ISL55110_0712 [INTERSIL]

Dual, High Speed MOSFET Driver; 双通道,高速MOSFET驱动器
ISL55110_0712
型号: ISL55110_0712
厂家: Intersil    Intersil
描述:

Dual, High Speed MOSFET Driver
双通道,高速MOSFET驱动器

驱动器
文件: 总15页 (文件大小:306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL55110, ISL55111  
®
Data Sheet  
December 12, 2007  
FN6228.2  
Dual, High Speed MOSFET Driver  
Features  
The ISL55110 and ISL55111 are dual high speed MOSFET  
drivers intended for applications requiring accurate pulse  
generation and buffering. Target applications include  
Ultrasound, CCD Imaging, Automotive Piezoelectric  
distance sensing and clock generation circuits.  
• 5V to 12V Pulse Magnitude  
• High Current Drive 3.5A  
• 6ns Minimum Pulse Width  
• 1.5ns Rise and Fall Times, 100pF Load  
• Low Skew  
With a wide output voltage range and low ON-resistance,  
these devices can drive a variety of resistive and capacitive  
loads with fast rise and fall times, allowing high speed  
operation with low skew, as required in large CCD array  
imaging applications.  
• 3.3V and 5V Logic Compatible  
• In-Phase and Anti-Phase Outputs  
• Small QFN and TSSOP Packaging  
• Low Quiescent Current  
The ISL55110 and ISL55111 are compatible with 3.3V and  
5V logic families and incorporate tightly controlled input  
thresholds to minimize the effect of input rise time on output  
pulse width. The ISL55110 has a pair of in-phase drivers  
while the ISL55111 has two drivers operating in antiphase.  
Both inputs of the device have independent inputs to allow  
external time phasing if required.  
• Pb-free (RoHS compliant)  
Applications  
• Ultrasound MOSFET Driver  
• CCD Array Horizontal Driver  
• Automotive Piezo Driver Applications  
• Clock Driver Circuits  
The ISL55110 has a power-down mode for low power  
consumption during equipment standby times, making it  
ideal for portable products.  
The ISL55110 and ISL55111 are available in 16 Ld Exposed  
pad QFN packaging and 8 Ld TSSOP. Both devices are  
specified for operation over the full -40°C to +85°C  
temperature range.  
Ordering Information  
PART  
NUMBER  
(Note)  
PART  
TEMP.  
PACKAGE  
PKG.  
DWG. #  
MARKING RANGE (°C) (Pb-Free)  
Functional Block Diagram  
ISL55110IRZ* 55 110IRZ -40 to +85 16 Ld QFN L16.4x4A  
ISL55110IVZ* 55110 IVZ -40 to +85 8 Ld TSSOP M8.173  
ISL55110 and ISL55111 DUAL DRIVER  
ISL55111IRZ* 55 11IRZ  
-40 to +85 16 Ld QFN L16.4x4A  
o
VDD  
VH  
OA  
ISL55111IVZ* 55111 IVZ -40 to +85 8 Ld TSSOP M8.173  
o
o
*Add “-T” suffix for tape and reel. Please refer to TB347 for details on  
reel specifications.  
IN-A  
o
o
NOTE: These Intersil Pb-free plastic packaged products employ  
special Pb-free material sets; molding compounds/die attach  
materials and 100% matte tin plate PLUS ANNEAL - e3 termination  
finish, which is RoHS compliant and compatible with both SnPb and  
Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J STD-020.  
HIZ-QFN*  
OB  
IN-B  
o
o
o
*
GND  
o
POWER DOWN  
*HIZ AVAILABLE IN QFN PACKAGE ONLY  
*ISL55111 IN-B IS INVERTING  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2006, 2007. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL55110, ISL55111  
Pinout  
ISL55110  
(16 LD QFN)  
TOP VIEW  
ISL55111  
(16 LD QFN)  
TOP VIEW  
16 15 14 13  
16 15 14 13  
OB  
VDD  
ENABLE  
PD  
12  
11  
10  
9
1
2
3
4
OB  
VDD  
ENABLE  
PD  
12  
11  
10  
9
1
2
3
4
GND  
VH  
GND  
VH  
OA  
IN-B  
OA  
IN-B  
5
6
7
8
5
6
7
8
ISL55110  
ISL55111  
(8 LD TSSOP)  
(8 LD TSSOP)  
TOP VIEW  
TOP VIEW  
VDD  
1
2
3
4
8
OB  
VDD  
1
2
3
4
8 OB  
PD  
IN-B  
IN-A  
7
6
GND  
VH  
PD  
IN-B  
IN-A  
7
6
GND  
VH  
5
OA  
5
OA  
Pin Descriptions  
16 Ld QFN  
8 Ld TSSOP  
PIN  
FUNCTION  
1
10  
11  
3
1
6
7
2
VDD  
VH  
Logic Power.  
Driver High Rail Supply.  
GND  
PD  
