SSL-L10TPB330M [INTERSIL]

ISL8225MEVAL2Z 6-Phase, 90A Evaluation Board Setup Procedure; ISL8225MEVAL2Z 6相, 90A评估板设置步骤
SSL-L10TPB330M
型号: SSL-L10TPB330M
厂家: Intersil    Intersil
描述:

ISL8225MEVAL2Z 6-Phase, 90A Evaluation Board Setup Procedure
ISL8225MEVAL2Z 6相, 90A评估板设置步骤

文件: 总12页 (文件大小:4505K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Application Note 1789  
ISL8225MEVAL2Z 6-Phase, 90A Evaluation Board Setup  
Procedure  
The ISL8225M is a complete, dual step-down switching mode  
Recommended Equipment  
DC/DC module. The dual outputs can easily be paralleled for  
• 0V to 20V power supply with at least 10A source current  
single-output, high-current use. It is easy to apply this  
capability  
high-power, current-sharing DC/DC power module to  
• Electronic load capable of sinking current up to 90A  
(multiple electronic current loads can be used in parallel to  
sink more current)  
power-hungry datacom, telecom, and FPGA applications. All  
that is needed in order to have a complete, dual 15A design  
ready for use are the ISL8225M, a few passive components,  
and VOUT setting resistors.  
• Digital multimeters (DMMs)  
• 100MHz quad-trace oscilloscope  
The ease of use virtually eliminates design and manufacturing  
risks while dramatically improving time to market. Need more  
output current? Simply parallel up to six ISL8225M modules to  
scale up to an 180A solution.  
Quick Start  
The inputs are J3 (VIN) and J4 (GND). The outputs are J1 and  
J5 (VOUT), J2 and J6 (GND) and J6 (VOUT2). Please refer to  
Figure 1. This 90A evaluation board can be easily modified to  
30A (one module) or 60A (two modules) operation.  
The ISL8225M has a thermally enhanced, compact QFN  
package that operates at full load and over-temperature  
without requiring forced-air cooling. Easy access to all pins,  
with few external components, reduces PCB design to a  
component layer and a simple ground layer.  
1. Connect a power supply capable of sourcing at least 10A to  
the input (VIN J3 & GND J4) of the ISL8225MEVAL2Z  
evaluation board, with a voltage between 4.5V to 20V.  
Connect an electronic load or the device to be powered to  
the output (VOUT (J1, J5) & GND (J2, J6)) of the board. All  
connections, especially the low voltage, high current VOUT  
lines, should be able to carry the desired load current and  
should be made as short as possible. Duplicated tab  
connections on VOUT (J1, J5) and GND (J2, J6) to carry large  
current.  
The ISL8225MEVAL2Z evaluation board allows for a single  
6-phase paralleled output, which delivers high current up to  
90A. The input voltage is 4.5V to 20V and the default output  
voltage on this board is set at 1.2V. The current level for this  
board is 90A with no extra cooling required.  
Related Resources  
2. Ensure the jumpers for EN2 and EN3 are in the “ON”  
position and EN is open. Turn on the power supply. If the  
board is working properly, the green LED will illuminate; if  
not, the red LED will illuminate (recheck the wire/jumper  
See how-to  
video at  
intersil.com/  
evid02  
connections in this case). Measure the output voltage, VOUT  
,
which should be at 1.2V.  
3. The ISL8225MEVAL2Z is manufactured with a VOUT default  
value of 1.2V; if different output voltages are desired, board  
