ISLA216S25IR1Z [INTERSIL]

16-Bit, 250/200/130 MSPS JESD204B High Speed Serial Output ADC; 16位250/200/130 MSPS JESD204B高速串行输出ADC
ISLA216S25IR1Z
型号: ISLA216S25IR1Z
厂家: Intersil    Intersil
描述:

16-Bit, 250/200/130 MSPS JESD204B High Speed Serial Output ADC
16位250/200/130 MSPS JESD204B高速串行输出ADC

文件: 总34页 (文件大小:1654K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, 250/200/130 MSPS JESD204B High Speed  
Serial Output ADC  
ISLA216S  
Features  
• JESD204A/B High Speed Data Interface  
- JESD204A Compliant  
The ISLA216S is a series of low-power, high-performance,  
16-bit, analog-to-digital converters. Designed with  
FemtoCharge™ technology on a standard CMOS process, the  
series supports sampling rates of up to 250MSPS. The  
ISLA216S is part of a pin-compatible family of 12-, 14-, and  
16-bit A/Ds with maximum sample rates ranging from 130 to  
500MSPS and shares the same analog core as Intersil's  
proven ISLA216P series of ADCs. The family minimizes power  
consumption while providing state-of-the art dynamic  
performance, offering an optimal performance-vs-power  
trade-off.  
- JESD204B Device Subclass 0 Compliant  
- JESD204B Device Subclass 2 Compatible  
- JESD204 Output Lanes Run up to 4.375Gbps  
- Highly Configurable JESD204 Transmitter  
• Multiple Chip Time Alignment and Deterministic Latency  
Support (JESD204B Device Subclass 2)  
• SPI Programmable Debugging Features and Test Patterns  
• 48-pin QFN 7mmx7mm Package  
Differentiating the ISLA216S from the ISLA216P is its highly  
configurable, JESD204B-compliant, high speed serial output  
link. The link offers data rates up to 4.375Gbps per lane and  
multiple packing modes. It uses two lanes to transmit the  
conversion data. The SERDES transmitter also provides  
deterministic latency and multi-chip time alignment support to  
satisfy an application's complex synchronization requirements.  
Key Specifications  
• SNR @ 250/200/130MSPS  
75.8/77.2/78.0 dBFS f = 30MHz  
IN  
74.6/75.2/74.8 dBFS f = 190MHz  
IN  
• SFDR @ 250/200/130MSPS  
A serial peripheral interface (SPI) port allows for extensive  
configurability of the JESD204B transmitter including access  
to its built-in link and transport-layer test patterns. The SPI port  
also provides control for numerous additional features  
including the fine gain and offset adjustments of the two ADC  
cores as well as the programmable clock divider, enabling 2x  
and 4x harmonic clocking.  
87/93/94 dBc f = 30MHz  
IN  
82/81/81 dBc f = 190MHz  
IN  
• Total Power Consumption: 887mW @ 250MSPS  
Applications  
• Radar and Satellite Antenna Array Processing  
• Broadband Communications and Microwave Receivers  
• High-Performance Data Acquisition  
• Communications Test Equipment  
• High-Speed Medical Imaging  
The ISLA216S is available in a space-saving 7mmx7mm 48 Ld  
QFN package. The package features a thermal pad for  
improved thermal performance and is specified over the full  
industrial temperature range (-40°C to +85°C).  
Pin-Compatible Family  
SPEED  
PRODUCT  
MODEL  
ISLA216S25  
ISLA216S20  
ISLA216S13  
ISLA214S50  
ISLA212S50  
ISLA214S25  
ISLA212S25  
RESOLUTION  
(MSPS)  
AVAILABILITY  
16  
16  
16  
14  
12  
14  
12  
250  
200  
130  
500  
500  
250  
250  
Now  
Now  
Now  
Now  
Soon  
Soon  
Soon  
FIGURE 1. SERDES DATA EYE AT 4.375Gbps  
February 2, 2012  
FN7996.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2012. All Rights Reserved  
Intersil (and design) and FemtoCharge are trademarks owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISLA216S  
CLKP  
CLKN  
CLOCK  
GENERATION  
LANE[1:0]P  
LANE[1:0]N  
VINP  
VINN  
16-BIT  
250MSPS  
ADC  
JESD204  
TRANSMITTER  
SHA  
VREF  
+
1.25V  
VCM  
SPI  
CONTROL  
FIGURE 2. BLOCK DIAGRAM  
Pin Configuration  
ISLA216S  
(48 LD QFN)  
TOP VIEW  
48 47 46  
45 44  
43 42  
41  
40 39 38  
37  
VCM  
OVDD  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AVDD  
AVSS  
AVSS  
VINN  
VINN  
OVSS  
DNC  
3
DNC  
4
OVSS  
5
LANE1N  
LANE1P  
6
7
VINP  
VINP  
8
OVSS  
LANE0N  
AVSS  
9
LANE0P  
AVSS  
AVDD  
10  
11  
OVSS  
OVDD  
PAD – Exposed Paddle  
DNC 12  
13 14 15  
16 17  
18 19  
20  
21 22 23  
24  
FN7996.0  
February 2, 2012  
2
ISLA216S  
Pin Descriptions  
PIN NUMBER  
NAME  
AVDD  
FUNCTION  
2, 11, 14, 15, 46  
1.8V Analog Supply  
12, 20, 33, 34, 47, 48  
DNC  
Do Not Connect  
3, 4, 9, 10  
AVSS  
Analog Ground  
7, 8  
VINP  
Analog Input, Positive  
Analog Input, Negative  
Common Mode Output  
Clock Divider Control  
Clock Input True, Complement  
5, 6  
VINN  
1
VCM  
44  
CLKDIV  
CLKP, CLKN  
NAPSLP  
RESETN  
OVSS  
16, 17  
45  
Power Control (Nap, Sleep modes)  
Power On Reset (Active Low)  
Output Ground  
13  
26, 29, 32, 35, 37, 38  
25, 36, 39  
22, 24  
21, 23  
18, 19  
27, 28  
30, 31  
40  
OVDD  
1.8V Digital Supply  
OVDD (PLL)  
OVSS (PLL)  
SYNCP, SYNCN  
LANE0P, LANE0N  
LANE1P, LANE1N  
SDO  
1.8V Analog Supply for SERDES PLL  
Analog Ground Supply for SERDES PLL  
JESD204A SYNC Input  
SERDES Lane 0  
SERDES Lane 1  
SPI Serial Data Output  
41  
CSB  
SPI Chip Select (active low)  
SPI Clock  
42  
SCLK  
43  
SDIO  
SPI Serial Data Input/Output  
Exposed Paddle. Analog Ground (connect to AVSS)  
PAD  
AVSS  
Ordering Information  
PART NUMBER  
(Notes 1, 2)  
PART  
MARKING  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
ISLA216S25IR1Z  
ISLA216S20IR1Z  
ISLA216S13IR1Z  
ISLA216S25 IR1Z  
ISLA216S20 IR1Z  
-40 to +85  
-40 to +85  
-40 to +85  
48 Ld QFN  
L48.7x7G  
48 Ld QFN  
48 Ld QFN  
L48.7x7G  
L48.7x7G  
ISLA216S13 IR1Z  
Coming Soon  
ISLA216S25IR48EV1Z  
Evaluation Board  
NOTES:  
1. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate-e4  
termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
2. For Moisture Sensitivity Level (MSL), please see device information page for ISLA216S13, ISLA216S20, ISLA216S25. For more information on MSL  
please see techbrief TB363.  
FN7996.0  
February 2, 2012  
3
ISLA216S  
Table of Contents  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Recommended Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Digital Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7
Switching Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power-On Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
User Initiated Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Temperature Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Digital Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Nap/Sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Clock Divider Synchronous Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Soft Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
JESD204A Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Initial Lane Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Test Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SPI Physical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Device Configuration/Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Global Device Configuration/Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
ADDRESS 0xDF - 0xF3: JESD204 REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Address 0xDF-0xEE: JESD204A Parameter INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SPI Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Equivalent Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
ADC Evaluation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Split Ground and Power Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Clock Input Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Exposed Paddle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Bypass and Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
CML Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Unused Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Package Outline Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
FN7996.0  
February 2, 2012  
4
ISLA216S  
Absolute Maximum Ratings  
Thermal Information  
AVDD to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.4V to 2.1V  
OVDD to OVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.4V to 2.1V  
AVSS to OVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 0.3V  
Analog Inputs to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to AVDD + 0.3V  
Clock Inputs to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to AVDD + 0.3V  
Logic Input to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to OVDD + 0.3V  
Logic Inputs to OVSS . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to OVDD + 0.3V  
Latchup (Tested per JESD-78C;Class 2,Level A) . . . . . . . . . . . . . . . . 100mA  
Thermal Resistance (Typical)  
48 Ld QFN (Notes 3, 4, 5) . . . . . . . . . . . . . .  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
θ
(°C/W)  
24  
θ
(°C/W)  
0.4  
JA  
JC  
Recommended Operating Conditions  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
NOTES:  
3. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
4. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
5. For solder stencil layout and reflow guidelines, please see Tech Brief TB389.  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD = 1.8V, OVDD = 1.8V,  
T
= -40°C to +85°C (typical specifications at +25°C), A = -2dBFS, f  
= Maximum Conversion Rate (per speed grade). Boldface limits apply  
SAMPLE  
A
IN  
over the operating temperature range, -40°C to +85°C.  
ISLA216S25  
MAX  
ISLA216S20  
MIN MAX  
ISLA216S13  
MIN MAX  
MIN  
(Note 6) TYP (Note 6) (Note 6) TYP (Note 6) (Note 6) TYP (Note 6) UNITS  
PARAMETER  
DC SPECIFICATIONS  
Analog Input  
SYMBOL  
CONDITIONS  
Full-Scale Analog Input  
Range  
V
Differential  
1.95  
2.14  
2.22  
1.95  
2.08  
2.22  
1.95  
2.03  
2.22  
V
P-P  
FS  
Input Resistance  
Input Capacitance  
R
Differential  
Differential  
Full Temp  
300  
10.7  
145  
300  
10.7  
124  
300  
10.7  
68  
Ω
IN  
C
pF  
IN  
Full Scale Range Temp.  