Ground, Return for Both VH Rail and VDD Logic Supply.  
Power-Down. Active Logic High Places Part in Power-Down Mode.  
2
ENABLE  
QFN Packages Only. Provides High Speed Logic HIZ Control of Driver Outputs while Leaving  
Device Logic Power On.  
5
4
4
3
IN-A  
Logic Level Input that Drives OA to VH Rail or Ground. Not Inverted.  
IN-B, INB  
Logic Level Input that Drives OB to VH Rail or Ground. Not Inverted on ISL55110, Inverted on  
ISL55111.  
9
5
8
OA  
OB  
NC  
Driver Output Related to IN-A.  
Driver Output Related to IN-B.  
No Connect.  
12  
6 through 8,  
13 through 16  
FN6228.2  
December 12, 2007  
2
ISL55110, ISL55111  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
VH+ to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.0V  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5V  
VIN_A, VIN_V, PDN, ENABLE. . . . . . (GND - 0.5V) to (VDD + 0.5V)  
OA, OB. . . . . . . . . . . . . . . . . . . . . . . . . . .(GND - 0.5) to (VH + 0.5V)  
Maximum Peak Output Current . . . . . . . . . . . . . . . . . . . . . . (300mA)  
ESD Rating  
Thermal Resistance  
θ
(°C/W)  
θ
(°C/W)  
JC  
JA  
16 Ld (4x4) QFN Package (Notes 2, 3)  
8 Ld TSSOP Package (Note 1) . . . . . .  
Maximum Junction Temperature (Plastic Package). . . . . . . +150°C  
Maximum Storage Temperature Range . . . . . . . . . . . -65°C to +150°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
45  
140  
3.0  
N/A  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3kV  
Operating Conditions  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
NOTES:  
1. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
2. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See  
JA  
Tech Brief TB379.  
3. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Recommended Operating Conditions  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Driver Supply Voltage  
CONDITIONS  
(Note 4)  
TYP  
(Note 4)  
UNIT  
V
V
V
5
12  
13.2  
5.5  
H
Logic Supply Voltage  
Ambient Temperature  
Junction Temperature  
2.7  
-40  
V
DD  
T
+85  
+150  
°C  
°C  
A
T
J
DC Electrical Specifications  
V
= +12V, V  
= 2.7V to 5.5V, T = +25°C, unless otherwise specified.  
DD A  
H
MIN  
MAX  
PARAMETER  
DESCRIPTION  
TEST CONDITIONS  
(Note 4)  
TYP  
(Note 4)  
UNITS  
LOGIC CHARACTERISTICS  
VIX_LH  
VIX_HL  
VHYS  
VIH  
Logic Input Threshold - Low to High  
Logic Input Threshold - High to Low  
Logic Input Hysteresis  
l
l
= 1µA: VIN_A, VIN_B  
= 1µA: VIN_A, VIN_B  
1.32  
1.12  
1.42  
1.22  
0.2  
1.52  
1.32  
V
V
IH  
IL  
VIN_A,VIN_B  
V
Logic Input High Threshold  
Logic Input Low Threshold  
Logic Input High Threshold  
Logic Input Low Threshold  
Input Current Logic High  
Input Current Logic Low  
PDN  
2.0  
0
VDD  
0.8  
VDD  
0.8  
20  
V
VIL  
PDN  
V
VIH  
ENABLE - QFN only  
ENABLE - QFN only  
VIN_A,VIN_B = VDD  
VIN_A, VIN_B = 0V  
PDN = VDD  
2.0  
0
V
VIL  
V
IIX_H  
IIX_L  
II_H  
10  
10  
10  
10  
nA  
nA  
nA  
nA  
mA  
nA  
20  
Input Current Logic High  
Input Current Logic Low  
20  
II_L  
PDN = 0V  
15  
II_H  
Input Current Logic High  
Input Current Logic Low  
ENABLE = VDD (QFN only)  
ENABLE = 0V (QFN only)  
12  
II_L  
-25  
FN6228.2  
December 12, 2007  
3
ISL55110, ISL55111  
DC Electrical Specifications  
V
= +12V, V  
= 2.7V to 5.5V, T = +25°C, unless otherwise specified. (Continued)  
H
DD  
A
MIN  
MAX  
PARAMETER  
DESCRIPTION  
TEST CONDITIONS  
(Note 4)  
TYP  
(Note 4)  
UNITS  
DRIVER CHARACTERISTICS  
r
Driver Output Resistance  
OA, OB  
3
6
Ω
mA  
A
DS  
DC  
AC  
I
I
Driver Output DC Current (>2s)  
Peak Output Current  
100  
3.5  
Design Intent verified via  
simulation.  
VOH to VOL  
Driver Output Swing Range  
VH voltage to Ground  
3
13.2  
V
SUPPLY CURRENTS  
I
I
Logic Supply Quiescent Current  
Logic Supply Power-Down Current  
