ISL6730AEVAL1Z [INTERSIL]

Power Factor Correction Controllers;
ISL6730AEVAL1Z
型号: ISL6730AEVAL1Z
厂家: Intersil    Intersil
描述:

Power Factor Correction Controllers

文件: 总19页 (文件大小:420K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Power Factor Correction Controllers  
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
The ISL6730A, ISL6730B, ISL6730C, ISL6730D are active  
Power Factor Correction (PFC) controller ICs that use a boost  
topology. The controllers are suitable for AC/DC power  
systems, up to 2kW and over the universal line input.  
Features  
• Reduce component size requirements  
- Enables smaller, thinner AC/DC adapters  
- Choke and cap size can be reduced  
- Lower cost of materials  
The ISL6730A, ISL6730B, ISL6730C, ISL6730D operate in  
Continuous Conduction Mode (CCM). Accurate input current  
shaping is achieved with a current error amplifier. A patent  
pending breakthrough negative capacitance technology  
minimizes zero crossing distortion and reduces the magnetic  
components size. The small external components result in a  
low cost design without sacrificing performance.  
• Excellent power factor over line and load regulation  
- Internal current compensation  
- CCM Mode with Patent pending IP for smaller EMI filter  
• Better light load efficiency  
- Automatic pulse skipping  
The internally clamped 12.5V gate driver delivers 1.5A peak  
current to the external power MOSFET. The ISL6730A,  
ISL6730B, ISL6730C, ISL6730D provide a highly reliable  
system that is fully protected. Protection features include  
cycle-by-cycle overcurrent, over power limit, over-temperature,  
input brownout, output overvoltage and undervoltage  
protection.  
- Programmable or automatic shutdown  
• High reliable design  
- Cycle-by-cycle current limit  
- Input average power limit  
- OVP and OTP protection  
- Input brownout protection  
The ISL6730A, ISL6730B provide excellent power efficiency  
and transitions into a power saving skip mode during light load  
conditions, thus improving efficiency automatically. The  
ISL6730A, ISL6730B, ISL6730C, ISL6730D can be shut down  
by pulling the FB pin below 0.5V or grounding the BO pin. The  
ISL6730C, ISL6730D have no skip mode.  
• Small 10 Ld MSOP package  
Applications  
• Desktop computer AC/DC adaptor  
• Laptop computer AC/DC adaptor  
• TV AC/DC power supply  
Two switching frequency options are provided. The ISL6730B,  
ISL6730D switch at 62kHz, and the ISL6730A, ISL6730C  
switch at 124kHz.  
• AC/DC brick converters  
100  
95  
V
I
+
VLINE  
VOUT  
90  
85  
80  
75  
70  
65  
60  
ISL6730A, SKIP  
ISL6730C  
VCC  
ISEN  
GATE  
GND  
ICOMP  
ISL6730  
VIN  
FB  
COMP  
BO  
VREG  
0
20  
40  
60  
80  
100  
OUTPUT POWER (W)  
FIGURE 1. TYPICAL APPLICATION  
FIGURE 2. PFC EFFICIENCY  
TABLE 1. KEY DIFFERENCES IN FAMILY OF ISL6730  
VERSION  
Switching Frequency  
Skip Mode  
ISL6730A  
124kHz  
ISL6730B  
62kHz  
ISL6730C  
ISL6730D  
62kHz  
No  
124kHz  
No  
Yes-Fixed  
Yes-Fixed  
August 8, 2013  
FN8258.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2013. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
Pin Configuration  
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
(10 LD MSOP)  
TOP VIEW  
1
2
3
4
5
GATE  
VCC  
GND  
ISEN  
ICOMP  
VIN  
10  
9
8
VREG  
FB  
7
BO  
6
COMP  
Pin Descriptions  
PIN # I/O SYMBOL  
DESCRIPTION  
1
2
3
4
-
GND  
ISEN  
Ground pin. All voltage levels refer to this pin.  
Current sense pin. The current through this pin is proportional to the inductor current.  
I
I/O ICOMP Current error amplifier output pin.  
I
VIN  
BO  
Input voltage sense. This pin provides the reference voltage to shape inductor current. Connect this pin to a resistor divider from  
the rectified input voltage. The resistor divider ratio is used to adjust the phase lag between input voltage and the input current.  
The phase lag is required to compensate the phase lead generated by the EMI filter.  
5
I/O  
This pin should be decoupled to GND with a minimum 0.1µF ceramic capacitor. The BO pin is a voltage follower, which will follow  
the DC voltage of the VIN pin. The BO pin is internally tied to GND through a resistor R . The decoupling capacitor provides ripple  
IS  
filtering. When the voltage at the BO pin (V ) drops below brownout voltage threshold, the controller enters shutdown mode  
BO  
and the gate drive is disabled. The BO pin will be disabled when the FB pin drops below the enabling threshold.  
6
7
I/O COMP Output of the error amplifier. The voltage of the COMP pin sets the input power. During start-up, a small charge current will slowly  
ramp up the voltage of the COMP pin.  
I
FB  
Voltage feed back pin. Connect this pin to a resistor divider from the output. The resistor divider sets the output voltage. When  
the FB pin voltage exceeds 104% of the reference voltage, overvoltage-protection is triggered and gate drive is disabled. When  
the FB pin is below 10%, the device is put into shutdown mode. There is an internal pull-down current source for open loop  
protection.  
8
-
VREG Output of internal regulator. The voltage having a ±2% tolerance over line, load and operating temperature. Bypass to GND with  
a 47nF low ESR capacitor. VREG can source up to 10mA. This pin is not recommended for usage other than bypass.  
9
I
VCC  
Power supply pin. The VCC pin should be decoupled to GND with a minimum 0.1µF ceramic capacitor.  
10  
O
GATE  
Push-pull gate drive for the external MOSFET. Output voltage is clamped at 12.5V. This pin provides typically 2A sink and 1.5A  
source capability.  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
TEMP.  
RANGE (°C)  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
ISL6730AFUZ  
6730A  
6730B  
6730C  
6730D  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
10 Ld MSOP  
M10.118  
M10.118  
M10.118  
M10.118  
ISL6730BFUZ  
ISL6730CFUZ  
ISL6730DFUZ  
ISL6730AEVAL1Z  
ISL6730BEVAL1Z  
NOTES:  
10 Ld MSOP  
10 Ld MSOP  
10 Ld MSOP  
Evaluation Board  
Evaluation Board  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page. For more information on MSL please see techbrief TB363.  
FN8258.1  