Drift  
A
ppm/°C  
VTC  
Input Offset Voltage  
Gain Error  
V
-5.0  
±1  
1
5.0  
-5.0  
±1  
1
5.0  
-5.0  
±1  
1
5.0  
mV  
%
OS  
E
G
Common-Mode Output  
Voltage  
V
0.94  
0.94  
0.94  
V
CM  
Common Mode Input  
Current (per pin)  
I
12.0  
12.0  
12.0  
µA/MSPS  
CM  
Clock Inputs  
Inputs Common Mode  
Voltage  
0.9  
1.8  
0.9  
1.8  
0.9  
1.8  
V
V
CLKP, CLKN Swing  
Power Requirements  
1.8V Analog Supply  
Voltage  
AVDD  
OVDD  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.8  
1.8  
V
1.8V Digital Supply  
Voltage  
V
1.8V Analog Supply  
Current  
I
354  
139  
378  
152  
325  
128  
349  
140  
283  
109  
306  
122  
mA  
mA  
AVDD  
1.8V Digital Supply  
Current  
I
OVDD  
FN7996.0  
February 2, 2012  
5
ISLA216S  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD = 1.8V, OVDD = 1.8V,  
T
= -40°C to +85°C (typical specifications at +25°C), A = -2dBFS, f  
= Maximum Conversion Rate (per speed grade). Boldface limits apply  
SAMPLE  
A
IN  
over the operating temperature range, -40°C to +85°C. (Continued)  
ISLA216S25  
MAX  
ISLA216S20  
MIN MAX  
ISLA216S13  
MIN MAX  
MIN  
(Note 6) TYP (Note 6) (Note 6) TYP (Note 6) (Note 6) TYP (Note 6) UNITS  
PARAMETER  
SYMBOL  
CONDITIONS  
Power Supply Rejection  
Ratio (Note 7)  
PSRR  
30MHz 200mV  
38  
44  
38  
44  
38  
44  
dB  
P-P  
1MHz 200mV  
dB  
P-P  
Total Power Dissipation  
Normal Mode  
P
P
P
887  
323  
6
954  
367  
14  
815  
300  
6
880  
342  
14  
706  
267  
6
770  
310  
14  
mW  
mW  
mW  
µs  
D
D
D
Nap Mode  
Sleep Mode  
CSB at logic high  
Nap Mode Wakeup  
Time  
Sample Clock  
Running  
5
5
5
Sleep Mode Wakeup  
Time  
Sample Clock  
Running  
1
1
1
ms  
AC SPECIFICATIONS (Note 8)  
Differential Nonlinearity  
Integral Nonlinearity  
DNL  
INL  
-0.99 ±0.24  
±16.0  
-0.99 ±0.17  
±12.0  
-0.99 ±0.14  
±9.0  
LSB  
LSB  
Minimum Conversion  
Rate (Note 9)  
f
MIN  
100  
100  
100  
MSPS  
S
Maximum Conversion  
Rate  
f
MAX  
250  
200  
130  
MSPS  
S
Signal-to-Noise Ratio  
(Note 10)  
SNR  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
= 30MHz  
75.8  
77.2  
78.0  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
Bits  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 105MHz  
= 190MHz  
= 363MHz  
= 495MHz  
= 605MHz  
= 30MHz  
72.3  
75.5  
74.6  
72.4  
70.8  
69.3  
75.5  
74.9  
73.9  
69.8  
66.5  
64.9  
12.20  
74.3  
76.6  
75.2  
72.5  
70.6  
69.2  
77.1  
76.3  
74.1  
69.0  
66.3  
64.1  
12.45  
75.0  
76.8  
74.8  
71.2  
69.6  
67.3  
77.7  
76.3  
73.8  
66.0  
65.9  
58.4  
12.59  
Signal-to-Noise and  
Distortion (Note 10)  
SINAD  
= 105MHz  
= 190MHz  
= 363MHz  
= 495MHz  
= 605MHz  
= 30MHz  
71.1  
73.6  
74.2  
Effective Number of Bits  
(Note 10)  
ENOB  
= 105MHz  
= 190MHz  
= 363MHz  
= 495MHz  
= 605MHz  
11.51 12.14  
11.95  
11.93 12.36  
12.03  
12.03 12.36  
11.91  
Bits  
Bits  
11.27  
11.19  
10.66  
Bits  
10.76  
10.72  
10.61  
Bits  
10.52  
10.43  
9.52  
Bits  
FN7996.0  
February 2, 2012  
6
ISLA216S  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD = 1.8V, OVDD = 1.8V,  
T
= -40°C to +85°C (typical specifications at +25°C), A = -2dBFS, f  
= Maximum Conversion Rate (per speed grade). Boldface limits apply  
SAMPLE  
A
IN  
over the operating temperature range, -40°C to +85°C. (Continued)  
ISLA216S25  
MAX  
ISLA216S20  
MIN MAX  
ISLA216S13  
MIN MAX  
MIN  
(Note 6) TYP (Note 6) (Note 6) TYP (Note 6) (Note 6) TYP (Note 6) UNITS  
PARAMETER  
SYMBOL  
CONDITIONS  
Spurious-Free Dynamic  
Range (Note 10)  
SFDR  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
= 30MHz  
87  
84  
82  
72  
67  
65  
88  
89  
87  
81  
79  
75  
96  
87  
93  
88  
81  
70  
67  
64  
94  
95  
91  
86  
87  
83  
97  
86  
94  
85  
81  
66  
67  
57  
100  
94  
89  
84  
80  
77  
96  
87  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBFS  
dBFS  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 105MHz  
= 190MHz  
= 363MHz  
= 495MHz  
= 605MHz  
= 30MHz  
74  
76  
76  
Spurious-Free Dynamic SFDRX23  
Range Excluding H2, H3  
(Note 10)  
= 105MHz  
= 190MHz  
= 363MHz  
= 495MHz  
= 605MHz  
= 70MHz  
Intermodulation  
Distortion  
IMD  
= 170MHz  
-13  
10  
-13  
-13  
Word Error Rate  
Full Power Bandwidth  
NOTES:  
WER  
10  
10  
FPBW  
620  
620  
620  
MHz  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
7. PSRR is calculated by the equation 20*log10(A/B), where B is the amplitude of a disturber sinusoid on AVDD at the device pins, and A is the amplitude  
of the spur in the captured data at the frequency of the disturber sinusoid.  
8. AC Specifications apply after internal calibration of the ADC is invoked at the given sample rate and temperature. Refer to “Power-On Calibration” on  
page 14 and “User Initiated Reset” on page 15 for more detail.  
9. The DLL Range setting must be changed via SPI for ADC core sample rates below 80MSPS. The JESD204 transmitter can support ADC sample rates  
below 100MSPS, as long as the lane data rate is greater than or equal to 1Gbps.  
10. Minimum specification guaranteed when calibrated at +85°C.  
Digital Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
(Note 6)  
TYP  
(Note 6) UNITS  
CMOS INPUTS  
Input Current High (RESETN)  
Input Current Low (RESETN)  
I
V
V
V
V
V
V
= 1.8V  
= 0V  
1
-12  
4
10  
-7  
µA  
µA  
µA  
µA  
µA  
µA  
V
IH  
IN  
IN  
IN  
IN  
IN  
IN  
I
-25  
IL  
Input Current High (SDIO, SCL, SDA SCLK)  
Input Current Low (SDIO, SCL, SDA SCLK)  
Input Current High (CSB)  
I
= 1.8V  
= 0V  
12  
IH  
I
-600  
40  
-400  
52  
1
-300  
70  
IL  
I
= 1.8V  
= 0V  
IH  
Input Current Low (CSB)  
I
10  
IL  
Input Voltage High (SDIO, RESETN)  
Input Voltage Low (SDIO, RESETN)  
Input Current High (NAPSLP, CLKDIV) (Note 11)  
Input Current Low (NAPSLP, CLKDIV)  
V
1.17  
IH  
V
0.63  
30  
V
IL  
I
19  
25  
µA  
µA  
IH  
I
--30  
-25  
-19  
IL  
FN7996.0  
February 2, 2012  
7
ISLA216S  
Digital Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
(Note 6)  
TYP  
4
(Note 6) UNITS  
Input Capacitance  
C
DI  
pF  
LVDS INPUTS (SYNCP, SYNCN)  
Input Common Mode Range  
V
825  
250  
1575  
450  
mV  
mV  
k  
ICM  
Input Differential Swing (peak-to-peak, single-ended)  
Input Pull-up and Pull-down Resistance  
CML OUTPUTS  
V
ID  
R
100  
Ipu  
Output Common Mode Voltage  
1.14  
V
Switching Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C.  
MIN  
(Note 6)  
MAX  
(Note 6)  
PARAMETER  
SYMBOL  
CONDITION  
TYP  
UNITS  
ADC OUTPUT  
Aperture Delay  
RMS Aperture Jitter  
t
190  
100  
250  
ps  
fs  
A
j
A
Synchronous Clock Divider Reset Recovery Time (Note 12)  
t
DLL recovery  
time after  
Synchronous  
Reset  
µs  
RSTRT  
Latency (ADC Pipeline Delay)  
Overvoltage Recovery  
SERDES  
L
10  
1
cycles  
cycles  
t
OVR  
PLL Lock Time  
295  
2.2  
5
µs  
PLL Bandwidth  
MHz  
Added Random Jitter  
ps  
RMS  
Added Deterministic Jitter  
7
5
ps P-P  
ps rms  
Maximum Input Sample Clock Total Jitter to Maintain SERDES  
BER <1E-12  
Integrated from  
1kHz to 10MHz  
offset from  
carrier  
LVDS Inputs  
SYNCP, SYNCN Setup Time (with Respect to the Positive Edge of  
CLKP)  
t
AVDD,  
OVDD = 1.7V to  
1.9V, T = -40°C  
to +85°C  
400  
75  
ps  
ps  
RSTS  
A
SYNCP, SYNCN Hold Time (with respect to the positive edge of  
CLKP)  
t
AVDD,  
OVDD = 1.7V to  
150  
350  
RSTH  
1.9V, T = -40°C  
A
to +85°C  
CML Outputs  
Output Rise Time  
t
165  
145  
50  
ps  
ps  
%
R
Output Fall Time  
t
F
Data Output Duty Cycle  
Differential Output Resistance  
100  
FN7996.0  
February 2, 2012  
8
ISLA216S  
Switching Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
MIN  
MAX  
PARAMETER  
Differential Output Voltage (Note 13)  
SPI INTERFACE (Notes 14, 15)  
SCLK Period  
SYMBOL  
CONDITION  
(Note 6)  
TYP  
760  
(Note 6)  
UNITS  
mV  
P-P  
t
Write Operation  
Read Operation  
Read or Write  
Read or Write  
Read or Write  
Read or Write  
Read  
7
16  
2
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
CLK  
t
CLK  
CSBto SCLKSetup Time  
CSBafter SCLKHold Time  
Data Valid to SCLKSetup Time  
Data Valid after SCLKHold Time  
Data Valid after SCLKTime  
NOTES:  
t
S
t
5
H
t
6
DS  
DH  
t
4
t
4
DVR  
11. The Tri-Level Inputs internal switching thresholds are approximately. 0.43V and 1.34V. It is advised to float the inputs, tie to ground or AVDD depending  
on desired function.  
12. The synchronous clock divider reset function is available as a (SPI-programmable) overload on the SYNC input.  
13. The voltage is expressed in peak-to-peak differential swing. The peak-to-peak single-ended swing is 1/2 of the differential swing.  
14. The SPI interface timing is directly proportional to the ADC sample period (t ). Values above reflect multiples of a 4ns sample period, and must be  
S
scaled proportionally for lower sample rates. ADC sample clock must be running for SPI communication.  
15. The SPI may operate asynchronously with respect to the ADC sample clock.  
Typical Performance Curves  
All Typical Performance Characteristics apply under the following conditions unless otherwise noted: AVDD = OVDD = 1.8V, T = +25°C,  
A
A
= -2dBFS, f = 105MHz, f  
= 250MSPS.  