Driver Supply Quiescent Current  
PDN = Low  
4.0  
6.0  
12  
15  
mA  
µA  
µA  
DD  
PDN = High  
DD-PDN  
IH  
PDN = Low, No resistive load  
D
OUT  
IH_PDN  
Driver Supply Power-Down Current  
PDN = High  
1
µA  
AC Electrical Specifications  
V
= +12V, V = +3.6, T = +25°C, unless otherwise specified.  
DD A  
H
MIN  
MAX  
PARAMETER  
DESCRIPTION  
TEST CONDITIONS  
(Note 4)  
TYP  
(Note 4)  
UNITS  
SWITCHING CHARACTERISTICS  
t
t
t
t
Driver Rise Time  
OA, OB: CL = 100pF/1k  
10% to 90%, VOH - VOL = 12V  
1.2  
1.4  
6.2  
6.9  
ns  
ns  
ns  
ns  
R
F
R
F
Driver Fall Time  
Driver Rise Time  
Driver Fall Time  
OA, OB: CL = 100pF/1k  
10% to 90%, VOH - VOL = 12V  
OA, OB CL = 1nF  
10% to 90%, VOH-VOL = 12V  
OA, OB CL = 1nF  
10% to 90%, VOH-VOL = 12V  
Input to Output Propagation Delay  
Input to Output Propagation Delay  
Input to Output Propagation Delay  
Input to Output Propagation Delay  
Input to Output Propagation Delay  
Input to Output Propagation Delay  
Figure 2, Load 100pF/1k  
Figure 2, Load 330pF  
Figure 2, Load 680pF  
10.9  
10.7  
12.8  
12.5  
14.5  
14.1  
<0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tpdR  
tpdF  
tpdR  
tpdF  
tpdR  
tpdF  
tSkewR  
Channel-to-Channel tpdR Spread with  
Same Loads Both Channels  
Figure 2, All Loads  
Figure 2, All Loads  
tSkewF  
Channel-to-Channel tpdF Spread with  
Same Loads Both Channels.  
<0.5  
ns  
FMAX  
TMIN  
Maximum Operating Frequency  
Minimum Pulse Width  
70  
6
MHz  
ns  
PDEN*  
PDDIS*  
TEN*  
Power-down to Power-on Time  
Power-on to Power-down Time  
ENABLE to ENABLE Time (HIZ Off)  
ENABLE to ENABLE TIme (HIZ On)  
1.0  
1.6  
0.7  
1.6  
ms  
ms  
ms  
ms  
TDIS*  
NOTE:  
4. Parts are 100% tested at +25°C. Over-temperature limits established by characterization and are not production tested.  
FN6228.2  
December 12, 2007  
4
ISL55110, ISL55111  
VH = 12V  
+3V  
INPUT  
0.1µF  
+
4.7µF  
INX  
IN  
0.4V  
INPUT  
OUTPUT  
C
ISL55110  
L
t
t
f
r
12V  
INPUT RISE AND  
FALL TIMES 2ns  
90%  
90%  
OUTPUT  
0V  
10%  
10%  
FIGURE 1. TEST CIRCUIT RISE (t )/FALL(t ) THRESHOLDS  
R
F
VH = 12V  
+3V  
INPUT  
50%  
+
50%  
0.1µF  
4.7µF  
IN-X  
IN  
0.4V  
tpdF  
tpdR  
50%  
INPUT  
OUTPUT  
C
ISL55110  
L
12V  
INPUT RISE AND  
FALL TIMES 2ns  
50%  
OUTPUT OA AND OB ISLS55110  
OUTPUT OA ISLS55111  
0V  
12V  
OUTPUT OB ISLS55111  
50%  
50%  
0V  
t
R = tpdR CHN1 - tpdR CHN2  
SKEW  
FIGURE 2. TEST CIRCUIT PROPAGATION TPD DELAY  
FN6228.2  
December 12, 2007  
5
ISL55110, ISL55111  
Typical Performance Curves (See “Typical Performance Curves Discussion” on page 11)  
7.0  
6.3  
5.6  
4.9  
4.2  
3.5  
2.8  
2.1  
1.4  
0.7  
0.0  
7.0  
6.3  
5.6  
4.9  
4.2  
3.5  
2.8  
2.1  
1.4  
0.7  
0.0  
VDD 3.6V  
+50mA  
VDD 3.6V  
-50mA  
+85°C  
+85°C  
+25°C  
+25°C  
-40°C  
11  
-40°C  
11  
3
4
5
6
7
8
9
10  
12  
13  
3
4
5
6
7
8
9
10  
12  
13  
V , DRIVE RAIL (V)  
V , DRIVE RAIL (V)  
H
H
FIGURE 3. DRIVER r  
vs VH SOURCE RESISTANCE  
FIGURE 4. DRIVER r  
vs VH SINK RESISTANCE  
ON  
ON  
4.00  
3.66  
3.33  
2.66  
2.33  
2.00  
4.00  
50mA  
50mA  
3.66  
3.33  
2.66  
2.33  
2.00  
VH 5.0V  
VH 12.0V  
VH 5.0V  
VH 12.0V  
2.5  
3.5  
4.5  
5.5  
2.5  
3.5  
4.5  
5.5  
V
(V)  
V
(V)  
DD  
DD  
FIGURE 5. r  
vs V  
SOURCE RESISTANCE  
FIGURE 6. r  
vs V  
SINK RESISTANCE  
DD  
ON  
DD  
ON  
5.0  
10  
9
8
7
6
5
4
3
2
1
0
VDD 3.6V  
4.6  
4.2  
3.8  
3.4  
3.0  
VH 5V AND 12V  
4.5 5.5  
2.5  
3.5  
4
8
V , DRIVE RAIL (V)  
12  
V
(V)  
DD  
H
FIGURE 7. I  
vs V  
QUIESCENT CURRENT  
FIGURE 8. I  
vs V @ 50MHz (NO LOAD)  
DD H  
DD  
DD  
FN6228.2  
December 12, 2007  
6
ISL55110, ISL55111  
Typical Performance Curves (See “Typical Performance Curves Discussion” on page 11) (Continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