August 8, 2013  
2
Block Diagram  
V
EMI CHOKE  
D
I
V
OUT  
L
C
OUT  
V
C
Q
1
LINE  
F3  
C
C
F1  
R
F2  
L
m
D
F1  
CS  
D
F2  
C
REG  
VCC  
VREG  
LINEAR  
REGULATOR  
VCC  
CURRENT  
MIRROR  
UVLO  
GATE  
2:1  
I
CONTROL  
LOGIC  
OC  
> -------------  
R
SEN  
I
CS  
I
2
ISEN  
GND  
OTP  
CS  
SKIP  
PWM  
COMP  
CEQ GEN.  
R
× I  
ISEN  
2
ICOMP  
IS  
= ----------------------------------  
V
CS  
I
REF  
RIS  
Gmi  
SOFT-START  
ENABLE  
OSCILLATOR  
0.25 × VIN  
----------------------------- C O M P B  
BO  
2
2.5V  
R
R
IN2  
R
FB2  
VIN  
FB  
COMPB  
COMP-1V  
SKIP  
CLAMP  
OVER POWER  
LIMIT  
Gmv  
20µA  
R
FB1  
IN1  
I
FB  
SKIP  
COMP  
BO  
C
BO  
Application Schematics  
Typical 300W Application Schematic  
D1  
1N5406  
VOUT  
D2  
2
1
DC+  
L1  
0u  
TP9  
L2  
1.5mH  
C3D04060  
P1  
P2  
R1  
2M  
AC1  
SPP20N60C3  
Q1  
F2 8A  
DB1  
GBU808  
TP12  
GATE1  
C4  
DNP  
100n  
C2  
C3  
470n  
C1  
270u  
450V  
5mH  
L3  
1
UNIVERSAL INPUT  
85~265Vac  
390V  
C22  
R2  
2.2  
680n  
R3  
2M  
C21 0.1  
C19 0.1  
R28 0.22  
R27 0.22  
R5 0.22  
R4  
51k  
P3  
AC2  
P4  
C6  
2.2n  
TP10  
GND  
C5  
2.2n  
C8  
C26  
DNP  
DZ1  
3.3V  
220n  
3.3M  
R6  
PE  
D8  
S1M  
47n  
C20  
D7  
S1M  
P5  
C9  
1u  
R14  
8.2k  
DNP  
VREG  
VCC  
C11  
330p  
TP8  
U1  
R8  
470k  
C10  
1nF  
C7  
1u  
R10  
VCC  
P6  
P7  
3.3M  
TP7  
ICOMP  
10  
R9  
3k  
ISEN  
GATE  
3
2
R11  
470k  
TP6  
ICOMP  
1
GND  
GATE  
DNP  
GND  
TP5  
ISEN  
R26  
49.9  
VIN  
4
TP3  
VIN  
7
FB  
C12  
DNP  
TP1  
FB  
C13  
R13  
7.15k  
R17  
0
VCC  
ISL6730B/D  
220p  
C16  
1n  
R21  
25k  
TP4  
TP2  
R19  
42.2k  
2N7002  
Q2  
COMP  
BO  
DNP  
1
DNP  
R18  
62k  
DNP P8  
C15  
150n  
DNP  
R20  
10k  
C14  
470n C18  
C17  
1n  
DNP  
2.2u  
P9  
DNP  
Application Schematics (Continued)  
Typical 85W Application Schematic  
S3KB-TP  
D1  
VOUT  
S3KB-TP  
S3KB-TP  
3
1
D2  
DC+  
TP9  
F1 3.15A  
L1 0uH  
L2 2.2m  
D3  
D4  
AC1  
P1  
C3D04060E  
P2  
R1  
2M  
IPP60R600C6  
Q1  
1
390V  
C4  
DNP  
100n  
C2  
C3  
330n  
C1  
56u  
450V  
7.5mH  
L3  
UNIVERSAL INPUT  
85~265Vac  
R2  
2.2  
R3  
2M  
D5  
D6  
R4  
51k  
P3  
0.22  
R5  
AC2  
P4  
C6  
470p  
TP10  
S3KB-TP  
S3KB-TP  
C5  
470p  
GND  
C8  
C26  
DNP  
DNP  
DZ1  
3.3V  
3.3M  
R6  
220n  
PE  
D8  
D7  
S1M  
P5  
S1M  
R9  
2.1k  
C9  
1u  
R14  
DNP  
5.36k  
VCC  
C24  
47n  
C11  
R8  
470k  
C10  
6.8n  
U1  
470p  
VCC  
GND  
P6  
P7  
10  
1
ICOMP  
TP6  
GATE  
GND  
TP7  
3
2
R11  
470k  
ICOMP  
ISEN  
GATE  
TP5  
ISEN  
VIN  
R10  
VIN  
3.3M  
4
TP3  
7
FB  
C12  
DNP  
TP1  
FB  
C13  
220p  
R13  
7.15k  
R17  
1.5k  
VCC  
ISL6730A/C  
C16  
1n  
R21  
25k  
DNP  
TP4  
TP2  
R19  
COMP  
40.2k  
2N7002  
Q2  
VIN  
1
DNP  
R18  
68k  
DNP P8  
C15  
100n  
DNP  
R20  
10k  
C14  
C17  
470n C18  
1n  
DNP  
2.2u  
P9  
DNP  
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
Absolute Maximum Ratings  
Thermal Information  
VCC to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +28V  
GATE to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +18V  
VIN, BO, ISEN, FB and COMP to GND. . . . . . . . . . . . . . . . . . . . . . . .-0.3V to +6.3V  
ESD Rating  
Human Body Model (Tested per JESD22-A114) . . . . . . . . . . . . . . .2.5kV  
Machine Model (Tested per JESD22-A115). . . . . . . . . . . . . . . . . . . . 200V  
Charged Device Model (Tested per JESD-C101E. . . . . . . . . . . . . . . . . 1kV  
Latch Up (Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . 100mA  
Thermal Resistance (Typical)  
MSOP Package (Notes 4, 5) . . . . . . . . . . . .  
θ
(°C/W)  
136.9  
θ
(°C/W)  
39.4  
JA  
JC  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Recommended Operating Conditions  
VCC to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15V to + 20V  
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
5. For θ , the "case temp" location is taken at the package top center.  
JC  
Electrical Specifications Operating Conditions: V = 15V, T = +25°C. Boldface limits apply over the operating temperature range,  
CC  
A
-40°C to +125°C.  
MIN  
MAX  
PARAMETER  
SUPPLY CURRENT  
SYMBOL  
TEST CONDITIONS  
(Note 8)  
TYP  
(Note 8) UNITS  
V
CC  
Start Up Current  
I
V
V
V
= 1V, V < V (ON)  
CC CC  
73  
179  
580  
3.0  
106  
237  
690  
3.7  
139  
295  
800  
4.2  
µA  
µA  
µA  
mA  
START  
FB  
FB  
FB  
Standby Current  
I
= GND, V > V (ON)  
CC CC  
STDN  
Skip Mode Current  
Operating Current (Note 6)  
VCC UVLO  
I
= 2.5V, COMP = SKIP*0.25 +1V  
CCSKIP  
I
GATE is floating  
CC  
UVLO Rising Threshold  
UVLO Falling Threshold  
UVLO Threshold Hysteresis  
REGULATOR VOLTAGE VREG  
Overall Accuracy  
V
9
6.7  
-
10  
7.5  
2.5  
11  
8.3  
-
V
V
V
CC(ON)  
V
CC(OFF)  
V
CC(HYS)  
V
I
= 0 to -10mA, V = 15V, Load Capacitor = 47nF  
5.1  
30  
5.4  
50  
5.6  
70  
V
REG  
REG CC  
Current Limit  
mA  
PWM CONVERTERS  
Maximum Duty Cycle  
f
f
= 124kHz for ISL6730A/C and  
= 62kHz for ISL6730B/D  
94.8  
96.5  
-
%
SW  
SW  
OSCILLATOR  
Free Running Frequency, ISL6730A/C  
Free Running Frequency, ISL6730A/C  
Free Running Frequency, ISL6730B/D  
Free Running Frequency, ISL6730B/D  
PWM Ramp Amplitude  
T
= -40°C to +125°C, V = 0.6V  
IN  
98  
114  
47  
107  
125  
54  
116  
136  
61  
kHz  
kHz  
kHz  
kHz  
V
A
T
= -40°C to +125°C, V = 2.5V  
IN  
A
T
= -40°C to +125°C, V = 0.6V  
IN  
A
T
= -40°C to +125°C, V = 2.5V  
IN  
57  
64  
71  
A
V
1.33  
1.46  
1.59  
m
GATE DRIVER  
Gate Drive Pull-Down Resistance  
Gate Drive Pull-Up Voltage Drop  
V
V
= 15V, I  
= 15mA  
= 15mA  
-
2.33  
0.3  
4.46  
0.45  
CC  
GATE  
= 9V, I  
GATE  
0.15  
V
CC  
FN8258.1  
August 8, 2013  
6
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
Electrical Specifications Operating Conditions: V = 15V, T = +25°C. Boldface limits apply over the operating temperature range,  
CC  
A
-40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 8)  
TYP  
1.5  
(Note 8) UNITS  
Gate Drive Max. Sourcing/Sinking  
Current  
-
-
A
ns  
ns  
V
Rise Time  
C
= 2.2nF, V = 15V, Gate Voltage Rise Time from 10%  
CC  
-
-
34  
34  
12  
62  
O
to 90% of V  
GC  
Fall Time  
C