IN  
IN  
SAMPLE  
95  
-55  
-60  
HD2 AT 200 MSPS  
SFDR AT 200 MSPS  
HD2 AT 130 MSPS  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR AT 250 MSPS  
SFDR AT 130 MSPS  
-65  
-70  
-75  
HD2 AT 250 MSPS  
-80  
SNR AT 250 MSPS  
-85  
-90  
SNR AT 130 MSPS  
SNR AT 200 MSPS  
-95  
HD3 AT 200 MSPS  
HD3 AT 130 MSPS  
HD3 AT 250 MSPS  
-100  
-105  
0
100  
200  
300  
400  
500  
600  
700  
0
100  
200  
300  
400  
500  
600  
700  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
FIGURE 3. SNR AND SFDR vs f  
FIGURE 4. HD2 AND HD3 vs f  
IN  
IN  
FN7996.0  
February 2, 2012  
9
ISLA216S  
Typical Performance Curves(Continued)  
All Typical Performance Characteristics apply under the following conditions unless otherwise noted: AVDD = OVDD = 1.8V, T = +25°C,  
A
A
= -2dBFS, f = 105MHz, f  
= 250MSPS. (Continued)  
IN  
IN  
SAMPLE  
-40  
-50  
100  
HD3 (dBc)  
SFDR (dBFS)  
HD2 (dBc)  
SNR (dBFS)  
-60  
80  
SFDR (dBc)  
60  
-70  
-80  
-90  
40  
20  
HD3 (dBFS)  
-100  
-110  
-120  
SNR (dBc)  
HD2 (dBFS)  
-30  
0
-60  
-60  
-50  
-40  
-20  
-10  
0
-50  
-40  
-30  
-20  
-10  
0
INPUT AMPLITUDE (dBFS)  
INPUT AMPLITUDE (dBFS)  
FIGURE 6. HD2 AND HD3 vs A  
IN  
FIGURE 5. SNR AND SFDR vs A  
IN  
90  
-75  
-80  
85  
80  
75  
70  
65  
60  
SFDR  
SNR  
HD3  
HD2  
-85  
-90  
-95  
-100  
-105  
-110  
100 120 140 160 180 200 220 240 260 280  
100 120 140 160 180 200 220 240 260 280  
SAMPLE RATE (MSPS)  
SAMPLE RATE (MSPS)  
FIGURE 8. HD2 AND HD3 vs f  
SAMPLE  
FIGURE 7. SNR AND SFDR vs f  
SAMPLE  
1000  
1.0  
0.8  
0.6  
0.4  
0.2  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
100 120 140 160 180 200 220 240 260  
SAMPLE RATE (MSPS)  
0
10000 20000 30000 40000 50000 60000  
CODE  
FIGURE 9. POWER vs f  
FIGURE 10. DIFFERENTIAL NONLINEARITY  
SAMPLE  
FN7996.0  
February 2, 2012  
10  
ISLA216S  
Typical Performance Curves(Continued)  
All Typical Performance Characteristics apply under the following conditions unless otherwise noted: AVDD = OVDD = 1.8V, T = +25°C,  
A
A
= -2dBFS, f = 105MHz, f  
= 250MSPS. (Continued)  
IN  
IN  
SAMPLE  
15  
10  
5
90  
85  
80  
75  
70  
65  
60  
SFDR  
SNR  
0
-5  
-10  
-15  
-20  
0
10000 20000 30000 40000 50000 60000  
CODE  
700  
800  
900 1000 1100 1200 1300 1400 1500  
Vcm (mV)  
FIGURE 11. INTEGRAL NONLINEARITY  
FIGURE 12. SNR AND SFDR vs VCM  
140000  
120000  
100000  
80000  
60000  
40000  
20000  
0
0
-20  
A
= -2.0 dBFS  
IN  
SNR = 75.1 dBFS  
SFDR = 84 dBc  
SINAD = 74.7 dBFS  
-40  
-60  
-80  
-100  
-120  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (MHz)  
ADC CODE  
FIGURE 14. SINGLE-TONE SPECTRUM @ 105MHz  
FIGURE 13. NOISE HISTOGRAM  
0
-20  
0
A
= -2.0 dBFS  
IN  
A
= -2.0 dBFS  
IN  
SNR = 74.1 dBFS  
SFDR = 82 dBc  
SINAD = 73.4 dBFS  
SNR = 71.9 dBFS  
SFDR = 75 dBc  
SINAD = 70.5 dBFS  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 15. SINGLE-TONE SPECTRUM @ 190MHz  
FIGURE 16. SINGLE-TONE SPECTRUM @ 363MHz  
FN7996.0  
February 2, 2012  
11  
ISLA216S  
Typical Performance Curves(Continued)  
All Typical Performance Characteristics apply under the following conditions unless otherwise noted: AVDD = OVDD = 1.8V, T = +25°C,  
A
A
= -2dBFS, f = 105MHz, f  
= 250MSPS. (Continued)  
IN  
IN  
SAMPLE  
0
0
-20  
IMD = -87 dBFS  
IMD = -96 dBFS  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 18. TWO-TONE SPECTRUM (F1 = 170MHz, F2 = 171MHz AT  
-7dBFS)  
FIGURE 17. TWO-TONE SPECTRUM (F1 = 70MHz, F2 = 71MHz AT  
-7dBFS)  
FIGURE 20. SERDES DATA EYE at 3.0Gbps  
FIGURE 19. SERDES DATA EYE at 1.0Gbps  
FIGURE 21. SERDES DATA EYE at 4.375Gbps  
FIGURE 22. SERDES BATHTUB at 1.0Gbps  
FN7996.0  
February 2, 2012  
12  
ISLA216S  
Typical Performance Curves(Continued)  
All Typical Performance Characteristics apply under the following conditions unless otherwise noted: AVDD = OVDD = 1.8V, T = +25°C,  
A
A
= -2dBFS, f = 105MHz, f  
= 250MSPS. (Continued)  
IN  
IN  
SAMPLE  
FIGURE 23. SERDES BATHTUB at 3.0Gbps  
FIGURE 24. SERDES BATHTUB at 4.375Gbps  
FIGURE 26. SERDES HISTOGRAM at 3.0Gbps  
FIGURE 25. SERDES HISTOGRAM at 1.0Gbps  
FIGURE 27. SERDES HISTOGRAM at 4.375Gbps  
FN7996.0  
February 2, 2012  
13  
ISLA216S  
A user-initiated reset can subsequently be invoked in the event  
that the above conditions cannot be met at power-up.  
Theory of Operation  
Functional Description  
After the power supply has stabilized, the internal POR releases  
RESETN and an internal pull-up pulls it high, which starts the  
calibration sequence. If a subsequent user-initiated reset is  
desired, the RESETN pin should be connected to an open-drain  
driver with an off-state/high impedance state leakage of less  
than 0.5mA to assure exit from the reset state so calibration can  
start.  
The ISLA216S is based upon a 16-bit, 250MSPS ADC converter  
core that utilizes a pipelined successive approximation  
architecture (see Figure 28). The input voltage is captured by a  
Sample-Hold Amplifier (SHA) and converted to a unit of charge.  
Proprietary charge-domain techniques are used to successively  
compare the input to a series of reference charges. Decisions  
made during the successive approximation operations determine  
the digital code for each input value. Digital error correction is also  
applied.  
The calibration sequence is initiated on the rising edge of  
RESETN, as shown in Figure 29. Calibration status can be  
determined by reading the cal_status bit (LSB) at 0xB6. This bit is  
‘0’ during calibration and goes to a logic ‘1’ when calibration is  
complete. During calibration the JESD204 transmitter PLL is not  
locked to the ADC sample clock, so the CML outputs will toggle at  
an undetermined rate. Normal operation is resumed once  
calibration is complete.  
Power-On Calibration  
The ADC core(s) perform a self-calibration at start-up. An internal  
power-on-reset (POR) circuit detects the supply voltage ramps  
and initiates the calibration when the analog and digital supply  
voltages are above a threshold. The following conditions must be  
adhered to for the power-on calibration to execute successfully:  
At 250MSPS the nominal calibration time is 280ms, while the  
maximum calibration time is 550ms.  
• A frequency-stable conversion clock must be applied to the  
CLKP/CLKN pins  
• DNC pins must not be connected  
• SDO has an internal pull-up and should not be driven externally  
• RESETN is pulled low by the ADC internally during POR.  
External driving of RESETN is optional.  
• SPI communications must not be attempted during  
calibration, with the only exception of performing read  
operations on the cal_done register at address 0xB6.  
CLOCK  
GENERATION  
INP  
2.5-BIT  
2.5-BIT  
6- STAGE  
1.5-BIT/ STAGE  
3- STAGE  
1-BIT/ STAGE  
3-BIT  
FLASH  
SHA  
FLASH  
FLASH  
INN  
+
1.25V  
DIGITAL  
ERROR  
CORRECTION  
FIGURE 28. ADC CORE BLOCK DIAGRAM  
FN7996.0  
February 2, 2012  
14  
ISLA216S  
The performance of the ISLA216S changes with variations in  
CLKN  
CLKP  
temperature, supply voltage or sample rate. The extent of these  
changes may necessitate recalibration, depending on system  
performance requirements. Best performance will be achieved  
by recalibrating the ADC under the environmental conditions at  
which it will operate.  
CALIBRATION  
TIME  
RESETN  
CALIBRATION  
BEGINS  
CAL_STATUS  
BIT  
A supply voltage variation of <100mV will generally result in an  
SNR change of <0.5dBFS and SFDR change of <3dBc. In  
situations where the sample rate is not constant, best results will  
be obtained if the device is calibrated at the highest sample rate.  
Reducing the sample rate by less than 80MSPS will typically  
result in an SNR change of <0.5dBFS and an SFDR change of  
<3dBc.  
CALIBRATION  
COMPLETE  
FIGURE 29. CALIBRATION TIMING  
User Initiated Reset  
Figures 30 through 32 show the affect of temperature on SNR  
and SFDR performance with power on calibration performed at  
-40°C, +25°C, and +85°C. Each plot shows the variation of  
SNR/SFDR across temperature after a single power on  
calibration at -40°C, +25°C and +85°C. Best performance is  
typically achieved by a user-initiated power on calibration at the  
operating conditions, as stated earlier. However, it can be seen  
that performance drift with temperature is not a very strong  
function of the temperature at which the power on calibration is  
performed.  
Recalibration of the ADC can be initiated at any time by driving  
the RESETN pin low for a minimum of one clock cycle. An  
open-drain driver with a drive strength in its high impedance  
state of less than 0.5mA is recommended, as RESETN has an  
internal high impedance pull-up to OVDD. As is the case during  
power-on reset, RESETN and DNC pins must be in the proper  
state for the calibration to successfully execute.  
Temperature Calibration  
90  
90  
SFDR, 200MSPS  
SFDR, 200MSPS  
85  
85  
SFDR, 250MSPS  
SFDR, 130MSPS  
80  
SFDR, 250MSPS  
SNR, 250MSPS  
SFDR, 130MSPS  
SNR, 130MSPS  
80  
75  
70  
65  
60  
75  
SNR, 130MSPS  
SNR, 250MSPS  
SNR, 200MSPS  
SNR, 200MSPS  
70  
65  
60  
-40  
-35  
-30  
-25  
-20  
5
15  
25  
TEMPERATURE (°C)  
35  
45  
TEMPERATURE (°C)  
FIGURE 30. TYPICAL SNR AND SFDR PERFORMANCE vs  
TEMPERATURE, DEVICE CALIBRATED AT -40°C,  
= 105MHz  
FIGURE 31. TYPICAL SNR AND SFDR PERFORMANCE vs  
TEMPERATURE, DEVICE CALIBRATED AT +25°C,  
= 105MHz  
f
f
IN  
IN  
95  
90  
85  
80  
75  
70  
65  
60  
SFDR, 200MSPS  
SFDR, 250MSPS  
SNR, 250MSPS  
SFDR, 130MSPS  
SNR, 130MSPS  
SNR, 200MSPS  
65  
70  
75  
80  
85  
TEMPERATURE (°C)  
FIGURE 32. TYPICAL SNR AND SFDR PERFORMANCE vs TEMPERATURE, DEVICE CALIBRATED AT +85°C, f = 105MHz  
IN  
FN7996.0  
February 2, 2012  
15  
ISLA216S  
Analog Input  
A single fully differential input (VINP/VINN) connects to the  
sample and hold amplifier (SHA) of each unit ADC. The ideal  
full-scale input voltage is 2.0V, centered at the VCM voltage as  
shown in Figure 33.  
ADC  
1.8  
1.4  
1.0  
0.6  
0.2  
VINN  
VCM  
VINP  
1.0V  
FIGURE 36. DIFFERENTIAL AMPLIFIER INPUT  
A differential amplifier, as shown in the simplified block diagram  
in Figure 36, can be used in applications that require  
DC-coupling. In this configuration, the amplifier will typically  
dominate the achievable SNR and distortion performance.  
Intersil’s new ISL552xx differential amplifier family can also be  
used in certain AC applications with minimal performance  
degradation. Contact the factory for more information.  
FIGURE 33. ANALOG INPUT RANGE  
Best performance is obtained when the analog inputs are driven  
differentially. The common-mode output voltage, VCM, should be  
used to properly bias the inputs as shown in Figures 34 through  
36. An RF transformer will give the best noise and distortion  
performance for wideband and/or high intermediate frequency  
(IF) inputs. Two different transformer input schemes are shown in  
Figures 34 and 35.  
When an over range occurs, the data sample output bits are held  
at full scale (all 0’s or all 1’s), thus allowing the detection of this  
condition in the receiver device.  
Clock Input  
The clock input circuit is a differential pair (see Figure 49).  