resistors can be exchanged to provide the desired VOUT. Please  
refer to Table 1 on page 2 for R2/R64 resistor values, which  
can be used to produce different output voltages.  
+
-
+
-
+
LOAD  
(0A~90A)  
NOTE 1  
4.5V TO 20V  
V
V
IN  
V
V
OUT  
-
NOTE:  
1. Multiple loads can be paralleled to  
reach 90A (i.e. Two 45A loads  
paralleled together).  
FIGURE 1. ISL8225MEVAL2Z BOARD IMAGE  
December 3, 2012  
AN1789.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
Copyright Intersil Americas Inc. 2012. All Rights Reserved.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
Application Note 1789  
For 12V VIN and VOUT more than 1.5V, the switching frequency  
Evaluation Board Information  
will need to be adjusted, as shown in Table 1. The resistor RFSET  
can be adjusted for the desired frequency. No frequency  
adjustments are necessary for VOUT below 1.5V. For 5V VIN, the  
frequency does not need to be adjusted and the module default  
frequency can be used at any allowed VOUT. If the output voltage  
is set to more than 1.8V, the output current will need to be  
derated to allow for safe operation. Please refer to the derating  
curves in the ISL8225M datasheet.  
The evaluation board size is 150mm x 130mm. It is a 6-layer  
board, containing 2-ounce copper on the top and bottom layers  
and 1-ounce copper on all internal layers. The board can be used  
as a 90A reference design. Refer to the “Layout” section  
beginning on page 7. The board is made of FR4 material and all  
components, including the solder attachment, are lead-free.  
Current Sharing Check  
TABLE 1. VALUE OF BOTTOM RESISTOR FOR DIFFERENT OUTPUT  
VOLTAGES (R1 = 1k)  
The evaluation board allows the user to measure the current  
sharing accuracy. Four zero ohm resistors (i.e. R59~R62 for M1  
channel 2 in Figure 2) are put serially on each output with two on  
each side of the evaluation board. To measure the output current  
of each phase, please remove all four resistors and put looped  
wires or sensing resistors on correct positions.  
VOUT  
(V)  
R2 /R64  
FREQUENCY  
(kHz)  
RFSET ()  
(VIN = 12V)  
()  
0.6  
0.8  
1.0  
1.2  
1.5  
2.5  
3.3  
5.0  
5.5  
0/0  
Default  
Default  
Default  
Default  
Default  
650  
Default  
Default  
Default  
Default  
Default  
249k  
3010/1500  
1500750  
1000/500  
665/332  
316/158  
221/110  
137/68.1  
121/60.4  
Although the assembled resistors have zero resistance, there is  
still small resistance (< 50m) on each resistor. At large output  
current, the efficiency can be decreased by 1~3% due to the  
power loss on those zero ohm resistors. The efficiency curves are  
shown in Figures 16 and 17 with zero ohm resistors, while  
Figures 18 and 19 show the efficiency curves by replacing those  
resistors with short copper straps.  
800  
124k  
Thermal Considerations and Current Derating  
950  
82.5k  
For high current applications, board layout is very critical in order  
to make the module operate safely and deliver maximum  
allowable power. To carry large currents, the board layout needs  
to be designed carefully to maximize thermal performance. To  
achieve this, select enough trace width, copper weight and the  
proper connectors.  
950  
82.5k  
Board Setting  
If low current applications are needed, this 90A evaluation board  