= 2.2nF, V = 15V, Gate Voltage Fall Time from 10%  
CC  
57  
O
to 90% of V  
GC  
Gate Clamp Voltage  
V
10.5  
13.5  
GC  
VOLTAGE REFERENCE  
Reference Voltage  
V
2.48  
2.5  
65  
2.52  
V
REF  
Feedback Pin Pull-Down Current  
Rising Threshold to Enable Converter  
Falling Threshold to Disable Converter  
Enable Hysteresis  
I
-
-
nA  
FB  
FB_EN  
FB_DIS  
FB_Hys  
280  
190  
-
300  
202  
100  
320  
214  
-
mV  
mV  
mV  
VOLTAGE ERROR AMPLIFIER  
Error Amp Transconductance  
ISource/Sink  
Gmv  
50  
-
77  
13  
104  
-
µA/V  
µA  
V
COMP Offset Voltage  
V
0.95  
0.58  
1.01  
0.64  
1.07  
0.75  
COMP_OFF  
COMP Soft-Start Enable Voltage  
INPUT VOLTAGE SENSING  
VIN Leakage Current  
V
V
COMP_EN  
-
9
-
nA  
MULTIPLIER GAIN  
GMUL  
COMP = 2.5V, V = 1.0V, BO = 1.0V, I  
IN  
= 50µA  
0.196  
0.25  
0.296  
V/V  
SEN  
CURRENT ERROR AMPLIFIER  
Current DC Gain  
A
ΔI  
/ΔI  
ISEN  
1.6  
205  
-
1.9  
268  
60  
2
2.2  
331  
-
A/A  
µA/V  
µA  
iDC  
ICOMP  
I = ±20µA  
ICOMP  
Error Amp Transconductance  
ICOMP Source/Sink Current (Note 7)  
Current Sensing Input Offset  
Gmi  
-3  
7
mV  
LIGHT LOAD EFFICIENCY ENHANCEMENT AND OVERPOWER PROTECTION  
Skip Mode COMP Threshold  
COMP Upper Limit  
V
Applied for ISL6730A/B  
1.32  
3.53  
2.5  
1.36  
3.85  
2.83  
88  
1.4  
4.17  
3.16  
89  
V
V
SCMT  
V
CUL  
COMP Valid Range  
V
-1V  
V
CUL  
FB Exit Threshold Voltage  
V
Fraction of the set point (V  
), I  
REF ISEN  
= 0µA, Applied for  
87  
%
FB_EXIT  
ISL6730A/B  
ISEN Exit Threshold Current  
BROWNOUT DETECTION  
Brownout Rising Threshold  
Brownout Falling Threshold  
OVERVOLTAGE PROTECTION  
Overvoltage Protection  
I
V
= 2.5V, Applied for ISL6730A/B  
FB  
-38  
-29  
-20  
µA  
SEN_EXIT  
V
478  
387  
494  
401  
510  
415  
mV  
mV  
BO_R  
V
BO_F  
V
Fraction of the set point (V  
); ~1µs noise filter  
REF  
102.9  
104.1  
105.3  
%
OVP  
FN8258.1  
August 8, 2013  
7
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
Electrical Specifications Operating Conditions: V = 15V, T = +25°C. Boldface limits apply over the operating temperature range,  
CC  
A
-40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
OVERCURRENT PROTECTION  
Overcurrent Threshold  
SYMBOL  
TEST CONDITIONS  
(Note 8)  
TYP  
(Note 8) UNITS  
I
-197  
-177  
-159  
µA  
OC  
THERMAL SHUTDOWN  
Shutdown Temperature (Note 7)  
Thermal Shutdown Hysteresis (Note 7)  
NOTES:  
-
-
160  
25  
-
-
°C  
°C  
6. This is the V current consumed when the device is active but not switching. Does not include gate drive current.  
CC  
7. Limits should be considered typical and are not production tested.  
8. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified.  
Typical Performance Curves  
101.0  
100.50  
100.25  
100.00  
100.5  
100.0  
99.5  
V
= 2.5V  
IN  
99.75  
99.50  
V
= 0.6V  
80  
IN  
99.0  
-40  
-20  
0
20  
40  
60  
80  
100  
120 140  
-40  
-20  
0
20  
40  
60  
100  
120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 3. FEEDBACK ACCURACY  
FIGURE 4. F  
vs TEMPERATURE, V = 15V  
CC  
SW  
105  
100  
95  
101  
100  
99  
90  
85  
98  
80  
97  
75  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
-40  
-20  
0
20  
40  
60  
80  
100  
120 140  
V
TEMPERATURE (°C)  
IN  
FIGURE 5. A  
vs TEMPERATURE  
FIGURE 6. F  
vs V T = +25°C  
IN, A  
IDC  
SW  
FN8258.1  
August 8, 2013  
8
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
Typical Performance Curves (Continued)  
102  
101  
100  
102  
101  
100  
99  
I
START  
HYSTERSIS  
I
CC  
(GATE FLOATING)  
UP  
THRESHOLD  
99  
98  
DOWN  
THRESHOLD  
98  
-40  
-20  
0
20  
40  
60  
80  
100  
120 140  
-40  
-20  
0
20  
40  
60  
80  
100  
120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 8. V SUPPLY CURRENT vs TEMPERATURE  
CC  
FIGURE 7. UVLO THRESHOLDS vs TEMPERATURE  
112  
110  
108  
106  
104  
102  
100  
98  
FALL TIME  
RISE TIME  
96  
-40  
-20  
0
20  
40  
60  
80  
100  
120 140  
TEMPERATURE (°C)  
FIGURE 9. GATE DRIVER ABILITY vs TEMPERATURE (LOAD = 2.2nF)  
FN8258.1  
August 8, 2013  
9
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
EMI CHOKE  
Functional Description  
VCC Undervoltage Lockout (UVLO)  
The ISL6730A, ISL6730B, ISL6730C, ISL6730D start  
automatically once the voltage at VCC exceeds the UVLO  
threshold.  
V
C
LINE  
C
F3  
F2  
L
m
D
F1  
Shutdown  
D
F2  
When the VFB pin is below 0.2V, the controller is disabled and  
the PWM output driver is tri-stated. When disabled, the IC power  
will be reduced. During shutdown, the COMP pin is discharged to  
GND and the controller is disabled. The Over-Temperature  
Protection (OTP) is still alive to prevent the controller from  
starting up in a high temperature ambient condition.  
R
IN2  
VIN  
BO  
R
C
IN1  
BO  
In the event that the FB pin is disconnected from the feedback  
resistors, the FB pin is pulled to ground by an internal current  
FIGURE 10. INPUT VOLTAGE SENSING SCHEMATIC  
source I . When the FB pin voltage drops below 0.2V, the gate  
driver is disabled. The ISL6730A, ISL6730B, ISL6730C,  
ISL6730D enters shutdown mode.  
FB  
The BO pin also utilizes the VIN resistor divider for voltage  
sensing. Set the resistor divider ratio to satisfy the brownout  
requirement.  
Soft-Start  
First, calculate the resistor divider ratio, KBO.  
V
The COMP pin is released once the soft-start operation begins. A  
13µA current sources out to the RC network connected from the  
COMP pin until the FB pin voltage reaches 90% of the reference  
voltage.  
BORMAX  
-------------------------------------------  
K
=
(EQ. 1)  
BO  
V
2V  
F
RMSmin  
Where V is the forward voltage drop of the bridge rectifier and  
F
the voltage drop of D  
D .  
F1; F2  
Switching is inhibited when the COMP pin voltage is below 1V.  
When the COMP pin reaches 1V, the current error amplifier and  
the gate driver are activated and the converter starts switching.  
Then, select the R  
based on the highest reasonable resistance  
IN2  
value. Then select the R  
based upon the desirable minimum  
IN1  
RMS value of the line voltage for the PFC operation.  
During UVLO, Brownout and Shutdown, the COMP is pulled to the  
ground.  
K