ADT1-1WT  
ADT1-1WT  
Driving these inputs with a high level (up to 1.8V  
on each  
P-P  
1000pF  
input) sine or square wave will provide the lowest jitter  
performance. A transformer with 4:1 impedance ratio will  
provide increased drive levels. The clock input is functional with  
AC-coupled LVDS, LVPECL, and CML drive levels. To maintain the  
lowest possible aperture jitter, it is recommended to have high  
slew rate at the zero crossing of the differential clock input  
signal.  
ADC  
VCM  
0.1µF  
FIGURE 34. TRANSFORMER INPUT FOR GENERAL PURPOSE  
APPLICATIONS  
The recommended drive circuit is shown in Figure 37. A duty  
range of 40% to 60% is acceptable. The clock can be driven  
single-ended, but this will reduce the edge rate and may impact  
SNR performance. The clock inputs are internally self-biased to  
TX-2-5-1  
ADTL1-12  
AV /2 through a Thevenin equivalent of 10kΩ to facilitate AC  
coupling.  
DD  
1000pF  
ADC  
1000pF  
TC4-19G2+  
VCM  
CLKP  
200  
1000pF  
FIGURE 35. TRANSMISSION-LINE TRANSFORMER INPUT FOR  
HIGH IF APPLICATIONS  
0.01µF  
This dual transformer scheme is used to improve common-mode  
rejection, which keeps the common-mode level of the input  
matched to VCM. The value of the shunt resistor should be  
determined based on the desired load impedance. The  
differential input resistance of the ISLA216S is 300Ω.  
CLKN  
1000pF  
1000pF  
FIGURE 37. RECOMMENDED CLOCK DRIVE  
The SHA design uses a switched capacitor input stage (see  
Figure 48), which creates current spikes when the sampling  
capacitance is reconnected to the input voltage. This causes a  
disturbance at the input, which must settle before the next  
sampling point. Lower source impedance will result in faster  
settling and improved performance. Therefore a 2:1 or 1:1  
transformer and low shunt resistance are recommended for  
optimal performance.  
A selectable 2x or 4x frequency divider is provided in series with the  
clock input. The divider can be used in the 2x mode with a sample  
clock equal to twice the desired sample rate or in 4x mode with a  
sample clock equal to four times the desired sample rate. Use of the  
2x or 4x frequency divider enables the use of the Phase Slip feature,  
which enables the system to be able to select the phase of the  
divide by 2 or divide by 4 that causes the ADC to sample the  
analog input.  
FN7996.0  
February 2, 2012  
16  
ISLA216S  
TABLE 1. CLKDIV PIN SETTINGS  
Voltage Reference  
A temperature compensated internal voltage reference provides  
the reference charges used in the successive approximation  
operations. The full-scale range of each ADC is proportional to  
the reference voltage. The nominal value of the voltage reference  
is 1.25V.  
CLKDIV PIN  
DIVIDE RATIO  
AVSS  
Float  
AVDD  
2
1
4
Digital Outputs  
The digital outputs are in CML format, and feature analog and  
digital characteristics compliant with the JESD204A standard  
requirements.  
The clock divider can also be controlled through the SPI port,  
which overrides the CLKDIV pin setting. See “SPI Physical  
Interface” on page 22. A delay-locked loop (DLL) generates  
internal clock signals for various stages within the charge  
pipeline. If the frequency of the input clock changes, the DLL may  
take up to 52μs to regain lock at 250MSPS. The lock time is  
inversely proportional to the sample rate.  
Power Dissipation  
The power dissipated by the device is dependent on the ADC  
sample rate and the number of active lanes in the link. There is a  
fixed bias current drawn from the analog supply for the ADC,  
along with a fixed bias current drawn from the digital supply for  
each active lane. The remaining power dissipation is linearly  
related to the sample rate.  
The DLL has two ranges of operation, slow and fast. The slow  
range can be used for ADC core sample rates between 40MSPS  
and 100MSPS, while the default fast range can be used from  
80MSPS to the maximum specified sample rate. The lane data  
rate is related to the ADC core sample rate by a relationship that  
is defined by the JESD204 transmitter configuration, and has  
additional frequency constraints; see“JESD204A Transmitter” on  
page 18 for additional details.  
Nap/Sleep  
Portions of the device may be shut down to save power during  
times when operation of the ADC is not required. Two power saving  
modes are available: Nap, and Sleep. Nap mode reduces power  
dissipation significantly while taking a very short time to return to  
functionality. Sleep mode reduces power consumption drastically  
while taking longer to return to functionality.  
Jitter  
In a sampled data system, clock jitter directly impacts the  
achievable SNR performance. The theoretical relationship  
between clock jitter (t ) and SNR is shown in Equation 1 and is  
J
illustrated in Figure 38.  
1
In Nap mode the JESD204 lanes will continue to produce valid  
encoded data, allowing the link to remain active and thus return to  
a functional state quickly. The data transmitted over the lanes in  
nap mode is the last valid ADC sample, repeated until leaving nap  
mode. The 8b/10b encoder’s running disparity will prevent the  
potentially long time repetition of this last valid sample from  
creating DC bias on the lane. In sleep mode the JESD204 lanes will  
be deactivated to conserve power. Thus, sometime after wake up  
code group alignment will be required to reestablish the link.  
-------------------  
SNR = 20 log  
(EQ. 1)  
10  
2πf  
t
IN J  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
tj = 0.1ps  
14 BITS  
tj = 1ps  
12 BITS  
The input clock should remain running and at a fixed frequency  
during Nap or Sleep, and CSB should be high. The JESD204 link  
will only remain established during nap mode if the input clock  
continues to remain stable during the nap period.  
tj = 10ps  
10 BITS  
tj = 100ps  
By default after the device is powered on, the operational state is  
controlled by the NAPSLP pin as shown in Table 2. Please note  
that power on calibration occurs at power up time regardless of  
the state of the NAPSLP pin; immediately following this power on  
calibration routine the device will enter nap or sleep state if the  
NAPSLP pin voltage dictates it is to do so.  
50  
1M  
10M  
100M  
1G  
INPUT FREQUENCY (Hz)  
FIGURE 38. SNR vs CLOCK JITTER  
This relationship shows the SNR that would be achieved if clock  
jitter were the only non-ideal factor. In reality, achievable SNR is  
limited by internal factors such as linearity, aperture jitter and  
thermal noise as well. Internal aperture jitter is the uncertainty in  
the sampling instant. The internal aperture jitter combines with  
the input clock jitter in a root-sum-square fashion, since they are  
not statistically correlated, and this determines the total jitter in  
the system. The total jitter, combined with other noise sources,  
then determines the achievable SNR.  
TABLE 2. NAPSLP PIN SETTINGS  
NAPSLP PIN  
AVSS  
MODE  
Normal  
Nap  
Float  
AVDD  
Sleep  
The power-down mode can also be controlled through the SPI  
port, which overrides the NAPSLP pin setting. Details on this are  
contained in “Serial Peripheral Interface” on page 22.  
FN7996.0  
February 2, 2012  
17  
ISLA216S  
.
TABLE 3. INPUT VOLTAGE TO OUTPUT CODE MAPPING  
TWO’S  
Data Format  
Output data can be presented in three formats: two’s  
complement(default), Gray code and offset binary. The data  
format can be controlled through the SPI port by writing to  
address 0x73. Details on this are contained in “Serial Peripheral  
Interface” on page 22.  
INPUT  
VOLTAGE  
OFFSET BINARY  
COMPLEMENT  
GRAY CODE  
–Full Scale 00 0000 0000 0000 10 0000 0000 0000 00 0000 0000 0000  
–Full Scale 00 0000 0000 0001 10 0000 0000 0001 00 0000 0000 0001  
+ 1LSB  
Offset binary coding maps the most negative input voltage to  
code 0x000 (all zeros) and the most positive input to 0xFFF (all  
ones). Two’s complement coding simply complements the MSB  
of the offset binary representation.  
Mid–Scale 10 0000 0000 0000 00 0000 0000 0000 11 0000 0000 0000  
+Full Scale 11 1111 1111 1110 01 1111 1111 1110 10 0000 0000 0001  
– 1LSB  
+Full Scale 11 1111 1111 1111 01 1111 1111 1111 10 0000 0000 0000  
When calculating Gray code the MSB is unchanged. The  
remaining bits are computed as the XOR of the current bit  
position and the next most significant bit. Figure 39 shows this  
operation.  
Clock Divider Synchronous Reset  
The function of clock divider synchronous reset is available as a  
SPI-programmable overloaded function on the SYNCP and  
SYNCN pins. Given that the clock divider reset and SYNC features  
have the same electrical and timing requirements, this  
overloading allows the system to generate only a single well  
timed signal with respect to the ADC sample clock and select the  
ADC’s interpretation of the signal as a SPI-programmable option  
(see SPI register 0x77 description for more information). By  
default the SYNCP and SYNCN pins will function as the  
JESD204A SYNC~.  
BINARY  
13  
12  
11  
1
0
• • • •  
• • • •  
• • • •  
GRAY CODE  
13  
12  
11  
1
0
The use of clock divider reset function is a requirement in a  
system that uses the ISLA214S50, ISLA214S35, or CLKDIV = 2  
or 4 and also requires time alignment or deterministic latency of  
multiple devices. Please contact the factory for more details  
about this feature and its usage.  
FIGURE 39. BINARY TO GRAY CODE CONVERSION  
Converting back to offset binary from Gray code must be done  
recursively, using the result of each bit for the next lower bit as  
shown in Figure 40.  
Soft Reset  
GRAY CODE  
13  
12  
11  
1
0
• • • •  
Soft reset is a function intended to be used when the power on  
reset is to be re-run. An application may decide to issue a soft  
calibration command after significant temperature change or  
after a change in the sample rate frequency to optimize  
performance under the new condition.  
Soft reset is issued by writing the Soft Reset bit at SPI address  
0x00. Soft reset is a self-resetting bit in that will automatically  
return to 0 once the power on calibration has completed.  
• • • •  
• • • •  
• • • •  
JESD204A Transmitter  
Overview  
The conversion data is presented by a JESD204B-compliant  
SERDES interface. The SERDES lane data rate supports typical  
speeds up to 4.375Gbps, exceeding the 3.125Gbps maximum  
specified by the JESD204 rev A standard. A SYNC input is  
included, which is used for lane initialization as well as time  
alignment of multiple converter devices. AC coupling of the  
SERDES lane(s) on the board is required. A block diagram of this  
SERDES transmitter is shown in Figure 41.  
BINARY  
13  
12  
11  
1
0
FIGURE 40. GRAY CODE TO BINARY CONVERSION  
For more information about the standardized characteristics and  
features of a JESD204 interface, please see JESD204 rev A and rev  
B standards. For application design support, including evaluation kit  
schematics and layout, reference FPGA project(s), and simulation  
models for functionality and signal integrity, please contact the  
factory and/or view application notes at  
Mapping of the input voltage to the various data formats is  
shown in Table 3.  
http://www.intersil.com/contacts/.  
FN7996.0  
February 2, 2012  
18  
ISLA216S  
SERDES Block  
Link Layer  
Analog  
Input  
Transport  
Layer  
Scrambler  
1+x14+x15  
Encoder  
8/10  
Lane 0  
Sample Data  
SER  
Logic  
PLL  
Multiply  
Clock  
Management  
Sample  
Clock  
- Code group Synchronization  
- Alignment Characters  
- Initial Lane Synchronization  
- Etc  
SYNC  
Lane 1  
Link Layer  
FIGURE 41. SERDES TRANSMITTER BLOCK DIAGRAM  
See Table 4 on page 20 for the full list of programmable  
JESD204 parameters. Via SPI, the JESD204 transmitter is highly  
configurable, supporting user configuration of the transmitter.  
Please contact the factory for a full list of downgradeable  
configurations that are supported.  
the previous frame, is replaced with a different specific control  
character. A more complete description of the link initialization  
sequence, including finite state machine implementation, can be  
found in the JESD204 rev A standard.  