200  
180  
160  
140  
120  
100  
80  
V
3.6V  
V
3.6V  
DD  
DD  
60  
40  
20  
0
4
8
12  
4
8
12  
V , DRIVE RAIL (V)  
H
V , DRIVE RAIL (V)  
H
FIGURE 9. QUIESCENT I vs V  
FIGURE 10. I vs V @ 50MHz (NO LOAD)  
H H  
H
H
15.0  
13.5  
12.0  
10.5  
9.00  
7.50  
6.00  
4.50  
2.00  
0.50  
0.00  
200  
VH 5.0V  
VDD 3.6V  
180  
160  
140  
120  
100  
80  
60  
40  
V
5.0V  
3.6V  
H
20  
V
DD  
0
50M  
66M  
100M  
TOGGLE FREQUENCY (Hz)  
124M  
128M  
50M  
66M  
100M  
124M  
128M  
TOGGLE FREQUENCY (Hz)  
FIGURE 11. I  
vs FREQUENCY (DUAL CHANNEL, NO LOAD)  
FIGURE 12. IH vs FREQUENCY (DUAL CHANNEL, NO LOAD)  
DD  
1.5  
1.4  
1.3  
1.2  
1.1  
1.5  
1.4  
-40°C  
+85°C  
-40°C  
1.3  
1.2  
1.1  
+85°C  
1.0  
2.5  
1.0  
2.5  
3.5  
4.5  
5.5  
3.5  
4.5  
5.5  
VDD (V)  
VDD (V)  
FIGURE 13. VIH LOGIC THRESHOLDS  
FIGURE 14. VIL LOGIC THRESHOLDS  
FN6228.2  
December 12, 2007  
7
ISL55110, ISL55111  
Typical Performance Curves (See “Typical Performance Curves Discussion” on page 11) (Continued)  
10  
9
10  
9
8
7
6
5
4
3
2
1
680pF  
8
680pF  
V
12.0V  
3.6V  
H
7
V
DD  
6
330pF  
330pF  
5
4
3
2
1
V
DD  
12.0V  
H
V
3.6V  
0
-40  
0
-40  
-10  
+20  
PACKAGE TEMP (°C)  
+50  
+85  
-10  
+20  
PACKAGE TEMP (°C)  
+50  
+85  
FIGURE 15. t vs TEMPERATURE  
r
FIGURE 16. t vs TEMPERATURE  
f
20  
20  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
680pF  
680pF  
330pF  
330pF  
6
6
4
4
V
12.0V  
3.6V  
V
H
12.0V  
3.6V  
H
2
2
V
V
DD  
DD  
0
-40  
0
-40  
-10  
+20  
+50  
+85  
-10  
+20  
+50  
+85  
PACKAGE TEMP (°C)  
PACKAGE TEMP (°C)  
FIGURE 17. tpd vs TEMPERATURE  
r
FIGURE 18. tpd vs TEMPERATURE  
f
10  
10  
V
12.0V  
H
9
8
7
6
5
4
3
2
9
8
7
6
5
4
3
2
1000pF  
680pF  
680pF  
100pF/1k  
1000pF  
330pF  
100pF/1k  
330pF  
1
0
2.5  
1
0
2.5  
VH 12.0V  
5.5  
3.5  
4.5  
3.5  
4.5  
5.5  
V
(V)  
V
(V)  
DD  
DD  
FIGURE 19. t vs V  
r
FIGURE 20. t vs V  
f DD  
DD  
FN6228.2  
December 12, 2007  
8
ISL55110, ISL55111  
Typical Performance Curves (See “Typical Performance Curves Discussion” on page 11) (Continued)  
12.0  
12.0  
10.8  
9.6  
8.4  
7.2  
6.0  
4.8  
3.6  
2.4  
1.2  
0.0  
330pF  
100pF/1k  
680pF  
100pF/1k  
330pF  
10.8  
9.6  
8.4  
7.2  
6.0  
4.8  
3.6  
2.4  
1.2  
0.0  
1000pF  
680pF  
1000pF  
V
3.3V  
V
3.3V  
DD  
DD  
3
6
9
12  
3
6
9
12  
5.5  
12  
V
(V)  
V (V)  
H
H
FIGURE 21. t vs V  
r
FIGURE 22. t vs V  
f
H
H
20  
20  
V
12.0V  
V
12.0V  
H
H
18  
16  
14  
12  
18  
16  
14  
12  
10  
8
10  
8
100pF/1k  
1000pF  
100pF/1k  
1000pF  
6
6
4
4
2
0
2.5  
2
0
3.5  
4.5  
5.5  
2.5  
3.5  
4.5  
V
(V)  
V
(V)  
DD  
DD  
FIGURE 23. tpd vs V  
r
FIGURE 24. tpd vs V  
f DD  
DD  
20  
20  
V
3.3V  
V
3.3V  
DD  
DD  
18  
16  
14  
12  
18  
16  
14  
12  
10  
8
10  
8
100pF/1k  
1000pF  
100pF/1k  
1000pF  
6
6
4
4
2
0
2
0
3
6
9
3
6
9
12  
V
(V)  
V
(V)  
H
H
FIGURE 25. tpd vs V  
r
FIGURE 26. tpd vs V  
f H  
H
FN6228.2  
December 12, 2007  
9
ISL55110, ISL55111  
Typical Performance Curves (See “Typical Performance Curves Discussion” on page 11) (Continued)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
V
12.0V  
3.6V  
H
V
12.0V  
3.6V  
H
V
DD  
V
DD  
330pF  
330pF  
680pF  
680pF  
0.0  
-40  
0.0  
-40  
-10  
+20  
+50  
+85  
-10  
+20  
PACKAGE TEMP (°C)  
+50  
+85  
PACKAGE TEMP (°C)  
FIGURE 27. tskew vs TEMPERATURE  
r
FIGURE 28. tskew vs TEMPERATURE  
f
1.0  
1.0  
V
12.0V  
V
12.0V  
H
H
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.9  
0.8  
0.7  
0.6  
680pF  
0.5  
0.4  
0.3  
0.2  
680pF  
330pF  
0.1  
0.0  
2.5  
330pF  
2.5  
3.5  
4.5  
DD  
5.5  
3.5  
4.5  
DD  
5.5  
V
(V)  
V
(V)  
DD  
DD  
FIGURE 29. tskew vs V  
r
FIGURE 30. tskew vs V  
f
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
V
3.3V  
V
3.3V  
DD  
DD  
680pF  