BO  
(EQ. 2)  
--------------------  
R
=
R  
IN1  
IN2  
1 K  
BO  
Input Voltage Sensing  
Inductor Current Sensing  
The current sensing of the converter has two purposes. One is to  
force the inductor current to track the input semi-sinusoidal  
waveform. The other purpose is for overcurrent protection. Refer to  
Figure 11 for the current sensing scheme. The sensed current I  
is in proportion to the inductor current, I as described in  
The VIN pin is needed to sense the rectified input voltage. The  
sensed semi-sinusoidal waveform is needed to shape inductor  
current, which helps achieves unity power factor. At the same  
time, the voltage on the VIN pin is used to generate the negative  
capacitive element at the input. This will cancel the input filter  
CS  
L
capacitor, C . Canceling the effect of C will increase the  
F
F
Equation 3.  
displacement power factor and alleviate the zero crossing  
distortion, which is related to the distortion power factor.  
R
1
2
CS  
(EQ. 3)  
-- ---------------  
I
=
I  
CS  
L
R
SEN  
where:  
is the current sensing resistor with low value in the return  
R
CS  
path to the bridge rectifier.  
R
is the current scaling resistor connected between ISEN to  
SEN  
the R  
.
CS  
FN8258.1  
August 8, 2013  
10  
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
BRIDGE RECTIFIER  
V
L
F
I
EMI CHOKE  
VOUT  
COUT  
L
Q1  
V
LINE  
C
C
C
F1  
F3  
F2  
CF1  
L
m
RCS  
FIGURE 12. TYPICAL PFC INPUT FILTER CIRCUIT  
CURRENT  
MIRROR  
BRIDGE RECTIFIER  
EMI CHOKE  
L
F
2:1  
I
RSEN  
ISEN  
CS  
V
LINE  
C
F3  
C
C
F1  
F2  
L
m
I
> 0.5 I  
CS  
OC  
FIGURE 13. LOW COST PFC INPUT FILTER CIRCUIT  
FIGURE 11. INDUCTOR CURRENT SENSING SCHEME  
For applications where the output power is above 500W, the  
negative capacitance helps to improve the power factor  
dramatically. Please refer to Table 2 for the recommended  
A high value R renders more accurate current sensing. It is  
CS  
recommended to use the R to render 120mV peak voltage at  
CS  
the maximum line voltage during full load condition.  
filtering capacitor to be placed after the bridge rectifier, C  
.
F1  
120mV V  
⋅ η  
RMSMAX  
TABLE 2.  
(EQ. 4)  
-------------------------------------------------------------  
>
R
CS  
2 P  
Omax  
C
Po < 100W  
0.68  
100W < Po < 500W Po > 500W  
0.33 0.22  
F1  
Where η is the efficiency of the converter at the maximum line  
Typical  
input with full load.  
C(µF)/100W  
Since the R sees the average input current, high value R  
CS CS  
Additional C may be used to accommodate the use of small  
F1  
boost inductor or to eliminate the differential mode filter inductor  
as long as the equipment meets the power factor or goal.  
generates high power dissipation on the R . Use a reasonable  
CS  
R
according to the resistor power rating. The worst-case power  
CS  
dissipation occurs at the input low line when input current is at  
its maximum. Power dissipation by the resistor is:  
The equivalent negative capacitor is a function of the input  
2
(EQ. 5)  
P
= (I  
)
R  
CS  
voltage divider ratio, K , the current sensing gain and current  
BO  
RCS  
RMSMAX  
compensation error integration gain.  
where:  
Adjusting the negative Ceq can be achieved by adjusting the  
current compensation network.  
I
is the maximum input RMS current at the minimum  
RMSMAX  
input line voltage, V  
.
RMSmin  
Frequency Modulation  
Select the R  
SEN  
according to the peak current limit requirement.  
The ISL6730A, ISL6730B, ISL6730C, ISL6730D can further  
reduce EMI filter size by lowering the differential noise power  
density. The reduction is achieved by switching frequency  
modulation.  
The resistor is sized for an overload current 25% more than the  
peak inductor peak current.  
Negative Input Capacitor Generation (Patent  
Pending)  
The patent pending negative capacitor generation capability of  
the ISL6730A, ISL6730B, ISL6730C, ISL6730D allows the  
The frequency varies with the VIN pin. The switching frequency  
reaches the peak value when the VIN pin voltage is 2V as shown  
in Figure 6. The peak value of ISL6730A/C is 124kHz, and the  
ISL6730B/D is 62kHz.  
capacitor C to be moved from before the bridge rectifier  
F2  
(Figure 12) to after the bridge rectifier (Figure 13). Thus, a  
Output Voltage Regulation  
smaller lower cost C can be used. The change in topology  
F2  
reduces the size of the EMI filter. Furthermore, C can be  
F1  
The output voltage is sensed through a resistor divider. The  
middle point of the resistor divider is fed to the FB pin. The  
resistor divider ratio sets the output voltage. The  
increased thus decreasing the size of L (Figure 13).  
F
transconductance error amplifier generates a current in  
proportion to the difference between the FB pin and the 2.5V  
internal reference. The PFC is stabilized by the compensation  
network that is connected from the COMP pin to the ground.  
The voltage of the COMP sets the input average power by  
determining the amplitude of the current reference. To keep the  
FN8258.1  
August 8, 2013  
11  
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
harmonic distortion minimum, it is desirable to set the control  
bandwidth much lower than twice of the line frequency. The  
recommended voltage loop bandwidth is 10Hz.  
Overvoltage Protection  
If the voltage on the FB pin exceeds the reference voltage by about  
4%, the gate driver is turned off. The controller resumes normal  
operation after the FB pin drops below reference voltage.  
During start-up, the compensation capacitors and the charging  
current from the error amplifier sets the input power increase  
rate. Thus, soft-start is achieved.  
Over-Temperature Protection  
The ISL6730A, ISL6730B, ISL6730C, ISL6730D is protected  
against over-temperature conditions. When the junction  
temperature exceeds +160°C, the PWM shuts down. Normal  
operation is resumed when the junction temperature decreases  
below +135°C.  
The COMP is discharged during shutdown and fault conditions.  
Light Load Efficiency Enhancement  
For PC, adaptor and TV applications, it is desirable to achieve  