can be easily programmed to 30A and 60A use.  
This evaluation board is designed for running 90A @ 1.2V at  
room temperature without additional cooling systems needed.  
However, if the output voltage is increased or the board is  
operated at elevated temperatures, then the available current is  
derated. Refer to the derated current curves in the datasheet to  
determine the output current available.  
30A Application (1 Module)  
EN -- Open, EN2-- OFF, EN3 -- OFF  
In this mode, only module 1 is running and modules 2 and 3 are  
disabled.  
60A Application (2 Modules)  
EN -- Open, EN2-- ON, EN3 -- OFF  
For layout of designs using the ISL8225M, the thermal  
performance can be improved by adhering to the following  
design tips:  
Or:  
1. Use the top and bottom layers to carry the large current.  
VOUT1, VOUT2, Phase 1, Phase 2, PGND, VIN1 and VIN2  
should have large, solid planes. Place enough thermal vias to  
connect the power planes in different layers under and  
around the module.  
EN -- Open, EN2-- OFF, EN3 -- ON  
In this mode, only modules 1 and 2 (or 3) are running and  
module 3 (or 2) is disabled.  
90A Application (3 Modules)  
EN -- Open, EN2-- ON, EN3 -- ON  
2. Phase 1 and Phase 2 pads are switching nodes that generate  
switching noise. Keep these pads under the module. For  
noise-sensitive applications, it is recommended to keep  
phase pads only on the top and inner layers of the PCB; do not  
place phase pads exposed to the outside on the bottom layer  
of the PCB. To improve the thermal performance, the phase  
pads can be extended in the inner layer, as shown in Phase 1  
and 2 pads on layer 3 (Figure 11) for this 90A evaluation  
board. Make sure that layer 2 and layer 4 have the GND layers  
to cover the extended areas of phase pads at layer 3 to avoid  
noise coupling.  
In this mode, all modules are running.  
Disable All Modules and Use the EN Pin to  
Start the Modules  
EN -- Connected  
In this mode, all modules are disabled and EN can be used to  
control all modules to startup.  
AN1789.0  
December 3, 2012  
2
Application Note 1789  
3. To avoid noise coupling, we recommend adding 1nF  
Phase-shift Programming  
capacitors on all COMP and ISHARE pins of each module for  
multiple module operations.  
4. Place the modules evenly on the board and leave enough  
space between modules. If the board space is limited, try to  
put the modules with low power loss closely together (i.e. low  
In current sharing mode, the phase-shift is needed to interleave  
the different phases to lower the input and output ripples. As  
shown in Table 2, there are different sharing modes from  
2-phase (180° phase-shift) and 4-phase (90° phase-shift) to  
6-phase (60° phase-shift). The master module sends the CLKOUT  
signal to the SYNC pin of the second module with the phase-shift  
to its own clock signal. Then the second module synchronizes to  
the CLKOUT signal of the master module and sends its CLKOUT  
signal to the third module’s SYNC pin. The individual 2 phases of  
each module are set to be 180° phase-shift by default. This  
evaluation board is set to mode 5B with 60° phase-shift between  
phases.  
VOUT or IOUT) while still separating the module with high power  
loss.  
