ISL28138 [INTERSIL]

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Op Amps with Very Low Input Bias Current; 4.5MHz ,单和双精密轨到轨输入输出( RRIO )运算放大器具有极低的输入偏置电流
ISL28138
型号: ISL28138
厂家: Intersil    Intersil
描述:

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Op Amps with Very Low Input Bias Current
4.5MHz ,单和双精密轨到轨输入输出( RRIO )运算放大器具有极低的输入偏置电流

运算放大器
文件: 总16页 (文件大小:861K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL28138, ISL28238  
®
Data Sheet  
February 19, 2008  
FN6336.2  
4.5MHz, Single and Dual Precision  
Rail-to-Rail Input-Output (RRIO) Op Amps  
with Very Low Input Bias Current  
Features  
• 4.5MHz gain bandwidth product  
• 900µA supply current (per amplifier)  
• 300µV maximum offset voltage  
• 1pA typical input bias current  
• Down to 2.4V single supply voltage range  
• Rail-to-rail input and output  
The ISL28138 and ISL28238 are 4.5MHz low-power single  
and dual operational amplifiers. The parts are optimized for  
single supply operation from 2.4V to 5.5V, allowing operation  
from one lithium cell or two Ni-Cd batteries.  
The parts feature an Input Range Enhancement Circuit  
(IREC) which enables them to maintain CMRR performance  
for input voltages greater than the positive supply. The input  
signal is capable of swinging 0.25V above the positive  
supply and to 100mV below the negative supply with only a  
slight degradation of the CMRR performance. The output  
operation is rail-to-rail.  
• Output sources and sinks 60mA load current  
• Enable pin (ISL28138)  
• -40°C to +125°C operation  
• Pb-free (RoHS compliant)  
The parts draw minimal supply current (900µA per amplifier)  
while meeting excellent DC accuracy, AC performance,  
noise and output drive specifications. The ISL28138 features  
an enable pin that can be used to turn the device off and  
reduce the supply current to less than 20µA. Operation is  
guaranteed over -40°C to +125°C temperature range.  
Applications  
• Low-end audio  
• 4mA to 20mA current loops  
• Medical devices  
• Sensor amplifiers  
• ADC buffers  
Ordering Information  
PART NUMBER  
(Note)  
PART  
MARKING  
PACKAGE  
(Pb-free)  
• DAC output amplifiers  
PKG. DWG. #  
MDP0038  
MDP0038  
MDP0027  
MDP0027  
MDP0027  
ISL28138FHZ-T7* GABR  
ISL28138FHZ-T7A* GABR  
6 Ld SOT-23  
6 Ld SOT-23  
Pinouts  
ISL28138  
(6 LD SOT-23)  
TOP VIEW  
ISL28138  
(8 LD SO)  
TOP VIEW  
ISL28138FBZ  
28138 FBZ 8 Ld SOIC  
28138 FBZ 8 Ld SOIC  
28238 FBZ 8 Ld SOIC  
ISL28138FBZ-T7*  
Coming Soon  
NC  
IN-  
IN+  
V-  
1
2
3
4
8
7
6
5
EN  
OUT 1  
V- 2  
6
5
4
V+  
EN  
IN-  
ISL28238FBZ  
V+  
-
+
Coming Soon  
28238 FBZ 8 Ld SOIC  
MDP0027  
MDP0043  
MDP0043  
+ -  
ISL28238FBZ-T7*  
OUT  
NC  
IN+ 3  
Coming Soon  
ISL28238FUZ  
8238Z  
8238Z  
8 Ld MSOP  
8 Ld MSOP  
Coming Soon  
ISL28238FUZ-T7*  
ISL28238  
(8 LD SO)  
TOP VIEW  
ISL28238  
(8 LD MSOP)  
TOP VIEW  
*Please refer to TB347 for details on reel specifications.  
NOTE: These Intersil Pb-free plastic packaged products employ  
special Pb-free material sets; molding compounds/die attach  
materials and 100% matte tin plate PLUS ANNEAL - e3 termination  
finish, which is RoHS compliant and compatible with both SnPb and  
Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J STD-020.  
OUT_A  
1
2
3
4
8
7
6
5
V+  
OUT_A  
IN-_A  
IN+_A  
V-  
1
2
3
4
8
7
6
5
V+  
IN-_A  
IN+_A  
V-  
OUT_B  
IN-_B  
IN+_B  
OUT_B  
IN-_B  
IN+_B  
-
+
-
+
+
-
+
-
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2007, 2008. All Rights Reserved.  
All other trademarks mentioned are the property of their respective owners.  
ISL28138, ISL28238  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.75V  
Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/µs  
Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V  
ESD Tolerance  
Thermal Resistance  
θ
(°C/W)  
JA  
6 Ld SOT-23 Package . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld MSOP Package . . . . . . . . . . . . . . . . . . . . . . . .  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . .Indefinite  
Ambient Operating Temperature Range . . . . . . . . .-40°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +125°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