high efficiency at light load conditions and low standby current.  
The ISL6730A, ISL6730B can enter light load efficiency mode  
automatically.  
Application Guidelines  
Layout Considerations  
The voltage error amplifier output, COMP, is an indicator of the  
average input power level. The controller compares the V(COMP)  
and V(SKIP). If V(COMP)-1V is less than V(SKIP)*0.25, the PFC  
controller stops gate switching and the COMP pin voltage is  
clamped to V(SKIP)+0.6V. ISL6730A/B use a fixed V(SKIP), which  
is 1.4V; for ISL6730C/D, the SKIP function are disabled.  
As in any high frequency switching converter, layout is very  
important. Switching current from one power device to another  
can generate voltage transients across the impedances of the  
interconnecting bond wires and circuit traces. These  
interconnecting impedances should be minimized by using wide,  
short printed circuit traces. The critical components should be  
located as close together as possible using ground plane  
construction or single point grounding.  
The controller exits skip mode when V drops to 88% (typical) of  
FB  
the reference voltage or when the sensed returned current  
exceeds 29µA.  
Figure 14 shows the critical power components; Q , D and COUT  
.
1
Protection Circuits  
Input Brownout, BO Protection  
Brownout occurs when there is a drop in the line voltage. The BO  
pin is a dual function pin. The BO pin detects the brownout  
condition and shuts down the gate driver and controller. During  
normal operation, the BO pin is used to compensate the effect of  
the input line voltage change on the voltage loop. To keep the  
harmonic distortion low, the corner frequency formed by the RBO  
and CBO should be lower than 6Hz.  
To minimize the voltage overshoot, the interconnecting wires  
indicated by heavy lines should be part of the ground or the  
power plane in a printed circuit board. The components shown in  
Figure 14 should be located as close together as possible. Please  
note that the capacitors C  
and C each represent numerous  
VCC  
O
physical capacitors. Locate the ISL6730A, ISL6730B, ISL6730C,  
ISL6730D within 2 inches of the MOSFET, Q . The circuit traces  
1
for the MOSFETs’ gate and source connections from the  
ISL6730A, ISL6730B, ISL6730C, ISL6730D must be sized to  
handle up to 1.5A peak current.  
D
The BO pin is the output of the average voltage of the rectified  
voltage. The PFC controller is turned off when the BO pin drops  
below 0.4V. This protects the PFC power stage to enable  
operation at or below brownout condition for long periods of  
time. The controller resumes operation when the BO pin returns  
to 0.5V.  
L
C
OUT  
Q
1
The BO pin is usually connected to GND through a capacitor, CBO  
.
To avoid distortion on the VIN pin, select C so that:  
BO  
GATE  
C
» 0.22μF  
(EQ. 6)  
BO  
VCC  
C
Overcurrent Protection  
VCC  
The peak current limiting function prevents the inductor from  
saturation. The gate driver turns off when the current goes above  
the current limit.  
FIGURE 14. CRITICAL CURRENT POWER COMPONENTS  
Overpower Protection  
The overpower protection is implemented by limiting the COMP  
pin voltage higher than 3.85V (typical).  
Component Selection Guidelines  
A 300W, universal input, PFC converter design is provided for  
demonstration. The design method is for a continuous current  
mode power factor correction boost converter with the  
ISL6730B/D. The switching frequency is 62kHz.  
FN8258.1  
August 8, 2013  
12  
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
Table 3 shows the design parameters.  
Select the bridge diode using Equation 15 and sufficient reverse  
breakdown voltage. Assuming the forward voltage, V , is 1V  
across each rectifier diode. The power loss of the rectifier bridge  
can be calculated:  
F,BR  
TABLE 3. CONVERTER DESIGN PARAMETERS  
PARAMETER  
VLINE  
CONDITIONS  
MIN  
85  
TYP MAX UNIT  
115 265 VAC  
P
= 2 V  
I  
F, BR INAVE(MAX)  
(EQ. 15)  
BR  
FLINE  
47  
63  
Hz  
W
(EQ. 16)  
P
= 2 1V 3.5A = 7W  
BR  
P
T
Maximum Output Power  
Hold Up Time  
300  
OMAX  
INPUT CAPACITOR SELECTION  
20  
ms  
%
HOLD  
Refer to Table 2 for the recommended input filter capacitor value.  
Efficiency  
VLINE = 115VAC  
92  
0.33  
100  
(EQ. 17)  
-----------  
= 0.99μF  
C
= 300W •  
F1  
BOOST INDUCTOR SELECTION  
This is the recommended capacitor used after the diode bridge.  
For better power factor, less capacitance can be used. To lower  
the input filter inductor size, more capacitance can be used.  
First, calculate the maximum input RMS current, I  
INMAX.  
P
OMAX  
(EQ. 7  
-----------------------------------  
I
=
INMAX  
η • V  
RMSmin  
Two 0.47µF capacitors in parallel are used for C  
.
F1  
Where η is the converter efficiency at V  
. PF is the power  
(EQ. 8)  
RMSmin  
BOOST DIODE SELECTION  
factor at V  
RMSmin.  
The boost diode loss is determined by the diode forward voltage  
300W  
0.92 85V  
---------------------------  
= 3.84A  
I
=
INMAX  
drop, V and the output average current. The maximum output  
F
current is:  
Assuming the current is sinusoidal and the peak to peak ripple at  
line is 40%.  
P
OMAX  
--------------------  
I
=
=
(EQ. 18)  
(EQ. 19)  
OUT(max)  
V
OUT  
The boost inductor, L , is given by the following equation:  
BST  
300W  
---------------  
I
= 0.77A  
2 V  
OUT(max)  
2V  
390V  
RMSmin  
RMSmin  
(EQ. 9)  
---------------------------------------------------------------  
---------------------------------------  
L
1 –  
BST  
V
0.4 F  
2 I  
OUT  
sw  
INMAX  
The forward power loss on the diode is:  
(EQ. 20)  
(EQ. 21)  
P
= I  
V  
OUT(max) F  
FD  
85V  
-----------------------------------------------------  
2 85V  
390V  
-----------------------  
L
1 –  
= 617μH  
(EQ. 10)  
BST  
0.4 62kHz 3.84A  
P
= 0.77A 1.85V = 1.42W  
FD  
The peak current of the inductor is the sum of the average peak  
inductor current and half of the peak to peak ripple current.  
Select and design the boost inductor as given by Equation 11.  
The ISL6730A, ISL6730B, ISL6730C, ISL6730D provides peak  
current limit function that can prevent the boost inductor  
saturation. Assuming 25% margin is given to the OCP threshold,  
select and design the boost inductor with saturation current  
given by Equation 11 with 25% more.  
The IDD03E60 part is selected.  
The reverse recovery loss on the diode can be calculated. The  
Q
is found from the diode datasheet. Q = 220nC when  
RR  
RR  
I = 3.5A.  
F
The reverse recover loss on the diode can be estimated:  
1
4
(EQ. 22)  
(EQ. 23)  
--  
P
=
Q  
V  
F  
OUT  
RRD  
RRD  
RR  
sw  
0.4  
(EQ. 11)  
-------  
I
=
2 I  
1 +  
INMAX  
1
LPeak  
2
--  
P
=
220nC 390V 62kHz = 1.33W  
4
0.4  
2
The total power loss on the diode is:  
(EQ. 12)  
-------  
I
=
2 3.88A 1 +  
= 6.5A  
LPeak  
(EQ. 24)  
P
= P  
+ P  
= (1.42 + 1.35)W = 2.75W  
RRD  
D
FD  
INPUT RECTIFIER  
The maximum average input current is calculated:  
MOSFET POWER DISSIPATION  
2 2 I  
The power dissipation on the MOSFET is from two different types  
of losses; the condition loss and the switching loss.  
INMAX  
(EQ. 13)  
(EQ. 14)  
-----------------------------------------  
I
I
=
=
INAVE(max)  
INAVE(max)  
π
For the MOSFET, the worst case is at minimum line input voltage.  
2 2 3.88A  
-------------------------------------  
= 3.5A  
First, the drain to source RMS current is calculated:  
π
V
8
3π  
2
RMSmin  
---------- -------------------------  
I
= I  
1 –  
INMAX  
(EQ. 25)  
(EQ. 26)  
DS(max)  
V
OUT  
8
2
85V  
---------- -------------  
I
= 3.88A 1 –  
= 3.3A  
DS(max)  
3π 390V  
FN8258.1  
August 8, 2013  
13  
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
The MOSFET, SPP20N60C3 is selected.  
2
(4πf  
C  
ESR) + 1  
OUT  
2
(EQ. 27)  
(EQ. 28)  
line  
(EQ. 38)  
(EQ. 39)  
P
= I  
R  
DS(on)  
------------------------------------------------------------------------------  
OUT(max)  
V
V
= I  
COND  
DS(max)  
Opp  
Opp  
(4πf  
) ⋅ C  
0.8  
OUT  
line  
2
P
= 3.3A 0.3Ω = 3.27W  
COND  
2
(4π ⋅ 50Hz 270μF 0.77Ω) + 1  
-------------------------------------------------------------------------------------------  
= 0.77A ⋅  
= 6.6V  
The switching loss of the MOSFET consists of three parts: the  
turn-on loss, the turn-off loss and the diode reverse recovery loss.  
(4π ⋅ 50Hz) ⋅ 270μF 0.8  
The minimum OVP threshold is 103% of the nominal output  
value. The maximum output peak to peak ripple should be less  
From the MOSFET datasheet, the typical switching losses curves  
are provided.  
than 6% of the nominal value, which is 23.4V  
.
P-P  
When R = 3.6Ω, I = 6A, E = 0.015mJ, E  
ON  
= 0.007mJ.  
G
D
OFF  
CURRENT SENSING RESISTORS  
The switching loss due to transition is calculated:  
Please refer to Equation 4 for calculation of the current sensing  
resistor R  
(EQ. 29)  
(EQ. 30)  
P
P
= (E  
+ E  
) • F  
OFF  
sw  
SW  
SW  
ON  
.
CS  
= (0.015mJ + 0.007mJ) • 62kHz = 1.36W  
120mV 265V 0.92  
(EQ. 40)  
------------------------------------------------------  
= 0.069Ω  
R
CS  
2 300W  
The diode reverse recovery incurs additional power loss on the  
MOSFET. This loss can be estimated as:  
While a large R renders better current sensing accuracy, larger  
CS  
(EQ. 31)  
P
= Q  
V  
F  
OUT  
sw  
R
also incurs higher power dissipation. Select R from  
CS  
CS  
RR  
RR  
available standard value resistors to determine the sense  
resistor.  
This loss is also related the di/dt during the MOSFET turn-on. The  
di/dt can be found out from the MOSFET datasheet. At  
(EQ. 41)  
R
= 0.068Ω  
CS  
R
= 3.6Ω, the turn-on di/dt is 4000A/µs. From the Typical  
G
Reverse Recovery Charge curve at T = +125°C, the  
The maximum power dissipation on the R occurs at low line  
CS  
and full load condition. The maximum power dissipation is  
J
Q
= 220nC when I = 3.5A.  
RR  
F
calculated:  
(EQ. 32)  
(EQ. 33)  
P
= 220nC 390V 62kHz = 5.32W  
RR  
2
(EQ. 42)  
(EQ. 43)  
P
P
= I  
R  
CS  
RCSMAX  
INMAX  
2
THE TOTAL LOSS ON THE MOSFET  
= 3.88A 0.068Ω = 1.023W  
P
+ P  
+ P  
SW  
= 3.27W + 1.36W + 5.32W = 9.95W  
RCSMAX  
COND  
RR  
The resistor, R  
Equation 3, R  
sets the overcurrent protection limit. From  
should be greater than:  
SEN  
SEN  
OUTPUT CAPACITOR SELECTION  
The output capacitor, C , is required to hold the output above  
OUT  
R
I  
• (1 + 0.25)  
CS LPeak  
(EQ. 44)  
300V during one line cycle. For capacitors with 20% tolerance,  
the tolerance should be taken into consideration. Thus, the  
output capacitance should be greater than:  
-------------------------------------------------------------------  
R
SEN  
2 0.5 I  
OC  
Where |x| stands for the ABS(x) function.  
2 T  
P  
OMAX  
HOLD  
1
(EQ. 34)  
---------------------------------------------------- -----------------  
C
OUT  
2
2
1 0.2  
0.068Ω • 6.6A 1.25  
V
V  
HOLD  
(EQ. 45)  
OUT  
-------------------------------------------------------  
= 3.117kΩ  
R
SEN  
2 90μA  
2 20ms 300W  
---------------------------------------------  
(EQ. 35)  
C
1.25 = 242μF  
Select R  
from available standard value resistors, the selected  
OUT  
SEN  
is 3.16kΩ.  
2
2
(390) (300V)  
R
SEN  
Calculate the ripple RMS current through the capacitor:  
CURRENT LOOP COMPENSATION  
V
The input current shaping is achieved by comparing the sensed  
current signal to the sensed input voltage signal. The current  
error amplifier (Gmi), together with the current compensation  
network, adjusts the duty cycle so that the inductor current  
traces the sensed rectified voltage. Thus, unity power factor is  
achieved.  
8 2  
3π  
OUT  
(EQ. 36)  
(EQ. 37)  
---------- -------------------------  
I
= I  
1  
CORMS(max)  
CORMS(max)  
OUT(max)  
V
RMSmin  
8
2
390V  
---------- -------------  
1 = 1.635A  
I
= 0.77A  
3π  
85V  
Select the proper capacitor according to the hold time and ripple  
RMS current requirement. The actual capacitance is 270µF.  
The compensation network consists of the Trans-Conductance  
error amplifier (Gmi) and the impedance network (Z  
The  
ICOMP).  
goal of the compensation network is to provide a closed loop  
transfer function with the sufficient 0dB crossing frequency  
It is important to make sure the output peak-to-peak ripple is  
less than the minimum OVP threshold as specified in the  
“Electrical Specifications” table on page 6. The ESR at 2 times of  
the line frequency of the capacitor is found in the capacitor  
datasheet. The ESR of the output capacitor is 770mΩ at 100Hz.  
(f  
) and adequate phase margin. Phase margin is the  
and 180°. The  
0dB  
difference between the open loop phase at f  
0dB  
following equations relate the compensation network’s poles,  
zeros and gain to the components (R , C and C ) in Figure 15.  
ic ic ip  
FN8258.1  
August 8, 2013  
14  
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
The cross over frequency of the current loop should be set  
V
V
I
OUT  
between 2kHz to 100kHz. At cross over frequency, the transfer  
function from duty cycle to inductor current is well approximated  
by Equation 48:  
L
Q
C
1
OUT  
C
F1  
V
OUT  
(EQ. 48)  
---------------------  
G
(s)=  
id  
L
s  
BST  
R
CS  
It is recommended to set the cross over frequency from 1/10 to  
1/6 of the switching frequency with phase margin of 60°. A high  
frequency pole is set at 1/2 of the switching frequency for ripple  
CURRENT  
MIRROR  
2:1  
I
R
CS  
SEN  
filtering. In this example, we set the cross over, F at 1/6 of the  
C
switching frequency.  
F
C
ISEN  
--------------------------------------------------------  
F =  
Z
(EQ. 49)  
F
M
C
-------  
tan atan  
+ Φ  
F
P
ICOMP  
Where F = F /6 = 10.3kHz, Φ is the phase margin, which is  
C
S
M
I
REF  
R
IS  
60°. F = F /2 = 31kHz.  
P
S
Gmi  
R
C
ic  
ic  
Thus, the current loop compensation zero is:  
C
ip  
(62KHz) ⁄ 6  
------------------------------------------------------------  
F =  
= 2.12kHz  
(EQ. 50)  
(EQ. 51)  
Z
2
⎝ ⎠  
6
⎛ ⎞  
--  
tan atan  
+ 60deg  
FIGURE 15. INDUCTOR CURRENT SENSING SCHEME  
The total compensation capacitance is calculated:  
2
FROM DUTY TO  
V
A
R
CS  
1 + (f f )  
OUT  
iDC  
INDUCTOR CURRENT  
c
z
-------------------------------------- ------------- ---------------  
L
80  
C
+ C  
=
ic  
------------------------------  
ip  
2
2
V
R
SEN  
1 + (f f )  
m
⋅ (2πf )  
c
p
BST  
c
40  
20  
COMPENSATION  
GAIN  
(EQ. 52)  
(EQ. 53)  
C
+ C = (19.8)nF  
ip  
ic  
0
F
P
F
Z
f
-20  
-40  
-60  
-80  
-100  
z
----  
C
= (C + C  
)
iC  
ip  
ip  
f
p
OPEN LOOP  
GAIN  
The value of the noise filtering capacitor is:  
2.12kHz  
31kHz  
(EQ. 54)  
(EQ. 55)  
(EQ. 56)  
CURRENT GAIN  
MODULATOR GAIN  
----------------------  
= 1.35nF  
C
= 14.9nF ⋅  
ip  
The value of C is:  
ic  
100  
1k  
10k  
100k  
C
= 19.8nF 1.35nF = 18.4nF  
FREQUENCY (Hz)  
ic  
FIGURE 16. ASYMPTOTIC BODE PLOT OF CURRENT LOOP GAIN  
The value of R is:  
ic  
1
1
-----------------------------------  
F =  
----------------------------------------------------------  
R
=
= 4.11kΩ  
(EQ. 46)  
(EQ. 47)  
Z
ic  
2π • R C  
2π ⋅ 2.12kHz 18.4nF  
ic  
ic  
Select the R value from the standard value, we have:  
C
1
---------------------------------------------------  
=
F
P
C
C  
ic  
+ C  
ic  
R
= 4.02kΩ, C = 18nF, C = 1.2nF. Figure 17 shows the actual  
ic ip  
ip  
ic  
bode plot of current loop gain.  
-----------------------  
2π • R  
ic  
C
ip  
Use the following guidelines for locating the poles and zeros of  
the compensation network.  
FN8258.1  
August 8, 2013  
15  
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
For example, C = 0.68µF, C = 0.94µF, using the low cost EMI  
F2 F1  
80  
60  
40  
20  
0
10.5kHz  
filter shown in Figure 13. When V  
= 230VAC, f = 50Hz,  
LINE  
LINE  
P
= 60W.  
O
Assuming 95% efficiency under the above test condition, the  
resistive component, which is in phase to voltage:  
P
o
(EQ. 62)  
--------------------------------  
I =  
= 0.275A  
a
V
0.95  
LINE  
-20  
The reactive current through the input capacitors:  
180  
10.5kHz  
(EQ. 63)  
(EQ. 64)  
I = V  
• (2π ⋅ f  
) • (C + C ) = 0.117A  
LINE F1 F2  
c
LINE  
135  
90  
45  
0
Thus, the displacement power factor is:  
I
60  
45  
a
-----------------------------------  
PF  
=
= 0.92  
DIS  
2
2
(I ) + (I )  
a
c
3
3
3
10  
100  
1x10  
FREQUENCY (Hz)  
1x10  
1x10  
The reactive current generated by the equivalent negative  
capacitor is:  
FIGURE 17. BODE PLOT OF THE ACTUAL CURRENT LOOP GAIN  
(EQ. 65)  
I
= V  
• (2π ⋅ f  
) • (C  
) = 0.045A  
NEG  
cneg  
LINE  
LINE  
INPUT VOLTAGE SETTING  
First, set the BO resistor divider gain, K according to  
BO  
Equations 1 and 2.  
With the equivalent negative capacitor, the total reactive current  
reduces to:  
(EQ. 66)  
Assuming the converter starts at V  
= 80V  
, then the BO  
RMS  
LINE  
I
I  
= 0.072A  
cneg  
c
resistor divider gain, K should be:  
BO  
0.5V  
80V 2V  
(EQ. 57)  
------------------------  
K
=
= 0.00641  
The displacement power factor increases to:  
BO  
I
a
(EQ. 67)  
-------------------------------------------------------  
PF  
=
= 0.967  
DIS  
In this design, two 3.3Mresistors in series are used for R  
.
2
2
IN2  
(I ) + (I I )  
cneg  
a
c
So, R  
is calculated:  
IN1  
0.00641  
1 0.00641  
(EQ. 58)  
VOLTAGE LOOP COMPENSATION  
------------------------------  
⋅ (6.6MΩ) = 42.6kΩ  
R
=
IN1  
The average diode forward current can be approximated by:  
P
in  
(EQ. 68)  
Using resistor from the standard value, R  
IN1  
= 43k, the actual  
---------------  
I
=
D(ave)  
V
OUT  
K
is calculated:  
BO  
R
IN1  
+ R  
IN2  
(EQ. 59)  
Assuming the input current traces the input voltage perfectly. The  
--------------------------------  
K
=
= 0.00647  
BO  
R
input power is in proportion to (V  
- 1V).  
IN1  
COMP  
R
1
0.25  
SEN  
NEGATIVE INPUT CAPACITOR GENERATION  
-------------------------------------- --------------- -----------------------------------------------  
I
=
• Δ  
D(ave)  
COMP  
2
R
0.5 R  
V
OUT  
CS  
IS  
((2 2) ⁄ π) K  
The ISL6730A, ISL6730B, ISL6730C, ISL6730D generates an  
equivalent negative capacitance at the input to cancel the input  
filter capacitance. Thus, more input capacitors can be used  
without reducing the power factor.  
BO  
(EQ. 69)  
Where Δ  
COMP  
is the V - 1V. 1V is the offset voltage.  
COMP  
R
is the internal current scaling resistor. R = 14.2kΩ.  
IS  
IS  
The input equivalent negative capacitance is a function of the  
current sensing gain, BO resistor divider gain and the  