LANE DATA RATE  
Signal integrity plots, including data eye, BER bathtub curves,  
and edge histogram plots versus lane data rate can be found in  
the typical operating curves section.  
The lane data rate for this product family is constrained to be  
greater than or equal to 1Gbps and less than or equal to  
3.125Gbps for guaranteed operation, so as to be consistent with  
the lane data rate limit of 3.125Gbps set by the JESD204 rev A  
standard. The lane data rate can typically exceed 4.2Gbps for this  
product family.  
Initial Lane Alignment  
The link initialization process is started by asserting the SYNC~  
signal to the ADC device. This assertion causes the JESD204  
transmitter to generate comma characters, which are used by the  
receiver to accomplish code group synchronization (bit and octet  
alignment, respectively). Once code group synchronization is  
detected in the receiver, it de-asserts the SYNC~ signal, causing the  
JESD204 transmitter to generate the initial lane alignment  
sequence (ILA). The ILA is comprised of 4 multi-frames of data in a  
standard format, with the length of each multi-frame determined by  
the K parameter as programmed into the SPI JESD204A parameter  
table. The ILA includes standard control character markers that can  
be used to perform channel bonding in the receiving device if  
desired. The 2nd multi-frame includes the full JESD204A parameter  
data, allowing the receiver to auto-detect the lane configuration if  
desired.  
SCRAMBLER  
The bypassable scrambler is compliant with the scrambler  
defined in the JESD204 rev A standard.  
This implementation seeds the scrambler with the initial lane  
alignment sequence, such that the first two octets following the  
sequence can be properly descrambled if the receiver also  
passes the lane alignment sequence through its descrambler.  
Even if the receiver does not implement this detail, the 3rd and  
subsequent octets can be descrambled to yield ADC data due to  
the self-synchronizing nature of the scrambler used.  
MULTI-CHIP TIME ALIGNMENT  
After completion of the ILA the JESD204 transmitter begins  
transmitting ADC sample data. Continuous link and lane  
alignment monitoring is accomplished via an octet substitution  
scheme. The last octet in each frame, if identical to the last octet  
in the previous frame, is replaced with a specific control  
character. If both sides of the link support lane synchronization,  
the last octet in each multi-frame, if identical to the last octet in  
The JESD204 standard (in various revisions) provides the  
capability to time align multiple JESD204 ADC devices to a single  
logic device (FPGA or ASIC). This feature is critical in many  
applications that cannot tolerate the variable latency of the  
JESD204 link, and that must process pipeline depth correct data  
from more than one ADC device.  
FN7996.0  
February 2, 2012  
19  
ISLA216S  
Time alignment of multiple devices provides the capability to  
Supported test patterns include both transport and link layer  
patterns. Transport layer patterns are passed through the  
transport layer of the JESD204 transmitter, following the same  
sequence of being packed and sliced into octets as the ADC  
sample data. Link layer test patterns bypass the transport layer  
and are injected directly into the 8b/10b encoder, serialized, and  
sent out of the physical media. Test pattern generation is  
controlled through SPI register 0xC0.  
align samples from multiple JESD204 ADC devices in the system  
in a pipeline-depth correct manner, thus enabling the system to  
analyze the ADC data from multiple devices while eliminating the  
variable latency of the JESD204 link as a concern. This capability  
enables configurations of JESD204 ADCs as IQ, interleave,  
and/or simultaneously-sampled converters.  
This ADC family uses the asserted to de-asserted SYNC~  
transition as the absolute time event with which to generate a  
known sequence of characters at the JESD204 transmitter of  
equal pipeline depth between all ADC devices in the system to be  
time aligned. This is consistent with the JESD204 rev B  
subclass 2 device definition.  
Link layer PRBS patterns are standard PRBS patterns that can be  
used with built-in standard PRBS checkers in, for example, FPGA  
SERDES-capable pins.  
All transport layer test patterns re-initialize their phase when the  
SYNC~ de-assertion occurs; consequently, a system that provides  
a well-timed SYNC~ signal with respect to the ADC sample clock  
can expect transport layer test patterns to have consistent phase  
with respect to that de-assertion, which can be a significant aid  
when debugging the system.  
Test Patterns  
The complexity of the JESD204 interface merits much more test  
pattern capability than less complex parallel interfaces. This  
device family consequently supports a much wider range of test  
patterns than previous ADC families.  
TABLE 4. JESD204A PARAMETERS  
NUMBER  
JESD204  
PRODUCT  
OF LANES PARAMETER ENCODED  
JESD204A PARAMETERS AND FRAME MAP (Notes 16, 17, 18)  
C0S0[7:0]  
ISLA216S25  
ISLA216S20  
ISLA216S13  
2
CF = 0  
CS = 0  
F = 2  
0
0
C0S0[15:8]  
C0S1[15:8]  
1
HD = 0  
L = 2  
0
1
C0S1[8:0]  
M = 1  
N = 16  
N' = 16  
S = 2  
0
15  
15  
1
K >= 9  
>= 8  
NOTES:  
16. The JESD204A parameters are shown as their actual values, with the JESD204 encoded values (i.e., the values that are programmed into the SPI  
registers) in the next column over. Typically values that must always be greater than 1 are encoded as value minus 1, and so on.  
17. Frame map format decoder: "CxSy[a:b]" = Converter x, Sample y, bits a through b. For example, "C0S0[13:6]" = Converter 0, Sample 0, bits 13 through  
6, etc. "T" = Tail bit (information-less bit packed in the transport layer mapping to form octets).  
18. The topmost lane in the graphical frame map is Lane0, followed by Lane1.  
FN7996.0  
February 2, 2012  
20  
ISLA216S  
CSB  
SCLK  
SDIO  
R/W  
W1  
W0  
A12  
A11  
A10  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FIGURE 42. MSB-FIRST ADDRESSING  
CSB  
SCLK  
SDIO  
A0  
A1  
A2  
A11  
A12  
W0  
W1  
R/W  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
FIGURE 43. LSB-FIRST ADDRESSING  
t
DSW  
t
t
t
CLK  
HI  
H
t
DHW  
CSB  
t
t
S
LO  
SCLK  
SDIO  
R/W W1 W0 A12 A11 A10 A9  
A8  
A7  
D0  
D5  
D4  
D3  
D2  
D1  
SPI WRITE  
FIGURE 44. SPI WRITE  
tDSW  
tCLK  
tHI  
tH  
tDVR  
tS  
CSB  
tDHW  
tLO  
SCLK  
WRITING A READ COMMAND  
A9 A2 A1  
READING DATA  
)
( 3 WIRE MODE  
D2 D1 D0  
SDIO  
SDO  
A0  
D7  
D6  
D3  
W1 W 0  
A12 A11  
A10  
R/W  
( 4 WIRE MODE)  
D3 D2 D1  
D7  
D0  
SPI READ  
FIGURE 45. SPI READ  
FN7996.0  
February 2, 2012  
21  
ISLA216S  
CSB STALLING  
CSB  
SCLK  
SDIO  
INSTRUCTION/ADDRESS  
DATA WORD 1  
DATA WORD 2  
FIGURE 46. 2-BYTE TRANSFER  
LAST LEGAL  
CSB STALLING  
CSB  
SCLK  
SDIO  
INSTRUCTION/ADDRESS  
DATA WORD 1  
DATA WORD N  
FIGURE 47. N-BYTE TRANSFER  
concurrently, but only one slave device can be read from at a  
given time (again, only in three-wire mode). If multiple slave  
devices are selected for reading at the same time, the results will  
be indeterminate.  
Serial Peripheral Interface  
A serial peripheral interface (SPI) bus is used to facilitate  
configuration of the device and to optimize performance. The SPI  
bus consists of chip select (CSB), serial clock (SCLK) serial data  
output (SDO), and serial data input/output (SDIO). The maximum  
The communication protocol begins with an instruction/address  
phase. The first rising SCLK edge following a high-to-low  
transition on CSB determines the beginning of the two-byte  
instruction/address command; SCLK must be static low before  
the CSB transition. Data can be presented in MSB-first order or  
LSB-first order. The default is MSB-first, but this can be changed  
by setting 0x00[6] high. Figures 42 and 43 show the appropriate  
bit ordering for the MSB-first and LSB-first modes, respectively. In  
MSB-first mode, the address is incremented for multi-byte  
transfers, while in LSB-first mode it’s decremented.  
SCLK rate is equal to the ADC sample rate (f  
) divided by 7  
divided by 16 for reads. There is  
SAMPLE  
for write operations and f  
no minimum SCLK rate.  
SAMPLE  
The following sections describe various registers that are used to  
configure the SPI or adjust performance or functional parameters.  
Many registers in the available address space (0x00 to 0xFF) are  
not defined in this document. Additionally, within a defined  
register there may be certain bits or bit combinations that are  
reserved. Undefined registers and undefined values within defined  
registers are reserved and should not be selected. Setting any  
reserved register or value may produce indeterminate results.  
In the default mode, the MSB is R/W, which determines if the  
data is to be read (active high) or written. The next two bits, W1  
and W0, determine the number of data bytes to be read or  
written (see Table 5). The lower 13 bits contain the first address  
for the data transfer. This relationship is illustrated in Figure 44,  
and timing values are given in “Switching Specifications” on  
page 8.  
SPI Physical Interface  
The serial clock pin (SCLK) provides synchronization for the data  
transfer. By default, all data is presented on the serial data  
input/output (SDIO) pin in three-wire mode. The state of the SDIO  
pin is set automatically in the communication protocol  
(described in the following). A dedicated serial data output pin  
(SDO) can be activated by setting 0x00[7] high to allow operation  
in four-wire mode.  
After the instruction/address bytes have been read, the  
appropriate number of data bytes are written to or read from the  
ADC (based on the R/W bit status). The data transfer will  
continue as long as CSB remains low and SCLK is active. Stalling  
of the CSB pin is allowed at any byte boundary  
(instruction/address or data) if the number of bytes being  
transferred is three or less. For transfers of four bytes or more,  
CSB is allowed to stall in the middle of the instruction/address  
bytes or before the first data byte. If CSB transitions to a high  
state after that point the state machine will reset and terminate  
the data transfer.  
The SPI port operates in a half duplex master/slave  
configuration, with the ADC functioning as a slave. Multiple slave  
devices can interface to a single master in three-wire mode only,  
since the SDO output of an unaddressed device is asserted in  
four wire mode.  
The chip-select bar (CSB) pin determines when a slave device is  
being addressed. Multiple slave devices can be written to  
FN7996.0  
February 2, 2012  
22  
ISLA216S  
TABLE 5. BYTE TRANSFER SELECTION  
[W1:W0] BYTES TRANSFERRED  
00  
Device Configuration/Control  
A common SPI map, which can accommodate single-channel or  
multi-channel devices, is used for all Intersil ADC products.  
1
01  
10  
11  
2
3
ADDRESS 0X20: OFFSET_COARSE_ADC0  
ADDRESS 0X21: OFFSET_FINE_ADC0  
4 or more  
The input offset of the ADC core can be adjusted in fine and  
coarse steps. Both adjustments are made via an 8-bit word as  
detailed in Table 6. The data format is twos complement.  
Figures 46 and 47 illustrate the timing relationships for 2-byte  
and N-byte transfers, respectively. The operation for a 3-byte  
transfer can be inferred from these diagrams.  
The default value of each register will be the result of the  
self-calibration after initial power-up. If a register is to be  
incremented or decremented, the user should first read the  
register value then write the incremented or decremented value  
back to the same register.  
SPI Configuration  
ADDRESS 0X00: CHIP_PORT_CONFIG  
Bit ordering and SPI reset are controlled by this register. Bit order  
can be selected as MSB to LSB (MSB first) or LSB to MSB (LSB  
first) to accommodate various micro controllers.  