680pF  
330pF  
6
330pF  
6
3
9
12  
3
9
12  
V
(V)  
V
(V)  
DD  
DD  
FIGURE 31. tskew vs V  
r
FIGURE 32. tskew vs V  
f H  
H
FN6228.2  
December 12, 2007  
10  
ISL55110, ISL55111  
Pin Skew  
Typical Performance Curves Discussion  
Pin Skew measurements are based on the difference in  
propagation delay of the two channels. Measurements are  
made on each channel from the 50% point on the stimulus  
point to the 50% point on the driver output. The difference in  
the propagation delay for Channel A and Channel B is  
considered to be Skew.  
r
ON  
The r  
Source is tested by placing the device in Constant  
ON  
Drive High Condition and connecting -50mA constant current  
source to the Driver Output. The Voltage Drop is measured  
from VH to Driver Output for r  
calculations.  
ON  
The r  
ON  
Sink is tested by placing the device in Constant  
Both Rising Propagation Delay and Falling Propagation  
Delay are measured and report as tSkewR and tSkewF.  
Driver Low Condition and connecting a +50mA constant  
current source. The Voltage Drop from Driver Out to Ground  
50MHz Tests  
is measured for r  
Calculations.  
ON  
50MHz Tests reported as No Load actually include  
Evaluation board parasitics and a single TEK 6545 FET  
probe. However no driver load components are installed and  
Dynamic Tests  
All dynamic tests are conducted with ISL55110, ISL55111  
Evaluation Board(s) (ISL55110_11EVAL2Z). Driver Loads  
are soldered to the Evaluation board. Measurements are  
collected with P6245 Active FET Probes and TDS5104  
Oscilloscope. Pulse Stimulus is provided by HP8131 pulse  
generator.  
C through C and R through R are not populated.  
6
9
3
6
General  
The Most dynamic measurements are presented in three  
ways:  
The ISL55110, ISL55111 Evaluation Boards provide Test  
Point Fields for leadless connection to either an Active FET  
Probe or Differential probe. TP-IN fields are used for  
monitoring pulse input stimulus. TP-OA/B monitor Driver  
1. Over-temperature with a V  
of 3.6V and V of 12.0V.  
H
DD  
2. At ambient with V set to 12V and V  
H
data points of  
DD  
2.5V, 3.5V, 4.5V and 5.50V.  
3. The ambient tests are repeated with V  
data points of 3V, 6V, 9V and 12V.  
of 3.3V and V  
H
DD  
Output waveforms. C and C are the usual placement for  
6
7
Driver loads. R and R are not populated and are provided  
3
4
for User-Specified, more complex load characterization.  
FIGURE 33. ISL55110/11EVAL2Z EVALUATION BOARD  
FN6228.2  
December 12, 2007  
11  
ISL55110, ISL55111  
times and rise and fall times. Use a ground plane if possible  
Detailed Description  
or use separate ground returns for the input and output  
circuits. To minimize any common inductance in the ground  
return, separate the input and output circuit ground returns  
as close to the ISL55110, ISL55111 as possible.  
The ISL55110, ISL55111 are Dual High Speed MOSFET  
Drivers intended for applications requiring accurate pulse  
generation and buffering. Target applications include  
Ultrasound, CCD Imaging, Automotive Piezoelectric  
distance sensing and clock generation circuits.  
Bypassing  
The rapid charging and discharging of the load capacitance  
requires very high current spikes from the power supplies. A  
parallel combination of capacitors which have a low  
impedance over a wide frequency range should be used. A  
4.7µF tantalum capacitor in parallel with a low inductance  
0.1µF capacitor is usually sufficient bypassing.  
With a wide output voltage range and low ON-resistance,  
these devices can drive a variety of resistive and capacitive  
loads with fast rise and fall times, allowing high speed  
operation with low skew as required in large CCD array  
imaging applications.  
The ISL55110 and ISL55111 are compatible with 3.3V and  