230  
110  
115  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3kV  
Machine Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V+ = 5V, V- = 0V,V  
= 2.5V, R = Open, T = +25°C unless otherwise specified.  
L A  
Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data  
CM  
established by characterization.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Input Offset Voltage  
CONDITIONS  
(Note 1) TYP (Note 1) UNIT  
V
8 Ld SOIC  
6 Ld SOT-23  
8 Ld SOIC  
-300  
-650  
±6  
±6  
300  
650  
µV  
µV  
OS  
-550  
550  
-750  
750  
Input Offset Voltage vs Temperature  
0.6  
µV/°C  
ΔV  
OS  
---------------  
ΔT  
I
Input Offset Current  
Input Bias Current  
-35  
-80  
±5  
±1  
35  
80  
pA  
pA  
OS  
T
= -40°C to +85°C  
A
I
-30  
30  
B
T
= -40°C to +85°C  
-80  
80  
A
CMIR  
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Guaranteed by CMRR  
0
5
V
CMRR  
V
V
V
V
= 0V to 5V  
75  
70  
98  
98  
dB  
CM  
PSRR  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
= 2.4V to 5.5V  
80  
75  
dB  
+
A
= 0.5V to 4.5V, R = 100kΩ to V  
CM  
200  
150  
580  
V/mV  
VOL  
O
O
L
= 0.5V to 4.5V, R = 1kΩ to V  
50  
3
V/mV  
mV  
L
CM  
V
Maximum Output Voltage Swing  
Output low, R = 100kΩ to V  
CM  
6
OUT  
L
8
Output low, R = 1kΩ to V  
50  
4.998  
4.95  
0.9  
70  
110  
mV  
V
L
CM  
Output high, R = 100kΩ to V  
4.994  
4.99  
L
CM  
Output high, R = 1kΩ to V  
4.93  
4.89  
V
L
CM  
I
I
Supply Current, Enabled  
0.7  
0.4  
1.1  
1.4  
mA  
µA  
S,ON  
Supply Current, Disabled (ISL28138)  
10  
14  
S,OFF  
16  
FN6336.2  
February 19, 2008  
2
ISL28138, ISL28238  
Electrical Specifications V+ = 5V, V- = 0V,V  
= 2.5V, R = Open, T = +25°C unless otherwise specified.  
Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data  
CM  
L
A
established by characterization. (Continued)  
MIN  
MAX  
PARAMETER  
I +  
DESCRIPTION  
CONDITIONS  
(Note 1) TYP (Note 1) UNIT  
Short-Circuit Output Source Current  
R
R
= 10Ω  
= 10Ω  
48  
75  
68  
mA  
mA  
O
L
L
45  
I -  
Short-Circuit Output Sink Current  
50  
O
45  
V
V
V
Supply Operating Range  
V+ to V-, Guararteed by PSRR  
2.4  
2
5.5  
0.8  
V
V
SUPPLY  
ENH  
EN Pin High Level (ISL28138)  
EN Pin Low Level(ISL28138)  
EN Pin Input High Curren (ISL28138)  
V
ENL  
I
V
V
= V+  
= V-  
1
1.5  
1.6  
µA  
ENH  
EN  
EN  
I
EN Pin Input Low Current (ISL28138)  
12  
25  
nA  
ENL  
30  
AC SPECIFICATONS  
GBW  
Gain Bandwidth Product  
A
R
= 100, R = 100kΩ, R = 1kΩ,  
4.5  
13  
MHz  
MHz  
V
F
G
= 10kΩ to V  
L
CM  
Unity Gain  
Bandwidth  
-3dB Bandwidth  
A
=1, R = 0Ω, V  
= 10mV  
,
P-P  
V
F
OUT  
= 10kΩ to V  
CM  
R
L
e
Input Noise Voltage Peak-to-Peak  
Input Noise Voltage Density  
Input Noise Current Density  
f = 0.1Hz to 10Hz  
2
26  
µV  
P-P  
N
f
f
= 1kHz  
= 1kHz  
nV/Hz  
O
i
0.12  
85  
pA/Hz  
dB  
N
O
CMRR @ 60Hz Input Common Mode Rejection Ratio  
V
= 1V , R = 10kΩ to V  
P-P CM  
CM  
L
PSRR- @  
120Hz  
Power Supply Rejection Ratio (V-)  
V , V = ±1.2V and ±2.5V,  
-82  
dB  
+
-
V
= 1V , R = 10kΩ to V  
P-P  
SOURCE  
L
CM  
CM  
PSRR+ @  
120Hz  
Power Supply Rejection Ratio (V+)  
V , V = ±1.2V and ±2.5V  
-100  
dB  
+
-
V
= 1V , R = 10kΩ to V  
P-P  
SOURCE  
L
TRANSIENT RESPONSE  
SR  
t , t , Large  
Slew Rate  
±4.8  
530  
V/µs  
ns  
Rise Time, 10% to 90%, V  
A
= +2  
,
V
= 3V , R = R  
P-P  
=
=
10k  
10k  
Ω
Ω
r
f
OUT  
V
OUT  
R = 10kΩ to V  
L
G
F
F
Signal  
CM  
Fall Time, 90% to 10%, V  
A
= +2  
,
V
= 3V , R = R  
530  
50  
50  
5
ns  
ns  
ns  
µs  
µs  
OUT  
V
OUT  
= 10kΩ to V  
P-P  
G
R
L
CM  
t , t , Small  
Rise Time, 10% to 90%, V  
A
= +2  
,
V
= 10mV  
=
,
r
f
OUT  
V
OUT  
P-P  
10kΩ to V  
Signal  
R
= R = R  
G
F
L
CM  
Fall Time, 90% to 10%, V  
A
= +2  
,
V
= 10mV  
,
OUT  
V
OUT  
P-P  
= R = R = 10kΩ to V  
F L  
R
G
CM  
t
Enable to Output Turn-on Delay Time, 10%  
EN to 10% V , (ISL28138)  
V
R
= 5V to 0V, A = +2,  
V
EN  
EN  
= R = R = 1k to V  
OUT  
Enable to Output Turn-off Delay Time, 10%  
EN to 10% V , (ISL28138)  
G
F
L
CM  
V
R
= 0V to 5V, A = +2,  
V
0.2  
EN  
= R = R = 1k to V  
OUT  
G
F
L
CM  
NOTE:  