TABLE 6. OFFSET ADJUSTMENTS  
0x20[7:0]  
COARSE OFFSET  
0x21[7:0]  
FINE OFFSET  
PARAMETER  
Steps  
Bit 7 SDO Active  
Bit 6 LSB First  
255  
255  
–Full Scale (0x00)  
Mid–Scale (0x80)  
+Full Scale (0xFF)  
Nominal Step Size  
-133LSB (-47mV)  
0.0LSB (0.0mV)  
+133LSB (+47mV)  
1.04LSB (0.37mV)  
-5LSB (-1.75mV)  
0.0LSB  
Setting this bit high configures the SPI to interpret serial data  
as arriving in LSB to MSB order.  
+5LSB (+1.75mV)  
0.04LSB (0.014mV)  
Bit 5 Soft Reset  
Setting this bit high resets all SPI registers to default values.  
Bit 4 Reserved  
ADDRESS 0X22: GAIN_COARSE_ADC0  
ADDRESS 0X23: GAIN_MEDIUM_ADC0  
ADDRESS 0X24: GAIN_FINE_ADC0  
This bit should always be set high.  
Bits 3:0 These bits should always mirror bits 4:7 to avoid  
ambiguity in bit ordering.  
Gain of the ADC core can be adjusted in coarse, medium and fine  
steps. Coarse gain is a 4-bit adjustment while medium and fine  
are 8-bit. Multiple Coarse Gain Bits can be set for a total  
adjustment range of ±4.2%. (‘0011’ -4.2% and ‘1100’ +4.2%)  
It is recommended to use one of the coarse gain settings (-4.2%,  
-2.8%, -1.4%, 0, 1.4%, 2.8%, 4.2%) and fine-tune the gain using the  
registers at 0x0023 and 0x24.  
ADDRESS 0X02: BURST_END  
If a series of sequential registers are to be set, burst mode can  
improve throughput by eliminating redundant addressing. The  
burst is ended by pulling the CSB pin high. Setting the burst_end  
address determines the end of the transfer. During a write  
operation, the user must be cautious to transmit the correct  
number of bytes based on the starting and ending addresses.  
The default value of each register will be the result of the  
self-calibration after initial power-up. If a register is to be  
incremented or decremented, the user should first read the  
register value then write the incremented or decremented value  
back to the same register.  
Bits 7:0 Burst End Address  
This register value determines the ending address of the burst  
data.  
TABLE 7. COARSE GAIN ADJUSTMENT  
Device Information  
0x22[3:0] core 0  
0x26[3:0] core 1  
NOMINAL COARSE GAIN ADJUST  
(%)  
ADDRESS 0X08: CHIP_ID  
Bit3  
Bit2  
Bit1  
Bit0  
+2.8  
+1.4  
-2.8  
ADDRESS 0X09: CHIP_VERSION  
The generic die identifier and a revision number, respectively, can  
be read from these two registers.  
-1.4  
FN7996.0  
February 2, 2012  
23  
ISLA216S  
clock signals gets used to cause the sampling event, by “slipping” the  
TABLE 8. MEDIUM AND FINE GAIN ADJUSTMENTS  
sampling event by one input clock period each time phase_slip is  
asserted.  
0x23[7:0]  
MEDIUM GAIN  
0x24[7:0]  
FINE GAIN  
PARAMETER  
Steps  
The clkdivrst feature can work in conjunction with phase_slip.  
After well-timed assertion of the clkdivrst signal (via overloading  
on the SYNC inputs), the sampling edge position with respect to  
the incoming clock rate will have been reset, allowing the system  
to “slip” whatever desired number of incoming clock periods  
from a known state.  
256  
-2%  
256  
–Full Scale (0x00)  
Mid–Scale (0x80)  
+Full Scale (0xFF)  
Nominal Step Size  
-0.20%  
0.00%  
0.00%  
+2%  
+0.2%  
0.016%  
0.0016%  
ADDRESS 0X72: CLOCK_DIVIDE  
ADDRESS 0X25: MODES  
The ADC has a selectable clock divider that can be set to divide  
by two or one (no division). By default, the tri-level CLKDIV pin  
selects the divisor This functionality can be overridden and  
controlled through the SPI, as shown in Table 10. This register is  
not changed by a Soft Reset.  
Two distinct reduced power modes can be selected. By default,  
the tri-level NAPSLP pin can select normal operation, nap or  
sleep modes (refer to“Nap/Sleep” on page 17). This functionality  
can be overridden and controlled through the SPI. This register is  
not changed by a Soft Reset.  
TABLE 10. CLOCK DIVIDER SELECTION  
TABLE 9. POWER-DOWN CONTROL  
0x25[2:0]  
0x72[2:0]  
CLOCK DIVIDER  
VALUE  
000  
VALUE  
POWER DOWN MODE  
Pin Control  
000  
Pin Control  
001  
Divide by 1  
001  
Normal Operation  
Nap Mode  
010  
Divide by 2  
010  
other  
Not Allowed  
100  
Sleep Mode  
ADDRESS 0X73: OUTPUT_MODE_A  
ADDRESS 0X26: OFFSET_COARSE_ADC1  
ADDRESS 0X27: OFFSET_FINE_ADC1  
The output_mode_A register controls the logical coding of the  
sample data. Data can be coded in three possible formats: two’s  
complement(default), Gray code or offset binary. See Table 11.  
The input offset of ADC core#1 can be adjusted in fine and  
coarse steps in the same way that offset for core#0 can be  
adjusted. Both adjustments are made via an 8-bit word as  
detailed in Table 6. The data format is two’s complement.  
This register is not changed by a Soft Reset.  
TABLE 11. OUTPUT FORMAT CONTROL  
0x73[2:0]  
The default value of each register will be the result of the  
self-calibration after initial power-up. If a register is to be  
incremented or decremented, the user should first read the  
register value then write the incremented or decremented value  
back to the same register.  
VALUE  
OUTPUT FORMAT  
Two’s Complement (Default)  
Gray Code  
000  
010  
100  
Offset Binary  
ADDRESS 0X28: GAIN_COARSE_ADC1  
ADDRESS 0X29: GAIN_MEDIUM_ADC1  
ADDRESS 0X2A: GAIN_FINE_ADC1  
ADDRESS 0X74: OUTPUT_MODE_B  
Bit 6 DLL Range  
This bit sets the DLL operating range to fast (default) or slow.  
Gain of ADC core #1 can be adjusted in coarse, medium and fine  
steps in the same way that core #0 can be adjusted. Coarse gain is  
a 4-bit adjustment while medium and fine are 8-bit. Multiple  
Coarse Gain Bits can be set for a total adjustment range of ±4.2.  
Internal clock signals are generated by a delay-locked loop (DLL),  
which has a finite operating range. Table 12 shows the allowable  
sample rate ranges for the slow and fast settings.  
TABLE 12. DLL RANGES  
Global Device Configuration/Control  
DLL RANGE  
Slow  
MIN  
40  
MAX  
100  
250  
UNIT  
MSPS  
MSPS  
ADDRESS 0X71: PHASE_SLIP  
When using the clock_divide feature, the sample clock edge that the  
ADC uses to sample the analog input signal can be one of several  
different edges on the incoming higher frequency sample clock. For  
example, in clock_divide = 2 mode, every other incoming sample clock  
edge gets used by the ADC to sample the analog input. The phase_slip  
feature allows the system to control which edge of the incoming sample  
Fast  
80  
FN7996.0  
February 2, 2012  
24  
ISLA216S  
ADDRESS 0X77: SYNC_FUNCTION  
ADDRESS 0XC5: USER_PATT3_LSB  
Bit 0 Clkdivrst  
ADDRESS 0XC6: USER_PATT3_MSB  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 3.  
This bit controls the functionality of the SYNCP, SYNCN pins on  
this device. By default, this bit equals ‘0’, which means that the  
functionality of the SYNCP, SYNCN pins is the JESD204 SYNC.  
Setting this bit equal to ‘1’ modifies the functionality of the  
SYNCP, SYNCN pins to be clkdivrst, which is a synchronous  
divider reset on all internal dividers in the device. Usage of this  
clkdivrst functionality is required to support multi-chip time  
alignment and deterministic latency for devices that use  
interleaved product configurations (ISLA214S50 and  
ISLA214S35), and for any other product configuration that uses  
clkdiv > 1. In both states, the setup and hold times with respect  
to the sample clock remain the same. Contact the factory for  
more details.  
ADDRESS 0XC7: USER_PATT4_LSB  
ADDRESS 0XC8: USER_PATT4_MSB  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 4.  
ADDRESS 0XC9: USER_PATT5_LSB  
ADDRESS 0XCA: USER_PATT5_MSB  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 5.  
ADDRESS 0XB6: CALIBRATION STATUS  
ADDRESS 0XCB: USER_PATT6_LSB  
ADDRESS 0XCC: USER_PATT6_MSB  
The LSB at address 0xB6 can be read to determine calibration  
status. The bit is ‘0’ during calibration and goes to a logic ‘1’  
when calibration is complete.This register is unique in that it can  
be read after POR at calibration, unlike the other registers on  
chip, which can’t be read until calibration is complete.  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 6.  
ADDRESS 0XCD: USER_PATT7_LSB  
ADDRESS 0XCE: USER_PATT7_MSB  
DEVICE TEST  
The device can produce preset or user defined patterns on the  
digital outputs to facilitate in-situ testing. A user can pick from  
preset built-in patterns by writing to the output test mode field  
[7:4] at 0xC0 or user defined patterns by writing to the user test  
mode field [2:0] at 0xC0. The user defined patterns should be  
loaded at address space 0xC1 through 0xD0, see the “SPI  
Memory Map” on page 27 for more detail. The test mode is  
enabled asynchronously to the sample clock, therefore several  
sample clock cycles may elapse before the data is present on the  
output bus.  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 7.  
ADDRESS 0XCF: USER_PATT8_LSB  
ADDRESS 0XD0: USER_PATT8_MSB  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 8.  
ADDRESS 0xDF - 0xF3: JESD204 REGISTERS  
ADDRESS 0XC0: TEST_IO  
Bits 7:4 Output Test Mode  
Address 0xDF-0xEE: JESD204A Parameter  
INTERFACE  
This set of registers controls the JESD204 transmitter  
configuration. By programming these parameters, the system  
can select between efficient and simple packing, select the  
number of powered up SERDES lanes, choose the ADC resolution  
transmitted, and so on. Contact the factory for details.  
These bits set the test mode according to the description in “SPI  
Memory Map” on page 27.  
Bits 2:0 User Test Mode  
The three LSBs in this register determine the test pattern in  
combination with registers 0xC1 through 0xD0. Refer to the “SPI  
Memory Map” on page 27.  
0xE0 through 0xED are the JESD204A parameter registers.  
These parameters are written to set the transport layer mapping  
of the JESD204 transmitter in this product family. These registers  
can be written to shift between efficient and simple packing, to  
enable or bypass scrambling, and to reduce the number of  
powered up lanes used in the link. Each speed graded product  
allows downgrading of the JESD204A link (such as reducing the  
number of lanes, reducing the converter resolution, etc), but not  
upgrading. These parameters are communicated on every lane  
of the link during the 2nd multi-frame of the initial lane  
alignment sequence, and therefore can be used by a generic  
JESD204A receiver the supports the given configuration. See the  
JESD204A specification for additional information on how these  
registers are used in a JESD204A system, including encoding  
rules.  
ADDRESS 0XC1: USER_PATT1_LSB  
ADDRESS 0XC2: USER_PATT1_MSB  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 1.  
ADDRESS 0XC3: USER_PATT2_LSB  
ADDRESS 0XC4: USER_PATT2_MSB  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 2  
FN7996.0  
February 2, 2012  
25  
ISLA216S  
Bits 4:0 “S”, JESD204A Number of samples per converter per  
frame cycle.  
ADDRESS 0XDF: JESD204_UPDATE_CONFIG_START  
Bit 0 update_start  
ADDRESS 0XEA: JESD204_CONFIG_10  
This self-resetting bit is used to indicate that some or all the  
JESD204A parameters (addresses 0xE0 through 0xED) are going  
to be written. Writing a ‘1’ to this bit will hold the JESD204A PLL  
and transmitter in a reset state while these parameters are  
written, because these parameters can affect the transmitter’s  
dynamic behavior (such as modifying the PLLs frequency  
multiplication). The bit will automatically reset to a ‘0’ once a ‘1’  
is written to address 0xEE Bit[0] “update_config W1TC”. The  
recommended sequence for modifying the JESD204A  
transmitter is:  
Bit 7 “HD”, JESD204A HD indicates if a converter’s sample can  
be split across multiple lanes in the link (always ‘0’ for this  
product family).  