5V logic families and incorporate tightly controlled input  
thresholds to minimize the effect of input rise time on output  
pulse width. The ISL55110 has a pair of in-phase drivers  
while the ISL55111 has two drivers operating in antiphase.  
Both inputs of the device have independent inputs to allow  
external time phasing if required.  
Output Damping  
Ringing is a common problem in any circuit with very fast  
rise or fall times. Such ringing will be aggravated by long  
inductive lines with capacitive loads. Techniques to reduce  
ringing include:  
1. Reduce inductance by making printed circuit board traces  
as short as possible.  
In addition to power MOSFET drivers, the ISL55110,  
ISL55111 is well suited for other applications such as bus,  
control signal, and clock drivers on large memory of  
microprocessor boards, where the load capacitance is large  
and low propagation delays are required. Other potential  
applications include peripheral power drivers and charge-  
pump voltage inverters.  
2. Reduce inductance by using a ground plane or by closely  
coupling the output lines to their return paths.  
3. Use small damping resistor in series with the output of the  
ISL55110, ISL55111. Although this reduces ringing, it will  
also slightly increase the rise and fall times.  
4. Use good bypassing techniques to prevent supply  
voltage ringing.  
Input Stage  
The input stage is a high impedance input with rise/fall  
hysteresis. This means that the inputs will be directly  
compatible with both TTL and lower voltage logic over the  
entire VDD range. The user should treat the inputs as high  
speed pins and keep rise and fall times to <2ns.  
Power Dissipation Calculation  
The Power dissipation equation has three components:  
Quiescent Power Dissipation, Power dissipation due to  
Internal Parasitics and Power Dissipation because of the  
Load Capacitor.  
Output Stage  
Power dissipation due to internal parasitics is usually the  
most difficult to accurately quantitize. This is primarily due to  
Crow-Bar current which is a product of both the high and low  
drivers conducting effectively at the same time during driver  
transitions. Design goals always target the minimum time for  
this condition to exist. Given that how often this occurs is a  
product of frequency, Crowbar effects can be characterized  
as internal capacitance.  
The ISL55110, ISL55111 output is a high-power CMOS  
driver, swinging between ground and VH. At V = 12V, the  
output impedance of the inverter is typically 3.0Ω. The high  
peak current capability of the ISL55110, ISL55111 enables it  
to drive a 330pF load to 12V with a rise time of <3.0ns over  
the full temperature range. The output swing of the  
H
ISL55110, ISL55111 comes within < 30mV of the V and  
Ground rails.  
H
Lab tests are conducted with Driver Outputs disconnected  
from any load. With design verification packaging, bond  
wires are removed to aid in the characterization process.  
Based on laboratory tests and simulation correlation of those  
results, Equation 1 defines the ISL55110, ISL55111 Power  
Dissipation per channel:  
Application Notes  
Although the ISL55110, ISL55111 is simply a dual  
level-shifting driver, there are several areas to which careful  
attention must be paid.  
2 f  
Grounding  
2 f  
2 f  
(EQ. 1)  
P = VDD 3.3e-3 + 10pF VDD  
+ 135pF VH  
+
Since the input and the high current output current paths  
both include the ground pin, it is very important to minimize  
any common impedance in the ground return. Since the  
ISL55111 has one inverting input, any common impedance  
will generate negative feedback, and may degrade the delay  
CL VH  
(Watts/Channel)  
1. Where:  
3.3mA is the quiescent Current from the VDD. This forms  
a small portion of the total calculation. When figuring two  
FN6228.2  
December 12, 2007  
12  
ISL55110, ISL55111  
channel power consumption, only include this current  
once.  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the loads.  
Power also depends on number of channels changing state  
and frequency of operation. The extent of continuous active  
pulse generation will greatly effect dissipation requirements.  
2. 10pF is the approximate parasitic Capacitor (Inverters,  
etc.), which the V  
drives  
DD  
3. 135pF is the approximate parasitic at the D  
and its  
OUT  
Buffers. This includes the effect of the Crow-bar Current.  
4. C is the Load capacitor being driven  
L
The user should evaluate various heat sink/cooling options  
in order to control the ambient temperature part of the  
equation. This is especially true if the user’s applications  
require continuous, high speed operation. A review of the  
Power Dissipation Discussion  
Specifying continuous pulse rates, driver loads and driver  
level amplitudes are key in determining power supply  
requirements, as well as dissipation/cooling necessities.  
Driver Output patterns also impact these needs. The faster  
the pin activity, the greater the need to supply current and  
remove heat.  
θ
ratings of the TSSOP and QFN package clearly show  
JA  
the QFN package to have better thermal characteristics.  
The reader is cautioned against assuming a calculated  
level of thermal performance in actual applications. A  
careful inspection of conditions in your application  
should be conducted. Great care must be taken to  
ensure Die Temperature does not exceed +150°C  
Absolute Maximum Thermal Limits.  
As detailed in the “Power Dissipation Calculation” on  
page 12, Power Dissipation of the device is calculated by  
taking the DC current of the V  
(logic) and V Current  
DD  
H
(Driver rail) times the respective voltages and adding the  
product of both calculations. The average DC current  
Important Note: The ISL55110, ISL55111 QFN package  
metal plane is used for heat sinking of the device. It is  
electrically connected to the negative supply potential  
ground.  
measurements of I  
and IH should be done while running  
the device with the planned V and V levels and driving  
DD  
DD  
H
the required pulse activity of both channels at the desired  
operating frequency and driver loads.  
Power Supply Sequencing  
Therefore, the user must address power dissipation relative  
to the planned operating conditions. Even with a device  
mounted per Notes 1 or 2 under Thermal Information, given  
the high speed pulse rate and amplitude capability of the  
ISL55110, ISL55111, it is possible to exceed the +150°C  
“absolute-maximum junction temperature”. Therefore, it is  
important to calculate the maximum junction temperature for  
the application to determine if operating conditions need to  
be modified for the device to remain in the safe operating  
area.  
The ISL55110, ISL55111 references both V  
and the V  
H
DD  
driver supplies with respect to Ground. Therefore, apply  
, then V . Digital Inputs should never be open. Do not  
V
DD  
H
apply slow analog ramps to the inputs. Again, place  
decoupling as close to the package as possible for both V  
and especially V .  
H
DD  
Special Loading  
With most applications, the user will usually have a special  
load requirement. Please contact Intersil for Evaluation  
Boards or to request a device characterization to your  
requirements in our lab.  
The maximum power dissipation allowed in a package is  
determined according to Equation 2:  
T
- T  
AMAX  
JMAX  
(EQ. 2)  
--------------------------------------------  
P
=
DMAX  
θ
JA  
where:  
• T  
• T  
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
AMAX  
θ = Thermal resistance of the package  
JA  
• P  
DMAX  
= Maximum power dissipation in the package  
FN6228.2  
December 12, 2007  
13  
ISL55110, ISL55111  
Quad Flat No-Lead Plastic Package (QFN)  
Micro Lead Frame Plastic Package (MLFP)  
L16.4x4A  
16 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
(COMPLIANT TO JEDEC MO-220-VGGD-10)  
MILLIMETERS  
SYMBOL  
MIN  
NOMINAL  
MAX  
1.00  
0.05  
1.00  
NOTES  
A
A1  
A2  
A3  
b
0.80  
0.90  
-
-
-
-
-
-
9
0.20 REF  
9
0.18  
2.30  
2.30  
0.25  
0.30  
2.55  
2.55  
5, 8  
D
4.00 BSC  
-
D1  
D2  
E
3.75 BSC  
9
2.40  
7, 8  
4.00 BSC  
-
E1  
E2  
e
3.75 BSC  
9
2.40  
7, 8  
0.50 BSC  
-
k
0.25  
0.30  
-
-
-
-
L
0.40  
0.50  
0.15  
8
L1  
N
-
16  
4
4
-
10  
2
Nd  
Ne  
P
3
3
-
-
0.60  
12  
9
θ
-
9
Rev. 2 3/06  
NOTES:  
1. Dimensioning and tolerancing conform to ASME Y14.5-1994.  
2. N is the number of terminals.  
3. Nd and Ne refer to the number of terminals on each D and E.  
4. All dimensions are in millimeters. Angles are in degrees.  
5. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
6. The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
7. Dimensions D2 and E2 are for the exposed pads which provide  
improved electrical and thermal performance.  
8. Nominal dimensions are provided to assist with PCB Land  
Pattern Design efforts, see Intersil Technical Brief TB389.  
9. Features and dimensions A2, A3, D1, E1, P & θ are present when  
Anvil singulation method is used and not present for saw  
singulation.  
10. Depending on the method of lead termination at the edge of the  
package, a maximum 0.15mm pull back (L1) maybe present.  
L minus L1 to be equal to or greater than 0.3mm.  
FN6228.2  
December 12, 2007  
14  
ISL55110, ISL55111  
Thin Shrink Small Outline Plastic Packages (TSSOP)  
N
M8.173  
INDEX  
AREA  
0.25(0.010)  
M
B M  
E
8 LEAD THIN SHRINK NARROW BODY SMALL OUTLINE  
PLASTIC PACKAGE  
E1  
-B-  
GAUGE  
PLANE  
INCHES  
MIN  
MILLIMETERS  
SYMBOL  
MAX  
0.047  
0.006  
0.051  
0.0118  
0.0079  
0.120  
0.177  
MIN  
-
MAX  
1.20  
0.15  
1.05  
0.30  
0.20  
3.05  
4.50  
NOTES  
1
2
3
A
A1  
A2  
b
-
-
L
0.002  
0.031  
0.0075  
0.0035  
0.116  
0.169  
0.05  
0.80  
0.19  
0.09  
2.95  
4.30  
-
0.25  
0.010  
0.05(0.002)  
SEATING PLANE  
A
-
-A-  
D
9
c
-
-C-  
α
D
3
A2  
e
A1  
E1  
e
4
c
b
0.10(0.004)  
0.026 BSC  
0.65 BSC  
-
0.10(0.004) M  
C
A M B S  
E
0.246  
0.256  
6.25  
0.45  
6.50  
0.75  
-
L
0.0177  
0.0295  
6
NOTES:  
N
8
8
7
1. These package dimensions are within allowable dimensions of  
JEDEC MO-153-AC, Issue E.  
o
o
o
o
0
8
0
8
-
α
Rev. 1 12/00  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm  
(0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.15mm (0.006 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable dambar  
protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimen-  
sion at maximum material condition. Minimum space between protru-  
sion and adjacent lead is 0.07mm (0.0027 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact. (Angles in degrees)  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6228.2  
December 12, 2007  
15  

相关型号:

ISL55110_11

Dual, High Speed MOSFET Driver
INTERSIL

ISL55111

Dual, High Speed MOSFET Driver
INTERSIL

ISL55111

Dual, High Speed MOSFET Driver
RENESAS

ISL55111EVAL1Z

Dual, High Speed MOSFET Driver
RENESAS

ISL55111EVAL1Z

Dual, High Speed MOSFET Driver
INTERSIL

ISL55111EVAL2Z

Dual, High Speed MOSFET Driver
RENESAS

ISL55111EVAL2Z

Dual, High Speed MOSFET Driver
INTERSIL

ISL55111IRZ

Dual, High Speed MOSFET Driver
INTERSIL

ISL55111IRZ

Dual, High Speed MOSFET Driver
RENESAS

ISL55111IRZR5343

IC,DUAL MOSFET DRIVER,LLCC,16PIN,PLASTIC
RENESAS

ISL55111IVZ

Dual, High Speed MOSFET Driver
INTERSIL

ISL55111IVZ

Dual, High Speed MOSFET Driver
RENESAS