1. Parts are 100% tested at +25°C. Temperature limits established by characterization and are not production tested.  
FN6336.2  
February 19, 2008  
3
ISL28138, ISL28238  
Typical Performance Curves V+ = 5V, V- = 0V,V = 2.5V, R = Open, unless otherwise specified.  
CM  
L
1
0
15  
10  
5
V
= 100mV  
= 50mV  
= 10mV  
OUT  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
R = R = 100k  
V
f
g
OUT  
OUT  
R = R = 10k  
f
g
V
V
= 1V  
OUT  
0
V
= 5V  
= 1k  
+
L
L
-5  
R
C
A
V
= 5V  
= 1k  
+
L
L
R = R = 1k  
f
g
= 16.3pF  
= +2  
R
C
A
-10  
= 16.3pF  
= +1  
V
V
= 10mV  
OUT  
P-P  
V
-15  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. GAIN vs FREQUENCY vs FEEDBACK RESISTOR  
FIGURE 2. GAIN vs FREQUENCY vs V  
R = 1k  
L
OUT,  
VALUES R /R  
f
g
1
0
1
0
V
= 100mV  
OUT  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
V
= 100mV  
= 50mV  
= 10mV  
OUT  
V
= 50mV  
= 10mV  
OUT  
OUT  
V
OUT  
OUT  
V
V
V
= 1V  
OUT  
V
= 1V  
OUT  
V
R
= 5V  
= 100k  
+
L
L
V
R
= 5V  
= 10k  
+
L
L
C
= 16.3pF  
= +1  
C
= 16.3pF  
= +1  
A
V
A
V
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 4. GAIN vs FREQUENCY vs V  
, R = 100k  
OUT  
FIGURE 3. GAIN vs FREQUENCY vs V  
, R = 10k  
OUT  
L
L
1
70  
R
= 1k  
A
= 1, R = INF, R = 0  
g f  
g f  
= 101, R = 1k, R = 100k  
g f  
L
V
A
= 1001  
= 101  
V
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
A
= 10, R = 1k, R = 9.09k  
60  
50  
40  
30  
20  
10  
0
V
A
V
R
= 10k  
L
A = 1001, R = 1k, R = 1M  
V g f  
A
V
R
= 100k  
L
V
= 5V  
+
L
L
C
= 16.3pF  
= 10k  
A
= 10  
V
R
V
= 10mV  
OUT  
P-P  
V
V
= 5V  
+
= 10mV  
= 16.3pF  
= +1  
OUT  
P-P  
A
= 1  
V
C
L
A
V
-10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. GAIN vs FREQUENCY vs R  
FIGURE 6. FREQUENCY RESPONSE vs CLOSED LOOP GAIN  
L
FN6336.2  
February 19, 2008  
4
ISL28138, ISL28238  
Typical Performance Curves V+ = 5V, V- = 0V,V = 2.5V, R = Open, unless otherwise specified. (Continued)  
CM  
L
1
0
8
7
6
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
C
C
= 51.7pF  
= 43.7pF  
= 37.7pF  
L
L
L
V
= 5V  
+
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
C
V
= 2.4V  
+
C
= 26.7pF  
= 16.7pF  
= 4.7pF  
L
R
C
A
= 10k  
L
L
V
R
= 5V  
= 1k  
= +1  
+
L
C
L
= 16.3pF  
= +1  
C
L
A
V
V
V
= 10mV  
P-P  
V
= 10mV  
OUT  
OUT P-P  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
FIGURE 8. GAIN vs FREQUENCY vs C  
FIGURE 7. GAIN vs FREQUENCY vs SUPPLY VOLTAGE  
L
20  
0
10  
0
-10  
-20  
-30  
-40  
-50  
PSRR-  
PSRR+  
-20  
-40  
-60  
-80  
-100  
-120  
V
= 2.4V, 5V  
= 1k  
V , V = ±1.2V  
+
L
L
+
-
R
C
A
R
= 1k  
-60  
-70  
-80  
-90  
L
L
= 16.3pF  
= +1  
C
A
= 16.3pF  
= +1  
V
V
V
= 1V  
V
= 1V  
CM  
P-P  
CM  
P-P  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 9. CMRR vs FREQUENCY; V = 2.4V AND 5V  
+
FIGURE 10. PSRR vs FREQUENCY, V , V = ±1.2V  
+
-
1k  
100  
10  
20  
0
V
R
= 5V  
= 1k  
+
L
L
C
= 16.3pF  
= +1  
PSRR-  
PSRR+  
-20  
-40  
A
V
-60  
V , V = ±2.5V  
+
-
R
= 1k  
-80  
L
L
C
A
= 16.3pF  
= +1  
-100  
-120  
V
V
= 1V  
P-P  
CM  
1
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 12. INPUT VOLTAGE NOISE DENSITY vs FREQUENCY  
FIGURE 11. PSRR vs FREQUENCYV, V , V = ±2.5V  
+
-
FN6336.2  
February 19, 2008  
5
ISL28138, ISL28238  
Typical Performance Curves V+ = 5V, V- = 0V,V = 2.5V, R = Open, unless otherwise specified. (Continued)  
CM  
L
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
10  
V
R
= 5V  
= 1k  
+
L
L
C
= 16.3pF  
= +1  
A
V
1
R
= 10k  
A = 10k  
V
V
C
= 5V  
= 16.3pF  
= 10  
L
+
L
R
R = 100k  
f
g
0.1  
1
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
TIME (s)  
FIGURE 14. INPUT VOLTAGE NOISE 0.1Hz to 10Hz  
FIGURE 13. INPUT CURRENT NOISE DENSITY vs FREQUENCY  
2.0  
1.5  
1.0  
0.5  
0.025  
0.020  
0.015  
0.010  
0
V , V = ±2.5V  
V , V = ±2.5V  
+
-
+
-
-0.5  
-1.0  
-1.5  
-2.0  
R
= 1k  
R
= 1k  
L
L
L
L
g
C
= 16.3pF  
C
R
A
= 16.3pF  
R = R = 10k  
= R =10k  
g
f
f
A
OUT  
= 2  
= 2  
V
V
OUT  
V
= 10mV  
V
= 3V  
P-P  
6
P-P  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
7
8
9
10  
TIME (µs)  
TIME (µs)  
FIGURE 15. LARGE SIGNAL STEP RESPONSE  
FIGURE 16. SMALL SIGNAL STEP RESPONSE  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.5  