Bits 4:0 “CF”, JESD204A CF is the number of control fames per  
frame clock (always ‘0’ for this product family).  
ADDRESS 0XEB: JESD204_CONFIG_11  
Bits 7:0 “RES1”, JESD204A reserved for future use.  
ADDRESS 0XEC: JESD204_CONFIG_12  
Bits 7:0 “RES2”, JESD204A reserved for future use.  
ADDRESS 0XED: JESD204_CONFIG_13  
1. Write a ‘1’ to 0xDF Bit[0]  
2. Write some or all modified values to 0xE0 through 0xEC  
3. Write a ‘1’ to 0xEE Bit[0]. Note: 0xDF Bit[0] and 0xEE Bit[0] will  
automatically be reset to a ‘0’ once configuration has been  
applied to the circuitry.  
Bits 7:0 “FCHK” JESD204A checksum (unsigned sum MOD 256)  
of all the other JESD204A parameter register values. This is a  
read-only register, as the checksum is calculated by the device.  
ADDRESS 0XE0: JESD204_CONFIG_0  
Bits 7:0 “DID”, JESD204A Device ID number.  
ADDRESS 0XEE:  
ADDRESS 0XE1: JESD204_CONFIG_1  
JESD204_UPDATE_CONFIG_COMPLETE  
Bits 3:0 “BID”, JESD204 Bank ID.  
Bit 0 update_complete  
This self-resetting bit is used to indicate that all the modifications  
to the JESD204 parameters are complete.  
ADDRESS 0XE2: JESD204_CONFIG_2  
Bits 4:0 “LID” JESD204A Lane ID.  
ADDRESS 0XEF: JESD204_PLL_MONITOR_RESET  
ADDRESS 0XE3: JESD204_CONFIG_3  
Bit 0 “pll_lock_mon_rst”, This self resetting register resets the  
state of the 0xF0 Bit[0] “latched_pll_lockn” bit. The purpose of  
this pair of bits is as a debugging feature to the system designer.  
The “latched_pll_lockn” bit indicates if the JESD204A transmitter  
PLL inside the device has at any time lost lock since the last ‘1’  
was written to the “pll_lock_mon_rst” bit. This can be used to  
help identify the source of intermittent link lost errors in the  
system.  
Bit 7 “SCR”, JESD204A SCR controls if scrambling across the  
SERDES lane(s) is enabled (‘1’ means enabled).  
Bits 4:0 L, JESD204A L is the number of SERDES lanes in the  
link.  
ADDRESS 0XE4: JESD204_CONFIG_4  
Bits 7:0 “F”, JESD204A Number of octets per frame period.  
ADDRESS 0XE5: JESD204_CONFIG_5  
ADDRESS 0XF0: JESD204_STATUS  
Bit 2 “op_cfg_wrong” indicates if the JESD204A parameters  
(registers 0xE0 through 0xED) are supported by the JESD204A  
transmitter (a ‘1’ indicates they are not supported, a ‘0’ indicates  
they are supported).  
Bits 4:0 “K” JESD204A Number of frame periods per multi-frame  
period. This product family supports the full programmable range  
of K (decimal 0 through 31), although note that the JESD204A  
standard dictates a minimum number for this parameter that is  
configuration dependent.  
Bit 1“pll_lockn” indicates if the JESD204A transmitter PLL is  
currently locked (a ‘1’ indicates it is not locked, a ‘0’ indicates it  
is locked).  
ADDRESS 0XE6: JESD204_CONFIG_6  
Bits 7:0 “M” JESD204A Number of converters per device.  
ADDRESS 0XE7: JESD204_CONFIG_7  
Bit 0 “latched_pll_lockn” indicates if the JESD204A transmitter  
PLL has lost lock since the last assertion of the  
“pll_lock_mon_rst” (see register 0xEF description for more  
information).  
Bits 7:6 “CS”, JESD204A CS is the number of control bits per  
sample (Always ‘0’ for this product family).  
ADDRESS 0XF1: JESD204_SYNC  
Bits 4:0 “N”, JESD204A N is the converter resolution.  
ADDRESS 0XE8: JESD204_CONFIG_8  
Bit 0 “sync_req” this register provides a SPI-programmable  
interface that can be used to assert and de-assert the JESD204A  
SYNC~ functionality. Certain systems may benefit from the  
elimination of SYNC~ as a separate board-level LVDS signal (and  
the power, PCB space, and pins it consumes), and these systems  
can use this register to functionally assert and de-assert SYNC~.  
Bits 4:0 “N’”, JESD204A N’ is the total number of bits per sample.  
ADDRESS 0XE9: JESD204_CONFIG_9  
FN7996.0  
February 2, 2012  
26  
ISLA216S  
For this bit to have any effect, a ‘1’ must have previously been  
written to the SYNC_FUNCTION (Address 0x77, bit 0).  
different control character when reoccurrence of octets occurs at  
the end of a multi-frame.  
A ‘1’ written to this bit will result in behavior identical to the  
assertion of SYNC~ (comma character generation), and ‘0’ will  
result in the behavior identical to the de-assertion of SYNC~  
(initial lane alignment sequence followed by converter data).  
Usage of this SPI SYNC~ capability may compromise the  
system’s ability to perform multi-chip time alignment, as the  
SYNC~ asserted to de-asserted transition using this register is  
not well timed with respect to sample clock.  
Bit 1 “trans_pat_max_len” There is some ambiguity of the proper  
length of the JESD204 rev A section 5.1.6.2 required transport  
layer test pattern. Specifically, that the description perhaps  
should have “max()” in place of “min()” for the equation defining  
the length of the pattern. Setting bit 1 in this register to a ‘0’ (also  
the power-on default) and issuing this test pattern by writing to  
0xC0 will cause the pattern to assume a “min()” interpretation of  
the pattern described in section 5.1.6.2. Setting the bit to a ‘1’  
will assume a “max()” interpretation of the described pattern.  
ADDRESS 0XF2: JESD204_TRANS_PAT_CONFIG  
ADDRESS 0XF3: JESD204_CML_POLARITY  
Bit 0 “no_mf_lane_sync”, By default, this device family assumes  
that both sides of the link support lane synchronization. As per  
the JESD204 rev A standard, in this case continuous frame  
alignment monitoring via character substitution (section 5.3.3.4)  
is modified such that a different control character is substituted  
when the octet reoccurrence happens at the end of a multi-  
frame. This behavior occurs when bit 0 is ‘0’ (the power on  
default). Writing a ‘1’ to bit 0 will inform the JESD204 transmitter  
than the receiving device does not support lane synchronization,  
and therefore the transmitter will no longer substitute this  
0xF3 Bit[2:0]: “TX polarity flip lane x” This register allows the  
system designer to invert the sense of the SERDES pins on a per  
lane basis. For example, writing a ‘1’ to Bit[0] causes LANE0N to  
functionally become LANE0P and LANE0P to become LANE0N.  
This feature allows the system designer to avoid having to  
crossover P and N sides of the CML pair on the board to match  
pin out and layout of the transmitter and receiver. Typically, a  
trace crossover would require vias, which can degrade the signal  
integrity of the high-speed SERDES lanes.  
SPI Memory Map  
ADDR.  
BIT 7  
(MSB)  
BIT 0  
(LSB)  
DEF. VALUE  
(HEX)  
(Hex)  
PARAMETER NAME  
port_config  
Reserved  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
00  
01  
SDO Active LSB First Soft Reset  
Mirror (bit5) Mirror (bit6) Mirror (bit7)  
00h  
Reserved  
02  
burst_end  
Burst end address [7:0]  
Reserved  
00h  
03-07  
Reserved  
08  
09  
chip_id  
chip_version  
Reserved  
Chip ID #  
Chip Version #  
Reserved  
Read only  
Read only  
0A-0F  
FN7996.0  
February 2, 2012  
27  
ISLA216S  
SPI Memory Map (Continued)  
ADDR.  
BIT 7  
BIT 0  
(LSB)  
DEF. VALUE  
(HEX)  
(Hex)  
PARAMETER NAME  
Reserved  
(MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
10-1F  
20  
Reserved  
offset_coarse_adc0  
offset_fine_adc0  
gain_coarse_adc0  
gain_medium_adc0  
gain_fine_adc0  
modes_adc0  
Coarse Offset  
Fine Offset  
cal. value  
cal. value  
cal. value  
cal. value  
cal. value  
21  
22  
Reserved  
Coarse Gain  
23  
Medium Gain  
Fine Gain  
24  
25  
Reserved  
Power Down Mode ADC0 [2:0]  
000 = Pin Control  
001 = Normal Operation  
010 = Nap  
00h  
NOT reset by  
Soft Reset  
100 = Sleep  
Other codes = Reserved  
26  
27  
28  
29  
2A  
2B  
offset_coarse_adc1  
offset_fine_adc1  
gain_coarse_adc1  
gain_medium_adc1  
gain_fine_adc1  
Coarse Offset  
Fine Offset  
cal. value  
cal. value  
cal. value  
cal. value  
cal. value  
Reserved  
Coarse Gain  
Medium Gain  
Fine Gain  
modes_adc1  
Reserved  
Power Down Mode ADC1 [2:0]  
000 = Pin Control  
001 = Normal Operation  
010 = Nap  
00h  
NOT reset by  
Soft Reset  
100 = Sleep  
Other codes = Reserved  
2C-6F  
70  
Reserved  
skew_diff  
phase_slip  
Reserved  
Differential Skew  
Reserved  
80h  
00h  
71  
Next Clock  
Edge  
72  
clock_divide  
Clock Divide [2:0]  
000 = Pin Control  
001 = divide by 1  
010 = divide by 2  
100 = divide by 4  
00h  
NOT reset by  
Soft Reset  
Other codes = Reserved  
73  
74  
output_mode_A  
output_mode_B  
Output Format [2:0]  
000 = Two’s Complement (Default) NOT reset by  
00h  
010 = Gray Code  
100 = Offset Binary  
Other codes = Reserved  
Soft Reset  
DLL Range  
0 = Fast  
1 = Slow  
00h  
NOT reset by  
Soft Reset  
Default=’0’  
75-76  
77  
Reserved  
SYNC_function  
Reserved  
Reserved  
Clkdivrst  
78-B5  
B6  
Reserved  
Reserved  
cal_status  
Calibration Read Only  
Done  
B7-BF  
Reserved  
FN7996.0  
February 2, 2012  
28  
ISLA216S  
SPI Memory Map (Continued)  
ADDR.  