5. If the ambient temperature is high or the board space is  
limited, airflow is needed to dissipate more heat from the  
modules. A heat sink can also be applied to the top side of the  
module to further improve the thermal performance (heat  
sink recommendation: Aavid Thermalloy, part number  
375424B00034G, www.aavid.com).  
If the MODE pin is not tied to VCC (5A or 5B), all VMON pins of  
different modules can be tied together, except the VMON pin of  
the master phase. If mode 7A is needed to allow for 90°  
phase-shift, the MODE pin has to tie to VCC. In this case, the  
VMON pin of the associated module needs to be separated by  
connecting a 1.05kresistor to SGND, as shown in the  
ISL8225M datasheet.  
Remote Sensing  
The ISL8225MEVAL2Z board allows the user to apply the remote  
sensing function to loads in order to achieve good output  
regulation accuracy. To make use of this function, remove  
resistors R7 and R8 and connect the kelvin sensing lines through  
the jumper JP4 (RS) to the point of load.  
TABLE 2. ISL8225M 3-MODULE BOARD OPERATION MODES  
1ST MODULE (I = INPUT; O = OUTPUT; I/O = INPUT AND OUTPUT, BI-DIRECTION)  
MODES OF OPERATION  
ISHARE (I/O)  
REPRESENTS  
WHICH  
OPERATION OPERATION  
MODE  
OF 2ND  
MODULE  
MODE  
OF 3RD  
MODULE  
EN2 EN3 VSEN2- MODE VSEN2+ CLKOUT/REFIN CHANNEL(S) 2ND CHANNELWRT  
MODE  
5A  
(I)  
(I)  
(I)  
(I)  
(I)  
WRT 1ST (I OR O)  
CURRENT  
1ST (O)  
180°  
180°  
180°  
OUTPUT  
2-Phase  
6-Phase  
4-Phase  
12-Phase  
0
0
VCC  
VCC  
VCC  
GND  
GND  
VCC  
-
-
60°  
60°  
90°  
Both Channels  
Both Channels  
Both Channels  
-
-
5B  
-
5B  
1
1
5B  
7A  
1
0
VCC  
5A or 7A  
8
Cascaded Module Operation MODEs 5A+5A+7A+5A+5A+5A/7A, No External Clock Required  
AN1789.0  
December 3, 2012  
3
ISL8225MEVAL2Z Board Schematics  
R22  
0
SYNC  
J1  
J5  
SYNC  
IN  
VMIONN  
SYNC  
IN  
TP5  
VOUT  
1.2V @ 90A  
C8  
TP1  
TP7  
OUT  
VCC1  
OUT  
VIN  
R64  
R82  
499  
1000PF  
VOUT  
4.5V TO 20V  
MODE1  
C1  
IN  
TP3  
TP6  
E
VOUT  
OUT  
499  
VIN  
S1  
S1  
4.7UF  
S1  
S1  
OUT  
VIN  
R42  
0
J3  
E
E
OUT  
R62  
0
COMP  
R59  
0
R61  
S1  
VOUT  
R60  
0
IN  
0
PGND  
VIN2  
VCC1  
R9B  
I N  
1
VOUT  
GND  
VSEN2-  
VSEN2+  
0
26  
TP9  
IN  
10  
J4  
V1SEN2+  
R40  
0
GND  
25  
M1  
TP4  
GND  
TP8  
R38  
0
TP10  
11  
12  
24  
23  
E
PGOOD  
N/C  
ISL8225MIRZ  
OUT  
PGOOD  
E
R53  
0
E
R39  
0
C12  
VCC1  
MODE1  
R15  
DNP  
22  
21  
VSEN1+  
VSEN1-  
OPEN  
R1  
1K  
IN  
IN  
R7  
0
+
PGND  
VIN1  
RS  
-
S1  
S1  
VCC1  
IN  
R2  
1K  
C35  
R8  
J2  
J6  
VCC1  
V1SEN2+  
R16  
DNP  
0
IN  
IN  
COOUMTP  
E
GND  
0.01UF  
R9  
0
S1  
GND_S1  
EGND  
OUT  
EN/FF  
R11  
3.32K  
ISHARE  
OUT  
VCC1  
S1  
SGND1  
E
IN  
R12  
3.32K  
E
S1  
VMON  
R13  
DNP  
EN  
IN  
S1  
S3  
S3  
CLKOUT1  
SSL_LLXAE3D0125IGC  
OUT  
S1  
S1  
IN  
PGOOD  
Q1  
1
S1  
2N7002-7-F  
E
FIGURE 2. ISL8225MEVAL2Z BOARD SCHEMATIC  
ISL8225MEVAL2Z Board Schematics(Continued)  
VMON  
R54  
0
R23  
0
R35  
0
OUT  
IN  
CLKOUT1  
VMON1  
MODE2  
OUT  
OUT  
VCC2  
OUT  
C2  
S2  
R43  
0
R45  
0
S2  
4.7UF  
OUT  
COMP  
COMP2  
E
OUT  
VIN  
R67  
0
IN  
R71  
0
S2  
R68  
E
0
R72  
PGND  
VIN2  
0
R28B  
0
I N  
1
VSEN2-  
VSEN2+  
VCC2  
26  
IN  
10  
V2SEN2+  
M2  
E
25  
R65  
E
0
11  
24  
23  
R69  
0
PGOOD  
N/C  
ISL8225MIRZ  
OUT  
VCC2  
MODE2  
PGOOD  
R48  
DNP  
IN  
IN  
VOUT  
OUT  
R66  
12  
C37  
0
R70  
0
22  
21  
VSEN1+  
VSEN1-  
OPEN  
R4  
R86  
S2  
PGND  
VIN1  
DNP  
DNP  
VCC2  
V2SEN2+  
R17  
DNP  
VCC2  
R3  
DNP  
R87  
DNP  
IN  
IN  
IN  
S2  
C47  
OUT  
E
OUT  
COMP2  
OPEN  
EN/FF  
3
E
ON  
S2  
EN2  
2
S2  
R52  
J8  
OUT  
ISHARE  
OFF  
1
0
VMON1  
R27  
IN  
0
S2  
S2  
S2  
GND_S2  
EGND  
CLKOUT2  
OUT  
S2  
SGND2  
E
S2  
S2  
S2  
MASK#  
HRDWR ID  
REV  
FIGURE 3. ISL8225MEVAL2Z BOARD SCHEMATIC  
ISL8225MEVAL2Z Board Schematics(Continued)  
VMON1  
R55  
0
R33  
0
R36  
0
OUT  
IN  
CLKOUT2  
MODE3  
VMON2  
OUT  
OUT  
OUT  
VCC3  
C3  
S3  
COMP2  
R44  
0
R46  
0
S3  
4.7UF  
IN  
COMP3  
E
OUT  
VIN  
R73  
0
IN  
R77  
0
S3  
R74  
0
E
R78  
0
PGND  
VIN2  
VCCI 3N  
R44B  
0
1
VSEN2-  
VSEN2+  
26  
IN  
10  
V3SEN2+  
E
M3  
25  
R75  
11  
12  
24  
23  
E
PGOOD  
N/C  
OUT  
PGOOD  
0
R79  
ISL8225MIRZ  
VOUT  
0
OUT  
VCC3  
MODE3  
R50  
R76  
IN  
IN  
DNP  
C39  
0
R80  
22  
21  
VSEN1+  
VSEN1-  
0
OPENR29  
PGND  
VIN1  
DNP  
S3  
S3  
VCC3  
VCC3  
V3SEN2+  
R21  
DNP  
R24  
DNP  
IN  
IN  
IN  
COMP3  
OUT  
E
E
S3  
ISHARE  
R81  
0
ON  
OFF  
OUT  
EN/FF  
2
CLKOUT3  
1
3
CLKOUT3  
OUT  
TP2  
IN  
J7  
VMON2  
S3  
IN  
EN3  
S3  
S3  
TP11  
S3  
CLKOUT3  
OUT  
S3  
GND_S3  
EGND  
S3  
S3  
S3  
E
FIGURE 4. ISL8225MEVAL2Z BOARD SCHEMATIC  
Application Note 1789  
Layout  
OFF  
ON  
FIGURE 5. TOP ASSEMBLY  
FIGURE 6. TOP SILK SCREEN  
FIGURE 7. TOP LAYER COMPONENT SIDE  
FIGURE 8. LAYER 2  
AN1789.0  
December 3, 2012  
7
Application Note 1789  
Layout (Continued)  
FIGURE 9. LAYER 3  
FIGURE 10. LAYER 4  
FIGURE 11. LAYER 5  
FIGURE 12. BOTTOM LAYER SOLDER SIDE  
AN1789.0  
December 3, 2012  
8
Application Note 1789  
Layout (Continued)  
FIGURE 13. BOTTOM SILK SCREEN  
FIGURE 14. BOTTOM SILK SCREEN MIRRORED  
FIGURE 15. BOTTOM ASSEMBLY  
AN1789.0  
December 3, 2012  
9
Bill of Materials  
PACKAGE  
TYPE  
PART NUMBER  
10TPB330M  
REF DES  
QTY. VALUE TOL. VOLTAGE POWER  
JEDEC TYPE  
CAP_7343_149  
MANUFACTURER  
DESCRIPTION  
C04, C08, C016,  
C024, C08A  
5
330µF 20%  
10V  
SMD  
SANYO-POSCAP Standard solid electrolytic chip tantalum  
SMD capacitor  
131-4353-00  
2N7002-7-F  
5002  
TP1  
Q1  
1
1
CONN  
SOT23  
THOLE  
TEK131-4353-00  
SOT23  
Tektronix  
Fairchild  
Keystone  
Scope probe test point PCB mount  
N-Channel EMF effect transistor (Pb-free)  
TP2-TP11  
10  
MTP500X  
Miniature white test point 0.100 pad  
0.040 Thole  
ECA-1VM471  
CINA, CINB  
C1-C3  
2
3
7
470µF 20%  
4.7µF 10%  
47µF 10%  
35V  
16V  
10V  
RADIAL CAPR_708X1398_300_P  
Panasonic  
Murata  
Radial capacitor Pb-free  
Ceramic capacitor  
GRM21BR71C475KA73L  
GRM32ER70A476K  
805  
CAP_0805  
CAP_1210  
C0, C02, C05,  
C010, C013, C014,  
C018  
1210  
Murata  
Ceramic chip capacitor  
GRM32ER71E226KE15L  
H1045-00101-50V10  
CIN1-CIN12  
12  
6
22µF 10%  
100pF 10%  
25V  
50V  
1210  
603  
CAP_1210  
CAP_0603  
Murata  
Generic  
Ceramic chip capacitor  
Multilayer capacitor  
C6, C7, C13, C14,  
C20, C21  
H1045-00102-16V10  
H1045-00102-50V10  
C8  
1
1000pF 10%  
16V  
50V  
603  
603  
CAP_0603  
CAP_0603  
Generic  
Generic  
Multilayer capacitor  
Multilayer capacitor  
C4, C5, C9, C11,  
C16-C19, C23-C31,  
C40  
18 1000pF 10%  
H1045-00103-50V10  
H1045-OPEN  
C35  
1
0.01µF 10%  
OPEN 5%  
50V  
603  
603  
CAP_0603  
CAP_0603  
Generic  
Generic  
Multilayer capacitor  
Multilayer capacitor  
C10, C12, C15,  
C22, C32-C34,C36,  
C37, C39, C42,  
C44, C47  
13  
OPEN  
H1082-OPEN  
C01, C03, C06,  
C07, C09, C011,  
C012, C015, C017,  
C019, C021, C023  
12  
26  
OPEN 10%  
OPEN  
1210  
603  
CAP_1210  
RES_0603  
Generic  
Generic  
Ceramic chip capacitor  
H2505-DNP-DNP-1  
R3, R4, R13-R17,  
R20, R21,R24,  
R25, R28-R31,  
R37, R48, R50,  
R51, R56-R58,  
R86, R87, R10B,  
RFSET  
DNP  
1%  
DNP  
Metal film chip resistor (do not populate)  
Bill of Materials(Continued)  
PACKAGE  
TYPE  
PART NUMBER  
REF DES  
QTY. VALUE TOL. VOLTAGE POWER  
JEDEC TYPE  
RES_0603  
MANUFACTURER  
Generic  
DESCRIPTION  
Thick film chip resistor  
H2511-00R00-1/16W1  
R7-R10, R18, R19, 29  
R22, R23, R26,  
R27, R33, R35,  
R36, R42-R47,  
R49, R52, R54,  
R55, R81, R9B,  
R20B, R28B,R37B,  
R44B  
0  
1%  
1/16W  
603  
H2511-01001-1/16W1  
H2511-03321-1/16W1  
H2511-04990-1/16W1  
H2520-00R00-1/2W5  
R1, R2, R6  
R11, R12  
R64, R82  
3
2
1kΩ  
1%  
1/16W  
1/16W  
1/16W  
1/2W  
603  
603  
RES_0603  
RES_0603  
RES_0603  
RES_2010  
Generic  
Generic  
Generic  
Generic  
Thick film chip resistor  
Thick film chip resistor  
Thick film chip resistor  
Thick film chip resistor  
3.32k1%  
2
499Ω  
0Ω  
1%  
5%  
603  
R38-R40, R53,  
24  
2010  
R59-R62, R65-R80  
ISL8225MIRZ  
JUMPER-3-100  
JUMPER2_100  
KPA8CTP  
M1-M3  
J7, J8  
JP4, JP8  
J1-J6  
3
2
2
6
1
1
QFN  
THOLE  
THOLE  
CONN  
603  
QFN26_670X670_ISL8225M Intersil  
Dual 15A DC/DC power module  
Three pin jumper  
JUMPER-3  
JUMPER-1  
KPA8CTP  
Generic  
Generic  
Burndy  
ROHM  
Two pin jumper  
Wire connector lug  
MCR03EZPFX3001  
SSL-LXA3025IGC  
R5  
3kΩ  
1%  
1/10W  
RES_0603  
LED_3X2_5MM  
Metal film chip resistor  
LED1  
SMD  
Lumex  
3mmx2.5mm surface mount red/green  
LED  
NOTE:  
2. Resistance accuracy of the feedback resistor divider R1/R2 can affect the output voltage accuracy. Please use high accuracy resistance (i.e. 0.5% or 0.1%) to meet the output accuracy requirement.  
Application Note 1789  
ISL8225MEVAL2Z Efficiency Curves Test conditions at +25°C and no air flow.  
Efficiency Curves with Zero-ohm Resistance on the Output  
95  
85  
75  
65  
55  
100  
2.5V  
2.5V  
OUT  
3.3V  
OUT  
OUT  
3.3V  
OUT  
90  
1.5V  
OUT  
1.5V  
OUT  
1.2V  
OUT  
1.2V  
OUT  
1V  
OUT  
80  
1V  
OUT  
70  
60  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
FIGURE 16. EFFICIENCY CURVES FOR 12V INPUT  
FIGURE 17. EFFICIENCY CURVES FOR 5V INPUT  
Efficiency Curves by Replacing Zero-ohm Resistance with Thick Copper Strap  
95  
85  
75  
65  
55  
100  
2.5V  
OUT  
2.5V  
OUT  
3.3V  
OUT  
90  
1.5V  
OUT  
1.5V  
OUT  
1.2V  
OUT  
1.2V  
OUT  
1V  
OUT  
1V  
80  
OUT  
70  
60  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
FIGURE 18. EFFICIENCY CURVES FOR 12V INPUT  
FIGURE 19. EFFICIENCY CURVES FOR 5V INPUT  
Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is  
cautioned to verify that the Application Note or Technical Brief is current before proceeding.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
AN1789.0  
December 3, 2012  
12  

相关型号:

SSL-LX100133AC

T-10mm LED, 605mm Amber
LUMEX

SSL-LX100133SGD12V

T-10mm 565mm SUPER GREEN LED
LUMEX

SSL-LX100133SRC

T-3 1/8mm LED, SUPER BRIGHT RED, WATER CLEAR LENS
LUMEX

SSL-LX100133SRC-E

T-3 1/8mm LED SUPER RED, RED Diffused LENS
LUMEX

SSL-LX100133SRD-B

T-3 1/8mm LED SUPER RED Diffused LENS
LUMEX

SSL-LX100133SRD-D

T-3 1/8mm LED, SUPER RED
LUMEX

SSL-LX100133SRD-E

T-3 1/8mm LED SUPER RED Diffused LENS
LUMEX

SSL-LX100133USBD

T-10mm 470mm Ultra SUPER BLUE LED
LUMEX

SSL-LX100133XR1

T-10mm LED, SUPER BRIGHT RED, WATER CLEAR LENS
LUMEX

SSL-LX100133XRC

T-10mm LED, SUPER BRIGHT RED, WATER CLEAR LENS
LUMEX

SSL-LX100133XRC-1

T-10mm LED, SUPER BRIGHT RED, WATER CLAER LENS
LUMEX

SSL-LX100133XYB

T-10mm LED SUPER BRIGHT YELLOW, WATER CLEAR LENS
LUMEX