V
OUT  
V
EN  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
R
= 5V  
= R = 10k  
+
g
L
f
C
= 16.3pF  
= +2  
A
V
V
= 1V  
P-P  
OUT  
R
= 10k  
L
-0.2  
90 100  
-0.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
TIME (µs)  
FIGURE 17. ISL28138 ENABLE TO OUTPUT RESPONSE  
FN6336.2  
February 19, 2008  
6
ISL28138, ISL28238  
Typical Performance Curves V+ = 5V, V- = 0V,V = 2.5V, R = Open, unless otherwise specified. (Continued)  
CM  
L
800  
600  
400  
200  
0
100  
80  
V
R
= 5V  
= OPEN  
V
= 5V  
= OPEN  
+
L
+
R
R
A
L
f
60  
R = 100k, R = 100  
= 100k, R = 100  
g
= +1k  
f
g
A
= +1k  
40  
V
V
20  
0
-20  
-40  
-60  
-80  
-100  
-200  
-400  
-600  
-800  
-1  
0
1
2
3
4
5
6
-1  
0
1
2
3
4
5
6
V
(V)  
V
(V)  
CM  
CM  
FIGURE 18. INPUT OFFSET VOLTAGE vs COMMON MODE  
INPUT VOLTAGE  
FIGURE 19. INPUT BIAS CURRENT vs COMMON MODE  
INPUT VOLTAGE  
10.5  
1.2  
MAX  
9.5  
1.1  
MAX  
8.5  
1.0  
MEDIAN  
7.5  
MEDIAN  
0.9  
6.5  
MIN  
0.8  
MIN  
5.5  
0.7  
0.6  
4.5  
3.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 20. SUPPLY CURRENT ENABLED vs  
TEMPERATURE V , V = ±2.5V  
FIGURE 21. SUPPLY CURRENT DISABLED vs  
TEMPERATURE V , V = ±2.5V  
+
-
+
-
800  
600  
400  
200  
0
600  
400  
200  
0
MAX  
MAX  
MEDIAN  
MEDIAN  
-200  
-400  
-600  
-800  
MIN  
-200  
-400  
-600  
-800  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 22. V  
V
(SOIC PKG) vs TEMPERATURE  
FIGURE 23. V  
V
(SOT PKG) vs TEMPERATURE  
OS  
= 0V, V , V = ±2.75V  
OS  
= 0V, V , V = ±2.75V  
IN  
+
-
IN  
+
-
FN6336.2  
February 19, 2008  
7
ISL28138, ISL28238  
Typical Performance Curves V+ = 5V, V- = 0V,V = 2.5V, R = Open, unless otherwise specified. (Continued)  
CM  
L
800  
600  
400  
200  
0
600  
400  
200  
0
MAX  
MAX  
MEDIAN  
MEDIAN  
-200  
-400  
-600  
-800  
-200  
-400  
-600  
-800  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 25. V  
V
(SOT PKG) vs TEMPERATURE  
FIGURE 24. V  
V
(SOIC PKG) vs TEMPERATURE  
OS  
= 0V, V , V = ±2.5V  
OS  
= 0V, V , V = ±2.5V  
IN  
+
-
IN  
+
-
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
MAX  
MAX  
MEDIAN  
MIN  
MEDIAN  
MIN  
-200  
-400  
-600  
-800  
-200  
-400  
-600  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 26. V  
(SOIC PKG) vs TEMPERATURE  
OS  
= 0V, V , V = ±1.2V  
FIGURE 27. V  
V
(SOT PKG) vs TEMPERATURE  
OS  
= 0V, V , V = ±1.2V  
V
IN  
+
-
IN  
+
-
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
0
0
-50  
-50  
-40  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 29. I  
- vs TEMPERATURE V , V = ±1.2V  
+ -  
FIGURE 28.  
I
- vs TEMPERATURE V , V = ±2.5V  
BIAS + -  
BIAS  
FN6336.2  
February 19, 2008  
8
ISL28138, ISL28238  
Typical Performance Curves V+ = 5V, V- = 0V,V = 2.5V, R = Open, unless otherwise specified. (Continued)  
CM  
L
10  
20  
0
10  
MAX  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
MAX  
-10  
-20  
-30  
-40  
-50  
-60  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 30. I  
vs TEMPERATURE V , V = ±2.5V  
+ -  
FIGURE 31. I  
vs TEMPERATURE V , V = ±1.2V  
OS  
OS  
+
-
80  
70  
60  
50  
40  
30  
20  
1750  
1550  
1350  
1150  
950  
MAX  
MEDIAN  
MAX  
MEDIAN  
MIN  
750  
550  
MIN  
350  
150  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 33. A  
VOL  
vs TEMPERATURE, R = 1k  
L
FIGURE 32. A  
VOL  
vs TEMPERATURE, R = 100k,  
L
V , V = ±2.5V, V = -2V TO +2V  
V , V = ±2.5V, V = -2V TO +2V  
+
-
O
+
-
O
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
MAX  
MAX  
MEDIAN  
MIN  
MEDIAN  
MIN  
80  
80  
70  
-40  
70  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 34. CMRR vs TEMPERATURE, V  
V , V = ±2.5V  
= +2.5V TO -2.5V,  
FIGURE 35. PSRR vs TEMPERATURE, V , V = ±1.2V TO  
CM  
+
-
±2.75V  
+
-
FN6336.2  
February 19, 2008  
9
ISL28138, ISL28238  
Typical Performance Curves V+ = 5V, V- = 0V,V = 2.5V, R = Open, unless otherwise specified. (Continued)  
CM  
L
4.9994  
4.9992  
4.9990  
4.9988  
4.9986  
4.9984  
4.9982  
4.970  
4.965  
4.960  
4.955  
4.950  
4.945  
4.940  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 36. V  
HIGH vs TEMPERATURE R = 1k,  
FIGURE 37. V  
HIGH vs TEMPERATURE R = 100k,  
OUT L  
OUT  
L
V , V = ±2.5V  
V , V = ±2.5V  
+
-
+
-
75  
70  
65  
60  
55  
50  
45  
40  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 38. V  
LOW vs TEMPERATURE R = 1k,  
FIGURE 39. V  
LOW vs TEMPERATURE R =100k,  
OUT L  
OUT  
L
V , V = ±2.5V  
V , V = ±2.5V  
+
-
+
-
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
95  
90  
85  
80  
75  
70  
65  
60  
MAX  
MIN  
MAX  
MEDIAN  
MEDIAN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 40. + OUTPUT SHORT CIRCUIT CURRENT vs  
TEMPERATURE V = -2.55V, R = 10,  
FIGURE 41. - OUTPUT SHORT CIRCUIT CURRENT vs  
TEMPERATURE V = -2.55V, R = 10,  
IN  
L
IN  
L
V , V = ±2.5V  
V , V = ±2.5V  
+
-
+
-
FN6336.2  
February 19, 2008  
10  
ISL28138, ISL28238  
Pin Descriptions  
ISL28238  
(8 Ld SOIC)  
(8 Ld MSOP)  
ISL28138  
(6 Ld SOT-23)  
ISL28138  
(8 Ld SOIC)  
PIN NAME  
FUNCTION  
EQUIVALENT CIRCUIT  
1, 5  
2
NC  
Not connected  
inverting input  
4
IN-  
2 (A)  
6 (B)  
IN-_A  
IN-_B  
V+  
IN-  
IN+  
V-  
Circuit 1  
3
2
3
4
IN+  
IN+_A  
IN+_B  
Non-inverting  
input  
(See circuit 1)  
3 (A)  
5 (B)  
4
V-  
Negative supply  
V+  
V-  
CAPACITIVELY  
COUPLED  
ESD CLAMP  
Circuit 2  
V+  
1
6
OUT  
Output  
1 (A)  
7 (B)  
OUT_A  
OUT_B  
OUT  
V-  
Circuit 3  
6
5
7
8
8
V+  
EN  
Positive supply  
Chip enable  
(See circuit 2)  
V+  
EN  
V-  
Circuit 4  
input signal moves from one supply rail to another, the  
operational amplifier switches from one input pair to the  
other causing drastic changes in input offset voltage and an  
undesired change in magnitude and polarity of input offset  
current.  
Applications Information  
Introduction  
The ISL28138 and ISL28238 are single and dual channel  
CMOS rail-to-rail input, output (RRIO) micropower precision  
operational amplifiers. The parts are designed to operate  
from single supply (2.4V to 5.5V) or dual supply (±1.2V to  
±2.75V). The parts have an input common mode range that  
extends 0.25V above the positive rail and 100mV below the  
the negative supply rail. The output operation can swing  
within about 3mV of the supply rails with a 100kΩ load.  
The ISL28138 and ISL28238 achieve input rail-to-rail  
operation without sacrificing important precision  
specifications and degrading distortion performance. The  
devices’ input offset voltage exhibits a smooth behavior  
throughout the entire common-mode input range. The input  
bias current versus the common-mode voltage range gives  
us an undistorted behavior from typically 100mV below the  
negative rail and 0.25V higher than the V+ rail.  
Rail-to-Rail Input  
Many rail-to-rail input stages use two differential input pairs,  
a long-tail PNP (or PFET) and an NPN (or NFET). Severe  
penalties have to be paid for this circuit topology. As the  
FN6336.2  
February 19, 2008  
11  
ISL28138, ISL28238  
will be enabled by default. When not used, the EN pin should  
Rail-to-Rail Output  
either be left floating or connected directly to the V- pin.  
A pair of complementary MOS devices are used to achieve  
the rail-to-rail output swing. The NMOS sinks current to  
swing the output in the negative direction. The PMOS  
sources current to swing the output in the positive direction.  
The ISL28138 and ISL28238 with a 100kΩ load will swing to  
within 3mV of the positive supply rail and within 3mV of the  
negative supply rail.  
Limitations of the Differential Input Protection  
If the input differential voltage is expected to exceed 0.5V, an  
external current limiting resistor must be used to ensure the  
input current never exceeds 5mA. For non-inverting unity gain  
applications the current limiting can be via a series IN+ resistor,  
or via a feedback resistor of appropriate value. For other gain  
configurations, the series IN+ resistor is the best choice, unless  
Results of Over-Driving the Output  
the feedback (R ) and gain setting (R ) resistors are both  
sufficiently large to limit the input current to 5mA.  
F
G
Caution should be used when over-driving the output for long  
periods of time. Over-driving the output can occur in two ways.  
1) The input voltage times the gain of the amplifier exceeds the  
supply voltage by a large value or, 2) the output current  
required is higher than the output stage can deliver. These  
Large differential input voltages can arise from several  
sources:  
1) During open loop (comparator) operation. Used this way,  
the IN+ and IN- voltages don’t track, so differentials arise.  
conditions can result in a shift in the Input Offset Voltage (V  
as much as 1µV/hr. of exposure under these conditions.  
)
OS  
2) When the amplifier is disabled but an input signal is still  
IN+ and IN- Input Protection  
present. An R or R to GND keeps the IN- at GND, while  
L
G
All input terminals have internal ESD protection diodes to both  
positive and negative supply rails, limiting the input voltage to  
within one diode beyond the supply rails. They also contain  
back-to-back diodes across the input terminals (see “Pin  
Descriptions” on page 11 - Circuit 1). For applications where  
the input differential voltage is expected to exceed 0.5V, an  
external series resistor must be used to ensure the input  
currents never exceed 5mA (Figure 42).  
the varying IN+ signal creates a differential voltage. Mux  
Amp applications are similar, except that the active channel  
V
determines the voltage on the IN- terminal.  
OUT  
3) When the slew rate of the input pulse is considerably  
faster than the op amp’s slew rate. If the V can’t keep up  
OUT  
with the IN+ signal, a differential voltage results, and visible  
distortion occurs on the input and output signals. To avoid  
this issue, keep the input slew rate below 4.8V/µs, or use  
appropriate current limiting resistors.  
-
V
R
OUT  
IN  
Large (>2V) differential input voltages can also cause an  
V
R
IN  
+
L
increase in disabled I  
CC  
.
Using Only One Channel  
FIGURE 42. INPUT CURRENT LIMITING  
If the application only requires one channel of the ISL28238,  
the user must configure the unused channel to prevent it  
from oscillating. The unused channel will oscillate if the input  
and output pins are floating. This will result in higher than  
expected supply currents and possible noise injection into  
the channel being used. The proper way to prevent this  
oscillation is to short the output to the negative input and  
ground the positive input (as shown in Figure 43).  
Enable/Disable Feature  
The ISL28138 offers an EN pin that disables the device  
when pulled up to at least 2.0V. In the disabled state (output  
in a high impedance state), the part consumes typically 10µA  
at room temperature. By disabling the part, multiple  
ISL28138 parts can be connected together as a MUX. In this  
configuration, the outputs are tied together in parallel and a  
channel can be selected by the EN pin. The loading effects  
of the feedback resistors of the disabled amplifier must be  
considered when multiple amplifier outputs are connected  
together. Note that feed through from the IN+ to IN- pins  
occurs on any Mux Amp disabled channel where the input  
differential voltage exceeds 0.5V (e.g., active channel  
-
+
FIGURE 43. PREVENTING OSCILLATIONS IN UNUSED  
CHANNELS  
V
= 1V, while disabled channel V = GND), so the mux  
OUT  
IN  
implementation is best suited for small signal applications. If  
large signals are required, use series IN+ resistors, or large  
value R , to keep the feed through current low enough to  
F
minimize the impact on the active channel. See “Limitations  
of the Differential Input Protection” on page 12 for more  
details.The EN pin also has an internal pull-down. If left  
open, the EN pin will pull to the negative rail and the device  
FN6336.2  
February 19, 2008  
12  
ISL28138, ISL28238  
Proper Layout Maximizes Performance  
Power Dissipation  
To achieve the maximum performance of the high input  
impedance and low offset voltage, care should be taken in  
the circuit board layout. The PC board surface must remain  
clean and free of moisture to avoid leakage currents  
between adjacent traces. Surface coating of the circuit board  
will reduce surface moisture and provide a humidity barrier,  
reducing parasitic resistance on the board. When input  
leakage current is a concern, the use of guard rings around  
the amplifier inputs will further reduce leakage currents.  
Figure 44 shows a guard ring example for a unity gain  
amplifier that uses the low impedance amplifier output at the  
same voltage as the high impedance input to eliminate  
surface leakage. The guard ring does not need to be a  
specific width, but it should form a continuous loop around  
both inputs. For further reduction of leakage currents,  
components can be mounted to the PC board using Teflon  
standoff insulators.  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power-supply  
conditions. It is therefore important to calculate the  
maximum junction temperature (T  
) for all applications  
JMAX  
to determine if power supply voltages, load conditions, or  
package type need to be modified to remain in the safe  
operating area. These parameters are related in Equation 1:  
T
= T  
+ xPD  
)
MAXTOTAL  
(EQ. 1)  
JMAX  
MAX  
JA  
where:  
• P  
is the sum of the maximum power  
DMAXTOTAL  
dissipation of each amplifier in the package (PD  
)
MAX  
• PD  
MAX  
for each amplifier can be calculated as shown in  
Equation 2:  
V
OUTMAX  
R
L
----------------------------  
PD  
= 2*V × I  
+ (V - V ) ×  
OUTMAX  
MAX  
S
SMAX  
S
(EQ. 2)  
V+  
HIGH IMPEDANCE INPUT  
where:  
IN  
• T  
= Maximum ambient temperature  
MAX  
θ = Thermal resistance of the package  
JA  
• PD  
= Maximum power dissipation of 1 amplifier  
MAX  
FIGURE 44. GUARD RING EXAMPLE FOR UNITY GAIN  
AMPLIFIER  
• V = Supply voltage (Magnitude of V and V )  
S
+
-
• I  
= Maximum supply current of 1 amplifier  
MAX  
Current Limiting  
• V  
OUTMAX  
= Maximum output voltage swing of the  
The ISL28138 and ISL28238 have no internal current  
limiting circuitry. If the output is shorted, it is possible to  
exceed the Absolute Maximum Rating for output current or  
power dissipation, potentially resulting in the destruction of  
the device.  
application  
• R = Load resistance  
L
FN6336.2  
February 19, 2008  
13  
ISL28138, ISL28238  
SOT-23 Package Family  
MDP0038  
e1  
D
SOT-23 PACKAGE FAMILY  
A
MILLIMETERS  
SOT23-5  
6
4
N
SYMBOL  
SOT23-6  
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
6
TOLERANCE  
MAX  
A
A1  
A2  
b
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
5
±0.05  
E1  
E
±0.15  
2
3
±0.05  
0.15  
2X  
C
D
c
±0.06  
1
2
3
0.20  
2X  
C
D
Basic  
5
e
E
Basic  
E1  
e
Basic  
0.20  
C
A-B  
D
M
B
b
NX  
Basic  
e1  
L
Basic  
±0.10  
L1  
N
Reference  
Reference  
Rev. F 2/07  
0.15  
2X  
C
A-B  
1
3
D
NOTES:  
C
1. Plastic or metal protrusions of 0.25mm maximum per side are not  
included.  
A2  
SEATING  
PLANE  
2. Plastic interlead protrusions of 0.25mm maximum per side are not  
included.  
A1  
0.10  
NX  
C
3. This dimension is measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
5. Index area - Pin #1 I.D. will be located within the indicated zone  
(SOT23-6 only).  
6. SOT23-5 version has no center lead (shown as a dashed line).  
(L1)  
H
A
GAUGE  
PLANE  
0.25  
c
+3°  
-0°  
L
0°  
FN6336.2  
February 19, 2008  
14  
ISL28138, ISL28238  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN6336.2  
February 19, 2008  
15  
ISL28138, ISL28238  
Mini SO Package Family (MSOP)  
MDP0043  
0.25 M C A B  
A
MINI SO PACKAGE FAMILY  
D
(N/2)+1  
MILLIMETERS  
N
SYMBOL  
MSOP8  
1.10  
0.10  
0.86  
0.33  
0.18  
3.00  
4.90  
3.00  
0.65  
0.55  
0.95  
8
MSOP10  
1.10  
0.10  
0.86  
0.23  
0.18  
3.00  
4.90  
3.00  
0.50  
0.55  
0.95  
10  
TOLERANCE  
Max.  
NOTES  
A
A1  
A2  
b
-
±0.05  
-
E
E1  
PIN #1  
I.D.  
±0.09  
-
+0.07/-0.08  
±0.05  
-
c
-
D
±0.10  
1, 3  
1
B
(N/2)  
E
±0.15  
-
E1  
e
±0.10  
2, 3  
Basic  
-
e
H
C
L
±0.15  
-
SEATING  
PLANE  
L1  
N
Basic  
-
Reference  
-
M
C A B  
b
0.08  
0.10 C  
Rev. D 2/07  
N LEADS  
NOTES:  
1. Plastic or metal protrusions of 0.15mm maximum per side are not  
included.  
L1  
2. Plastic interlead protrusions of 0.25mm maximum per side are  
not included.  
A
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
SEE DETAIL "X"  
A2  
GAUGE  
PLANE  
0.25  
L
DETAIL X  
A1  
3° ±3°  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6336.2  
February 19, 2008  
16  

相关型号:

ISL28138FBZ

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Op Amps with Very Low Input Bias Current
INTERSIL

ISL28138FBZ-T7

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Op Amps with Very Low Input Bias Current
INTERSIL

ISL28138FHZ-T7

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Op Amps with Very Low Input Bias Current
INTERSIL

ISL28138FHZ-T7A

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Op Amps with Very Low Input Bias Current
INTERSIL

ISL28146

5MHz, Single and Dual Rail-to-Rail Input-Output (RRIO) Op Amps
INTERSIL

ISL28146EVAL1Z

5MHz, Single and Dual Rail-to-Rail Input-Output (RRIO) Op Amps
INTERSIL

ISL28146FHZ-T7

5MHz, Single and Dual Rail-to-Rail Input-Output (RRIO) Op Amps
INTERSIL

ISL28146FHZ-T7A

5MHz, Single and Dual Rail-to-Rail Input-Output (RRIO) Op Amps
INTERSIL

ISL28146_0806

5MHz, Single and Dual Rail-to-Rail Input-Output (RRIO) Op Amps
INTERSIL

ISL28148

4.5MHz, Single Dual and Quad Precision Rail-to-Rail Input-Output (RRIO) Op Amps with Very Low Input Bias Current
INTERSIL

ISL28148

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output Op Amps with Very Low Input Bias Current
RENESAS

ISL28148EVAL1Z

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output Op Amps with Very Low Input Bias Current
RENESAS