BIT 7  
BIT 0  
(LSB)  
DEF. VALUE  
(HEX)  
(Hex)  
PARAMETER NAME  
test_io  
(MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
C0  
Output Test Mode [7:4]  
JESD Test  
User Test Mode [2:0]  
User Test Mode (Single ADC products  
only)  
00h  
<7:4>=Output Test, <3> = JESD Test  
JESD Test=0  
Output Test =  
0 = user pattern 1 only  
1 = cycle pattern 1 through 2  
2 = cycle pattern 1 through 3  
3 = cycle pattern 1 through 4  
4 = cycle pattern 1 through 5  
5 = cycle pattern 1 through 6  
6 = cycle pattern 1 through 7  
7 = cycle pattern 1 through 8  
User Test Mode (Dual and interleaved  
ADC products only)  
0 = cycle pattern 1 through 2  
1 = cycle pattern 1 through 4  
2 = cycle pattern 1 through 6  
3 = cycle pattern 1 through 8  
4 -7 = NA  
0x0= Output Test Mode Off. During calibration MSB justified  
constant output 0xCCCC  
0x1 = Midscale adjusted by numeric format  
0x2 = Plus full scale, adjusted by numeric format  
0x3 = Minus full scale adjusted by numeric format  
0x4 = Checkboard output - 0xAAAA, 0x5555  
0x5 = reserved  
0x6 = reserved  
0x7 = 0xFFFF, 0x0000 all on pattern  
0x8 = User pattern 8 deep, MSB justified with output  
0x9 = reserved  
0xA, Count-up ramp  
0xB, PRBS-9  
0xC, PRBS-15  
0xD, PRBS-23  
0xE, PRBS-31  
0xF = reserved  
JESD Test=1  
Output Test =  
0x0 =Link Layer Repeat K28.5+Lane Alignment Sequence  
0x1, Link Layer Repeat K28.5  
0x2, Link Layer Repeat D21.5  
0x3, Link Layer Repeat K28.7  
0x4, Link Layer PRBS-7  
0x5, Link Layer PRBS-23  
0x6, Link Layer All Zeros  
0x7, Link Layer All Ones  
0x8-0xE, reserved  
0xF, JESD204A section 5.1.6.2 Transport Layer Test Pattern  
C1  
C2  
user_patt1_lsb  
user_patt1_msb  
user_patt2_lsb  
user_patt2_msb  
user_patt3_lsb  
user_patt3_msb  
user_patt4_lsb  
user_patt4_msb  
user_patt5_lsb  
user_patt5_msb  
user_patt6_lsb  
user_patt6_msb  
user_patt7_lsb  
user_patt7_msb  
user_patt8_lsb  
user_patt8_msb  
Reserved  
B7  
B15  
B7  
B6  
B14  
B6  
B5  
B13  
B5  
B4  
B12  
B4  
B3  
B11  
B3  
B2  
B10  
B2  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
C3  
C4  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
C5  
C6  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
C7  
C8  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
C9  
CA  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
CB  
CC  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
CD  
CE  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
CF  
D0  
D1-DE  
B15  
B14  
B13  
B12  
B11  
B10  
Reserved  
FN7996.0  
February 2, 2012  
29  
ISLA216S  
SPI Memory Map (Continued)  
ADDR.  
BIT 7  
BIT 0  
(LSB)  
DEF. VALUE  
(HEX)  
(Hex)  
PARAMETER NAME  
(MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
DF  
JESD204_update_config_start  
update_  
start  
00h  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
JESD204_config_0  
JESD204_config_1  
JESD204_config_2  
JESD204_config_3  
JESD204_config_4  
JESD204_config_5  
JESD204_config_6  
JESD204_config_7  
DID (Device ID Number)  
00h  
BID (Bank ID Number)  
LID (Lane ID Number)  
L (Number of Lanes per Device)  
F (Number of Octets per Frame)  
K (Number of frames per multi-frame)  
M (Number of Converters per Device)  
SCR  
CS (Number of Control  
N (Converter Resolution in bits)  
bits per Sample)  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
JESD204_config_8  
JESD204_config_9  
JESD204_config_10  
JESD204_config_11  
JESD204_config_12  
JESD204_config_13  
N’ (Total number of bits per Sample)  
S (Number of Samples per Converter per Frame)  
HD  
CF (Number of Control Words per Frame per Link)  
RES1  
RES2  
FCHK (Checksum)  
JESD204_update_config_compl  
ete  
update_  
complete  
00h  
00h  
00h  
EF  
F0  
JESD204_PLL_monitor_reset  
pll_lock_  
mon_rst  
JESD204_status  
op_confg_ pll_lockn latched_  
wrong  
pll_lockn  
F1  
F2  
JESD204_sync  
sync_req  
JESD204_trans_pat_config  
trans_pat_ no_mf_  
max_len lane_sync  
F3  
JESD204_CML_polarity  
Reserved  
lane_2_  
polarity  
lane_1_  
polarity  
lane_0_  
polarity  
00h  
F4-FF  
Reserved  
FN7996.0  
February 2, 2012  
30  
ISLA216S  
Equivalent Circuits  
AVDD  
AVDD  
AVDD  
TO  
CSAMP  
CLOCK-PHASE  
GENERATION  
4pF  
TO  
CHARGE  
PIPELINE  
INP  
INN  
CLKP  
AVDD  
E2  
E3  
E3  
E1  
600  
AVDD  
11k  
11k  
CSAMP  
4pF  
18k  
TO  
CHARGE  
PIPELINE  
E2  
E1  
18k  
AVDD  
CLKN  
FIGURE 48. ANALOG INPUTS  
FIGURE 49. CLOCK INPUTS  
AVDD  
AVDD  
(20k PULL-UP  
ON RESETN  
ONLY)  
OVDD  
AVDD  
75k  
OVDD  
AVDD  
TO  
SENSE  
LOGIC  
75k  
280  
OVDD  
20k  
INPUT  
INPUT  
TO  
LOGIC  
280  
75k  
75k  
FIGURE 50. TRI-LEVEL DIGITAL INPUTS  
FIGURE 51. DIGITAL INPUTS  
OVDD  
OVDD  
50  
50  
LANE[2:0]P  
LANE[2:0]N  
AVDD  
OVDD  
VCM  
+
1.0V  
DATA  
DATA  
16mA  
FIGURE 53. VCM_OUT OUTPUT  
FIGURE 52. CML OUTPUTS  
FN7996.0  
February 2, 2012  
31  
ISLA216S  
importance of maintaining an open eye to achieve low BER,  
ADC Evaluation Platform  
signal integrity simulations are recommended, especially when  
the data lane rate exceeds 3Gbps and/or the trace or cable  
length between the ADC and the reciever gets larger than 20cm.  
Intersil offers ADC Evaluation platforms which can be used to  
evaluate any of Intersil’s high speed ADC products. Each platform  
consists of a FPGA based data capture motherboard and a family  
of ADC daughtercards. The USB interface and evaluation  
platform control software allow a user to quickly evaluate the  
ADC’s performance at a user’s specific application frequency  
requirements. More information is available at  
Unused Inputs  
Standard logic inputs (RESETN, CSB, SCLK, SDIO, SDO) which will  
not be operated do not require connection to ensure optimal ADC  
performance. These inputs can be left floating if they are not  
used. Tri-level inputs (NAPSLP) accept a floating input as a valid  
state, and therefore should be biased according to the desired  
functionality.  
http://www.intersil.com/converters/adc_eval_platform/  
Layout Considerations  
Split Ground and Power Planes  
Definitions  
Data converters operating at high sampling frequencies require  
extra care in PC board layout. Many complex board designs  
benefit from isolating the analog and digital sections. Analog  
supply and ground planes should be laid out under signal and  
clock inputs. Locate the digital planes under outputs and logic  
pins. Grounds should be joined under the chip.  
Analog Input Bandwidth is the analog input frequency at which  
the spectral output power at the fundamental frequency (as  
determined by FFT analysis) is reduced by 3dB from its full-scale  
low-frequency value. This is also referred to as Full Power  
Bandwidth.  
Aperture Delay or Sampling Delay is the time required after the  
rise of the clock input for the sampling switch to open, at which  
time the signal is held for conversion.  
Clock Input Considerations  
Use matched transmission lines to the transformer inputs for the  
analog input and clock signals. Locate transformers and  
terminations as close to the chip as possible.  
Aperture Jitter is the RMS variation in aperture delay for a set of  
samples.  
Exposed Paddle  
The exposed paddle must be electrically connected to analog  
ground (AVSS) and should be connected to a large copper plane  
using numerous vias for optimal thermal performance.  
Clock Duty Cycle is the ratio of the time the clock wave is at logic  
high to the total time of one clock period.  
Differential Non-Linearity (DNL) is the deviation of any code width  
from an ideal 1 LSB step.  
Bypass and Filtering  
Effective Number of Bits (ENOB) is an alternate method of  
specifying Signal to Noise-and-Distortion Ratio (SINAD). In dB, it  
is calculated as: ENOB = (SINAD - 1.76)/6.02  
Bulk capacitors should have low equivalent series resistance.  
Tantalum is a good choice. For best performance, keep ceramic  
bypass capacitors very close to device pins, as longer traces  
between the ceramic bypass capacitors and the device pins will  
increase inductance, which can result in diminished dynamic  
performance. Best practices bypassing is especially important on  
the AVDD and OVDD(PLL) power supply pins. Whenever possible,  
each supply pin should have its own 0.1uF bypass capacitor.  
Make sure that connections to ground are direct and low  
impedance. Avoid forming ground loops.  
Gain Error is the ratio of the difference between the voltages that  
cause the lowest and highest code transitions to the full-scale  
voltage less than 2 LSB. It is typically expressed in percent.  
I2E The Intersil Interleave Engine. This highly configurable  
circuitry performs estimates of offset, gain, and sample time  
skew mismatches between the core converters, and updates  
analog adjustments for each to minimize interleave spurs.  
Integral Non-Linearity (INL) is the maximum deviation of the  
ADC’s transfer function from a best fit line determined by a least  
squares curve fit of that transfer function, measured in units of  
LSBs.  
CML Outputs  
Output traces and connections must be designed for 50Ω (100Ω  
differential) characteristic impedance. Keep traces direct and  
short, and minimize bends and vias where possible. Avoid  
crossing ground and power-plane breaks with signal traces. Keep  
good clearance (at least 5 trace widths) between the SERDES  
traces and other signals. Given the speed of these outputs and  
Least Significant Bit (LSB) is the bit that has the smallest value or  
weight in a digital word. Its value in terms of input voltage is  
N
V
/(2 - 1) where N is the resolution in bits.  
FS  
FN7996.0  
February 2, 2012  
32  
ISLA216S  
Missing Codes are output codes that are skipped and will never  
appear at the ADC output. These codes cannot be reached with  
any input value.  
Signal-to-Noise Ratio (without Harmonics) is the ratio of the RMS  
signal amplitude to the RMS sum of all other spectral  
components below one-half the sampling frequency, excluding  
harmonics and DC.  
Most Significant Bit (MSB) is the bit that has the largest value or  
weight.  
SNR and SINAD are either given in units of dB when the power of  
the fundamental is used as the reference, or dBFS (dB to full  
scale) when the converter’s full-scale input power is used as the  
reference.  
Pipeline Delay is the number of clock cycles between the  
initiation of a conversion and the appearance at the output pins  
of the data.  
Spurious-Free-Dynamic Range (SFDR) is the ratio of the RMS  
signal amplitude to the RMS value of the largest spurious  
spectral component. The largest spurious spectral component  
may or may not be a harmonic.  
Power Supply Rejection Ratio (PSRR) is the ratio of the observed  
magnitude of a spur in the ADC FFT, caused by an AC signal  
superimposed on the power supply voltage.  
Signal to Noise-and-Distortion (SINAD) is the ratio of the RMS  
signal amplitude to the RMS sum of all other spectral  
components below one half the clock frequency, including  
harmonics but excluding DC.  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest Rev.  
DATE  
REVISION  
FN7996.0  
CHANGE  
February 2, 2012  
Initial Release  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISLA216S13, ISLA216S20, ISLA216S25.  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7996.0  
February 2, 2012  
33  
ISLA216S  
Package Outline Drawing  
L48.7x7G  
48 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 0, 1/10  
6
4X  
5.5  
7.00  
A
PIN #1  
INDEX  
AREA  
6
B
37  
48  
PIN 1  
INDEX AREA  
36  
1
44X 0.50  
EXP. DAP  
5.70 SQ.  
12  
25  
0.15  
(4X)  
24  
13  
48X 0.40  
48x 0.20  
4
TOP VIEW  
BOTTOM VIEW  
SEE DETAIL "X"  
1.00 MAX  
C
C
0.10  
0.08 C  
SEATING PLANE  
( 44X 0 . 5 )  
6 .80 SQ  
SIDE VIEW  
5.70 SQ  
0 . 2 REF  
5
C
( 48X 0 . 20 )  
( 48X 0 . 60 )  
0 . 00 MIN.  
0 . 05 MAX.  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.015mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
FN7996.0  
February 2, 2012  
34  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY