  
(R + R ) >> R  
1
3
2
FUNCTION GENERATOR  
C
R
R
1
2
+
+
R
R
}
A
}
B
frequency R , R , C  
1
2
amplitude R , R  
A
B
FN8170.3  
August 29, 2006  
22  
X9260  
Small Outline Plastic Packages (SOIC)  
M24.3 (JEDEC MS-013-AD ISSUE C)  
N
24 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE  
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
INCHES  
MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
2.35  
0.10  
0.33  
0.23  
MAX  
2.65  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0926  
0.0040  
0.013  
0.1043  
0.0118  
0.020  
-
0.30  
-
1
2
3
L
0.51  
9
SEATING PLANE  
A
0.0091  
0.5985  
0.2914  
0.0125  
0.32  
-
-A-  
0.6141 15.20  
15.60  
7.60  
3
h x 45°  
D
0.2992  
7.40  
4
-C-  
0.05 BSC  
1.27 BSC  
-
α
H
h
0.394  
0.010  
0.016  
0.419  
0.029  
0.050  
10.00  
0.25  
0.40  
10.65  
0.75  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
α
24  
24  
7
0°  
8°  
0°  
8°  
-
NOTES:  
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 1 4/06  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm  
(0.006 inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch)  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8170.3  
August 29, 2006  
23  

相关型号:

X9260US24Z-2.7

Dual Digitally-Controlled Potentiometers
INTERSIL

X9260US24Z-2.7T1

DUAL 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO24, 0.300 INCH, ROHS COMPLIANT, PLASTIC, MS-013AD, SOIC-24
RENESAS

X9260US24ZT1

DUAL 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO24, 0.300 INCH, ROHS COMPLIANT, PLASTIC, MS-013AD, SOIC-24
RENESAS

X9260_06

Dual Digitally-Controlled Potentiometers
INTERSIL

X9261

Single Supply/Low Power/256-Tap/SPI Bus
INTERSIL

X9261TB16-2.7

Digital Potentiometer, 2 Func, 100000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, BUMP, CSP-16
XICOR

X9261TB16I

DUAL 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, BGA16, BUMP, CSP-16
XICOR

X9261TB16I-2.7

DUAL 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, BGA16, BUMP, CSP-16
RENESAS

X9261TB16I-2.7

Digital Potentiometer, 2 Func, 100000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, BUMP, CSP-16
XICOR

X9261TB24-2.7

Digital Potentiometer, 2 Func, 100000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, PBGA24, XBGA-24
XICOR

X9261TB24I-2.7

Digital Potentiometer, 2 Func, 100000ohm, 3-wire Serial Control Interface, 256 Positions, CMOS, PBGA24, XBGA-24
XICOR

X9261TS24

Single Supply/Low Power/256-Tap/SPI Bus
INTERSIL