compensation components.  
A
(EQ. 70)  
---  
I
= 0.598 • Δ  
D(ave)  
COMP  
V
V
R
SEN  
m
(EQ. 60)  
--------------- -------------------------  
C
=
K
0.8 –  
(C + C )  
ip  
NEG  
BO  
ic  
V
R
A
OUT  
CS iDC  
1.5  
3.16k  
--------- ---------------------------  
C
=
0.00647 0.8 –  
(18nF + 1.2nF) = 0.62μF  
NEG  
390 0.068 1.9  
(EQ. 61)  
This equivalent negative capacitor cancels the input filter  
capacitor required for EMI filtering. Therefore, the displacement  
power factor significantly improves.  
FN8258.1  
August 8, 2013  
16  
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
The zero, F is calculated:  
Zv  
VOUT  
F
CV  
2.5V  
(EQ. 76)  
(EQ. 77)  
-----------------------------------------------------------------------------  
F
=
Zv  
tan+ atan(F  
⁄ (F )))  
Pv  
m
CV  
R
FB2  
FB  
8Hz  
------------------------------------------------------------------------------------------------  
= 1.15Hz  
F
=
Zv  
tan(60deg + atan((8Hz) ⁄ (20Hz)))  
Gmv  
R
Then the total capacitance used for compensation is calculated:  
FB1  
I
FB  
2
G
(i • (2πF )) • G  
Gmv  
DIV  
(F  
F  
)
ZV  
+ 1  
PS  
CV  
CV  
------------------------------------------------------------------------------------------  
--------------------------------------------  
C
+ C  
=
vp  
vc  
2
(2πF  
)
CV  
(F  
F  
) + 1  
CV  
PV  
COMP  
(EQ. 78)  
(EQ. 79)  
Rvc  
Cvc  
Thus, the total compensation capacitance is:  
Cvp  
C
+ C  
= 1829nF  
vp  
vc  
F
ZV  
(EQ. 80)  
(EQ. 81)  
----------  
C
= 1829nF •  
= 105nF  
FIGURE 18. OUTPUT VOLTAGE SENSING AND COMPENSATION  
vp  
F
PV  
Thus, the transfer function from V  
COMP  
to V is:  
OUT  
C
R
= 1829nF 105nF = 1724nF  
vc  
V
(s)  
I
1
OUT  
D(ave)  
(EQ. 71)  
(EQ. 72)  
-----------------------  
--------------- --------------------  
G
(s)=  
=
PS  
Δ
C
s  
Δ
COMP  
1
COMP  
O
(EQ. 82)  
------------------------------------------  
=
= 81.2kΩ  
vc  
2 ⋅ π ⋅ F C  
ZV  
VC  
I
1
0.598  
D(ave)  
------------------ --------------------  
---------------  
=
G
(s)=  
PS  
Choose components from the standard values. We have  
C
s  
Δ
C s  
O
COMP  
O
C
= 100nF, C = 1500nF, R = 82.5k. The actual bode plot  
VP  
VC VC  
is shown in Figure 20.  
As shown in Figure 18, the voltage loop gain is:  
60  
40  
20  
0
(EQ. 73)  
(EQ. 74)  
G
(s)= G (s) • G  
gmv Z  
(s)  
COMP  
VLOOP  
PS  
DIV  
The output feedback resistor divider gain, G  
is:  
DIV  
V
REF  
---------------  
G
=
DIV  
V
0
OUT  
-20  
-40  
The compensation gain uses external impedance networks as  
shown in Figure 18, Z  
(s) is given by:  
COMP  
R
C s + 1  
vc  
1
vc  
90  
-------------------------------------- ------------------------------------------------------------  
Z
(s)=  
(EQ. 75)  
COMP  
(C + C ) ⋅ s  
R
C C  
vc vc vp  
vc  
vp  
75  
60  
-----------------------------------------  
s + 1  
C
+ C  
vp  
vc  
45  
30  
15  
The targeted cross over frequency, F is 8Hz. The high frequency  
CV  
pole, F is required in order to reject the 2 time line frequency  
Pv  
component. F = 20Hz. The targeted phase margin is 60°.  
Pv  
0
1
3
F
1x10  
10  
100  
Zv  
100  
80  
FREQUENCY (Hz)  
F
F
Pv  
CV  
FIGURE 20. BODE PLOT OF THE ACTUAL VOLTAGE LOOP GAIN  
60  
Gmv*Z  
(s)  
COMP  
40  
G
(s)  
PS  
20  
0
G
(s)  
VLOOP  
-20  
-40  
-60  
G
DIV  
1
10  
100  
FREQUENCY (Hz)  
1k  
FIGURE 19. ASYMPTOTIC BODE PLOT OF CURRENT LOOP GAIN  
FN8258.1  
August 8, 2013  
17  
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that  
you have the latest revision.  
DATE  
REVISION  
FN8258.1  
FN8258.0  
CHANGE  
Added electronic specifications to parts ISL6730B/D and made necessary changes throughout document.  
Initial Release.  
August 8, 2013  
February 26, 2013  
About Intersil  
Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management  
semiconductors. The company's products address some of the largest markets within the industrial and infrastructure, personal  
computing and high-end consumer markets. For more information about Intersil, visit our website at www.intersil.com.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting  
www.intersil.com/en/support/ask-an-expert.html. Reliability reports are also available from our website at  
http://www.intersil.com/en/support/qualandreliability.html#reliability  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8258.1  
August 8, 2013  
18  
ISL6730A, ISL6730B, ISL6730C, ISL6730D  
Package Outline Drawing  
M10.118  
10 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
Rev 1, 4/12  
5
3.0±0.05  
A
DETAIL "X"  
D
10  
1.10 MAX  
SIDE VIEW 2  
0.09 - 0.20  
4.9±0.15  
3.0±0.05  
5
0.95 REF  
PIN# 1 ID  
1
2
0.50 BSC  
B
GAUGE  
PLANE  
TOP VIEW  
0.25  
3°±3°  
0.55 ± 0.15  
DETAIL "X"  
0.85±010  
H
C
SEATING PLANE  
0.10 C  
0.18 - 0.27  
0.10 ± 0.05  
0.08 C A-B D  
M
SIDE VIEW 1  
(5.80)  
NOTES:  
1. Dimensions are in millimeters.  
(4.40)  
(3.00)  
2. Dimensioning and tolerancing conform to JEDEC MO-187-BA  
and AMSEY14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
(0.50)  
4. Plastic interlead protrusions of 0.15mm max per side are not  
included.  
5. Dimensions are measured at Datum Plane "H".  
6. Dimensions in ( ) are for reference only.  
(0.29)  
(1.40)  
TYPICAL RECOMMENDED LAND PATTERN  
FN8258.1  
August 8, 2013  
19  

相关型号:

ISL6730AFUZ

Power Factor Correction Controllers
INTERSIL

ISL6730B

Power Factor Correction Controllers
INTERSIL

ISL6730BEVAL1Z

Power Factor Correction Controllers
INTERSIL

ISL6730BFUZ

Power Factor Correction Controllers; MSOP10; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL6730BFUZ

Power Factor Correction Controllers
INTERSIL

ISL6730BFUZ-T

Power Factor Correction Controllers; MSOP10; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL6730BFUZ-T7

POWER FACTOR CONTROLLER
RENESAS

ISL6730C

Power Factor Correction Controllers
INTERSIL

ISL6730CFUZ

Power Factor Correction Controllers; MSOP10; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL6730CFUZ

Power Factor Correction Controllers
INTERSIL

ISL6730CFUZ-T

Power Factor Correction Controllers; MSOP10; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL6730CFUZ-T7

POWER FACTOR CONTROLLER
RENESAS