ISL26314 [INTERSIL]

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels; 12位, 125ksps采样率的低功耗ADC,具有单端和差分输入和多输入通道
ISL26314
型号: ISL26314
厂家: Intersil    Intersil
描述:

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels
12位, 125ksps采样率的低功耗ADC,具有单端和差分输入和多输入通道

文件: 总23页 (文件大小:818K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-bit, 125kSPS Low-power ADCs with Single-ended  
and Differential Inputs and Multiple Input Channels  
ISL26310, ISL26311, ISL26312,  
ISL26313, ISL26314, ISL26315,  
ISL26319  
Features  
• Pin-compatible Family Allows Easy Design Upgrades  
• Excellent Differential Non-Linearity (0.7LSB max)  
• Low THD: -86dB (typ)  
The ISL26310/11/12/13/14/15/19 family of sampling  
SAR-type ADCs feature excellent linearity over supply and  
temperature variations, and offer versions with 1-, 2-, 4- and  
8-channel single-ended inputs, and 1-, 2- and 4-channel  
differential inputs.  
• Simple SPI-compatible Serial Digital Interface  
• Low 2.2mA Operating Current  
• Power-down Current between Conversions 8µA (typ)  
• +5.25V to +2.7V Supply  
A proprietary input multiplexer and combination buffer amplifier  
reduces the input drive requirements, resulting in lower cost and  
reduced board space. Specified measurement accuracy is  
maintained with input signals up to VDD.  
• Excellent ESD Survivability: 5kV HBM, 350V MM, 2kV CDM  
Applications  
• Industrial Process Control  
• Energy Measurement  
• Multichannel Data Acquisition Systems  
• Pressure Sensors  
Members of the ISL26310/11/12/13/14/15/19 family of  
Low-Power ADCs offer pinout intercompatibility, differing only in  
the analog inputs, to support quick replication of proven layouts  
across multiple design platforms.  
The serial digital interface is SPI compatible and is easily  
interfaced to popular FPGAs and microcontrollers. Power  
consumption is limited to 11mW at a sampling rate of 125kSPS,  
and an operating current of just 8µA typical between  
conversions, when configured for Auto Powerdown mode.  
• Flow Controllers  
The ISL26310/11/12/13/14/15/19 feature up to 5kV Human  
Body Model ESD survivability and are available in the popular  
SOIC and TSSOP packages. Performance is specified for  
operation over the full industrial temperature range (-40°C to  
+125°C).  
VDD  
VREF  
BUFFER  
CNV  
ANALOG INPUTS  
DIFFERENTIAL/  
SINGLE-ENDED  
SCLK  
MUX  
ADC  
OSC  
SPI  
SDO  
SDI  
POR  
GND  
FIGURE 1. FUNCTIONAL BLOCK DIAGRAM  
July 3, 2012  
FN7549.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2012. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners  
1
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Application Block Diagram  
ANALOG SIGNAL INPUT MODULES  
Pressure/Strain Gage Sensor  
V-REF  
DCP  
RS-485  
RTC  
Precision  
Amp  
M
U
X
µC  
ADC  
Gain  
Amplifier  
+V  
Active  
Filter  
+V  
Precision  
Amp  
Precision  
Amp  
POWER  
MUX and ADC  
-V  
-V  
Voltage  
Monitors &  
Watchdog  
V-REF  
Temperature Sensor  
Gain  
Amplifier  
+V  
Active  
Filter  
+V  
DCP  
Core &  
I/O Power  
LDOs  
Precision  
Amp  
Precision  
Amp  
System  
Power  
RTD  
-V  
-V  
SW  
Controller  
ISO-Thermal  
Block  
Switching  
Regulators  
Thermal  
Couple  
Isolated  
Power  
Flow Sensor  
Loop Supply  
Gain  
Amplifier  
+V  
Active  
Filter  
+V  
Differential  
Pressure  
Transducer  
W/ sqrt  
Precision  
Amp  
Precision  
Amp  
Vin  
Iout  
4-20mA  
Extractor  
-V  
-V  
Pin-Compatible Family  
RESOLUTION  
SPEED  
(kHz)  
ANALOG  
INPUT  
INPUT  
CHANNELS  
MODEL  
(Bits)  
ISL26310  
ISL26311  
ISL26312  
ISL26313  
ISL26314  
ISL26315  
ISL26319  
ISL26320  
ISL26321  
ISL26322  
ISL26323  
ISL26324  
ISL26325  
ISL26329  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
125  
125  
125  
125  
125  
125  
125  
250  
250  
250  
250  
250  
250  
250  
Differential  
Single-Ended  
Differential  
Single-Ended  
Differential  
Single-Ended  
Single-Ended  
Differential  
Single-Ended  
Differential  
Single-Ended  
Differential  
Single-Ended  
Single-Ended  
1
1
2
2
4
4
8
1
1
2
2
4
4
8
FN7549.1  
July 3, 2012  
2
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Ordering Information  
DESCRIPTION  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
RESOLUTION  
(Bits)  
SPEED  
(kHz)  
INPUT  
(SE/DIFF)  
INPUT  
CHANNELS  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
PKG  
DWG #  
ISL26310FBZ  
26310 FBZ  
12  
12  
12  
12  
12  
12  
12  
125  
125  
125  
125  
125  
125  
125  
Diff  
SE  
1
1
2
2
4
4
8
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
8 Ld SOIC  
M8.15  
ISL26311FBZ  
ISL26312FVZ  
ISL26313FBZ  
ISL26314FVZ  
ISL26315FVZ  
ISL26319FVZ  
NOTES:  
26311 FBZ  
26312 FVZ  
26313 FBZ  
26314 FVZ  
26315 FVZ  
26319 FVZ  
8 Ld SOIC  
M8.15  
Diff  
SE  
16 Ld TSSOP  
8 Ld SOIC  
M16.173  
M8.15  
Diff  
SE  
16 Ld TSSOP  
16 Ld TSSOP  
16 Ld TSSOP  
M16.173  
M16.173  
M16.173  
SE  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315,  
ISL26319. For more information on MSL please see techbrief TB363.  
FN7549.1  
July 3, 2012  
3
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Pin Configurations  
ISL26310  
(8 LD SOIC)  
TOP VIEW  
ISL26311  
(8 LD SOIC)  
TOP VIEW  
CNV  
SCLK  
SDO  
SDI  
CNV  
SCLK  
SDO  
SDI  
1
2
3
4
1
2
3
4
VDD  
GND  
8
7
6
5
VDD  
GND  
AIN+  
AIN-  
8
7
6
5
VREF  
AIN0  
ISL26313  
(8 LD SOIC)  
TOP VIEW  
CNV  
SCLK  
SDO  
SDI  
1
2
3
4
VDD  
GND  
AIN0  
AIN1  
8
7
6
5
ISL26312  
(16 LD TSSOP)  
TOP VIEW  
ISL26314  
(16 LD TSSOP)  
TOP VIEW  
CNV  
1
2
3
4
5
6
7
CNV  
1
2
3
4
5
6
7
VDD  
16  
15  
VDD  
GND  
16  
15  
SCLK  
SCLK  
GND  
VREF  
GND  
VREF  
14 SDO  
14 SDO  
13  
13  
SDI  
SDI  
GND  
AIN0+  
AIN0-  
AIN1+  
AIN3+  
12  
11  
10  
9
12 NC  
11 NC  
10 NC  
AIN0+  
AIN0-  
AIN1+  
AIN1-  
AIN3-  
AIN2+  
AIN2-  
AIN1-  
9
NC  
8
8
ISL26315  
(16 LD TSSOP)  
TOP VIEW  
ISL26319  
(16 LD TSSOP)  
TOP VIEW  
CNV  
CNV  
SCLK  
1
2
3
4
5
6
7
1
VDD  
GND  
16  
15  
VDD  
16  
15  
SCLK  
2
3
4
5
6
7
GND  
VREF  
VREF  
14 SDO  
14 SDO  
13  
13  
SDI  
SDI  
GND  
AIN0  
AIN1  
AIN2  
GND  
AIN0  
AIN3  
NC  
12 AIN7  
12  
11  
AIN6  
11  
NC  
AIN1  
NC  
AIN5  
10  
AIN2  
NC  
10  
9
AIN4  
9
AIN3  
8
8
FN7549.1  
July 3, 2012  
4
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Pin Descriptions  
PIN NUMBER  
PIN NAME ISL26310 ISL26311 ISL26312  
ISL26313 ISL26314 ISL26315 ISL26319  
DESCRIPTION  
Positive Supply Voltage  
VDD  
GND  
1
2
-
1
2
3
-
1
1
2
-
1
1
1
2, 4  
2, 4  
2, 4  
2, 4  
Ground  
VREF  
AIN0+  
AIN0-  
AIN1+  
AIN1-  
AIN2+  
AIN2-  
AIN3+  
AIN3-  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
SDI  
3
3
3
3
Reference Voltage Input  
-
5
-
5
-
-
-
Differential Analog Input, Positive  
Differential Analog Input, Negative  
Differential Analog Input, Positive  
Differential Analog Input, Negative  
Differential Analog Input, Positive  
Differential Analog Input, Negative  
Differential Analog Input, Positive  
Differential Analog Input, Negative  
Single-Ended Analog Input  
Single-Ended Analog Input  
Single-Ended Analog Input  
Single-Ended Analog Input  
Single-Ended Analog Input  
Single-Ended Analog Input  
Single-Ended Analog Input  
Single-Ended Analog Input  
Serial Interface Data Input  
Serial Interface Data Output  
Serial Interface Clock Input  
Conversion Control Input  
-
-
6
-
6
-
-
-
7
-
7
-
-
-
-
8
-
8
-
-
-
-
-
-
10  
-
-
-
-
-
-
9
-
-
-
-
-
-
12  
-
-
-
-
-
-
11  
-
-
-
4
-
-
3
4
-
-
5
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
-
-
-
-
7
-
-
-
-
10  
-
-
-
-
-
12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
6
7
8
-
5
6
7
8
-
13  
5
6
7
8
-
13  
14  
15  
16  
-
13  
SDO  
14  
14  
SCLK  
CNV  
15  
15  
16  
16  
NC  
9, 10, 11, 12  
6, 8, 9, 11  
No Connect  
AIN+  
AIN-  
3
4
-
-
-
-
-
-
-
-
Differential Analog Input, Positive  
Differential Analog Input, Negative  
-
-
-
-
FN7549.1  
July 3, 2012  
5
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Absolute Maximum Ratings  
Thermal Information  
AIN+, AIN-, VREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND-0.3 to V +0.3V  
Digital Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND-0.3 to V +0.3V  
DD  
Thermal Resistance (Typical)  
8 Ld SOIC (Notes 4, 5) . . . . . . . . . . . . . . . . .  
16 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . .  
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80mW  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
θ
JA (°C/W)  
98  
θ
JC (°C/W)  
DD  
48  
29  
VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to 6V  
GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND-0.3 to +0.3V  
ESD Rating  
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . . . . . . . . .5000V  
Machine Model (Per JESD22-A115). . . . . . . . . . . . . . . . . . . . . . . . . . 350V  
Charged Device Model (Per JESD22-C101) . . . . . . . . . . . . . . . . . . . . . . 2000V  
Latch-up (Tested per JESD-78B; Class 2, Level A). . . . . . . . . . . . . . . . . . . . . . . 100mA  
92  
Operating Conditions  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
V
to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7V to +5.25V  
DD  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
5. For θ , the “case temp” location is taken at the package top center.  
JC  
Electrical Specifications VREF = VDD V, VDD = 2.7V to 5V, V = VDD/2, SCLK = 20MHz and T = -40°C to +125°C (typical performance  
CM  
A
at +25°C), unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
SYMBOL  
PARAMETER  
TEST LEVEL OR NOTES  
(Note 6)  
TYP  
(Note 6)  
UNITS  
ANALOG INPUTS  
Number of Input Channels  
ISL26310, ISL26311  
1
2
4
8
ISL26312, ISL26313  
ISL26314, ISL26315  
ISL26319  
Input Voltage Range  
Differential Inputs (AINX+ - AINX-) is  
0
0
V
V
V
REF  
REF  
-V  
(Min) and +V  
(Max)  
REF  
REF  
AINX, Single-Ended Inputs  
Differential Inputs  
V
V
Common Mode Input Voltage Range  
Average Input Current  
V
/2 – 0.2  
REF  
V
V
/2 + 0.2  
REF  
REF/2  
2.5  
µA  
pF  
dB  
C
Input Capacitance  
4
IN  
f
= 100kHz  
-86  
IN  
Channel-Channel Crosstalk  
V
= FS, other channels = 0V  
IN  
VOLTAGE REFERENCE  
V
External Reference Input Voltage Range  
Average Input Current  
2
2.5  
100  
10  
V
V
REFEX  
DD  
I
120  
µA  
pF  
REFIN  
C
Effective Input Capacitance  
REFIN  
DC ACCURACY  
Resolution (No Missing Codes)  
12  
-0.7  
-0.7  
-6  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
DNL  
INL  
Differential Nonlinearity Error  
Integral Nonlinearity Error  
Gain Error  
+0.7  
+0.7  
6
Gain Error Matching  
Offset Error  
-2  
2
-6  
6
Offset Error Matching  
-2  
2
FN7549.1  
July 3, 2012  
6
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Electrical Specifications VREF = VDD V, VDD = 2.7V to 5V, V = VDD/2, SCLK = 20MHz and T = -40°C to +125°C (typical performance  
CM  
A
at +25°C), unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
SYMBOL  
PSRR  
PARAMETER  
TEST LEVEL OR NOTES  
(Note 6)  
TYP  
70  
(Note 6)  
UNITS  
dB  
Power Supply Rejection Ratio  
DYNAMIC PERFORMANCE  
Differential Inputs  
73.4  
73.4  
73.1  
73.1  
-86  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Signal-to-Noise  
SNR  
Notes: V = FS-0.1dB, f = 10kHz  
IN  
IN  
Single-Ended Inputs  
Differential Inputs  
Single-Ended Inputs  
Differential Inputs  
Single-Ended Inputs  
Signal-to-Noise + Distortion  
SINAD  
THD  
Notes: V = FS-0.1dB, f = 10kHz  
IN IN  
Total Harmonic Distortion  
Notes: V = FS-0.1dB, f = 10kHz  
IN IN  
-86  
Spurious-free Dynamic Range  
f
= 20kHz  
96  
IN  
SFDR  
BW  
Notes: V = FS-0.1dB  
IN  
-3dB Input Bandwidth  
Sampling Aperture Delay  
Sampling Aperture Jitter  
2.5  
12  
25  
MHz  
ns  
t
AD  
t
ps  
jit  
POWER SUPPLY REQUIREMENTS  
V
Supply Voltage  
2.7  
5.25  
3
V
DD  
I
Supply Current  
2.2  
11  
8
mA  
mW  
µA  
DD  
PD  
IPD  
Power Consumption  
Power-down Current  
Standby Mode Current  
Normal Operation  
Auto Power-Down Mode  
Auto Sleep Mode  
15  
50  
Istby  
0.4  
mA  
DIGITAL INPUTS  
V
0.7 VDD  
VDD-0.4  
-100  
V
V
IH  
V
0.2 V  
0.2 V  
IL  
DD  
DD  
V
I
I
= -1mA  
= 1mA  
V
OH  
OH  
OL  
V
V
OL  
I
, I  
Input Leakage Current  
Serial Clock Frequency  
100  
20  
nA  
MHz  
IH IL  
TIMING SPECIFICATIONS (Note 7)  
t
t
SCLK Period (in RAC Mode)  
50  
50  
ns  
ns  
µs  
SCLK  
SCLK  
SCLK Period (in RSC, RDC Modes)  
200  
3.2  
t
Safe Data Transfer Time After Conversion  
State Begins  
DATA  
t
CSB Falling Low to SCLK Rising Edge  
40  
10  
ns  
ns  
CSB_SCLK  
t
SDI Setup Time with Respect to Positive  
Edge of SCLK  
SDI_SU  
t
SDI Hold Time with Respect to Positive  
Edge of SCLK  
10  
ns  
ns  
ns  
SDI_H  
t
SDOUT Valid Time with Respect to  
Negative Edge of SCLK  
25  
SDO_V  
t
SDOUT to High Impedance State After CNV Note 8  
Rising Edge (or last SCLK falling edge)  
85  
SDOZ_D  
t
t
Acquisition Time when Fully Powered Up  
Acquisition Time in Auto Sleep Mode  
800  
2.1  
ns  
µs  
ACQ  
ACQ  
FN7549.1  
July 3, 2012  
7
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Electrical Specifications VREF = VDD V, VDD = 2.7V to 5V, V = VDD/2, SCLK = 20MHz and T = -40°C to +125°C (typical performance  
CM  
A
at +25°C), unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
(Note 6)  
SYMBOL  
PARAMETER  
TEST LEVEL OR NOTES  
(Note 6)  
150  
TYP  
UNITS  
µs  
t
Acquisition time in Auto Power Down  
Mode  
ACQ  
t
SCLK High Time  
SCLK Low Time  
CNV Pulse Width  
20  
20  
ns  
ns  
ns  
SCLKH  
t
SCLKL  
t
100  
CNV  
NOTES:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
7. The device may become nonresponsive if the minimum acquisition times are not met in their respective modes, requiring a power cycle to restore  
normal operation.  
8. Transition time to high impedance state is dominated by RC loading on the SDOUT pin. Specified value is measured using equivalent loading shown  
in Figure 2.  
VDD  
RL  
2k  
OUTPUT PIN  
CL  
10pF  
FIGURE 2. EQUIVALENT LOAD CIRCUIT FOR DIGITAL OUTPUT TESTING  
FN7549.1  
July 3, 2012  
8
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Typical Performance Characteristics T = +25°C, V = 5V, V = 5V, f  
= 125kHz, f = 20MHz,  
SCLK  
A
DD  
REF  
SAMPLE  
unless otherwise specified.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-2000  
-1000  
0
1000  
2000  
-2000  
-1000  
0
1000  
2000  
CODE  
CODE  
FIGURE 3. DIFFERENTIAL NONLINEARITY (DNL) vs CODE  
FIGURE 4. INTEGRAL NONLINEARITY (INL) vs CODE  
1.0  
0.8  
1.0  
0.8  
POSITIVE DNL  
POSITIVE INL  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
NEGATIVE INL  
NEGATIVE DNL  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 5. DNL DISTRIBUTION vs TEMPERATURE  
FIGURE 6. INL DISTRIBUTION vs TEMPERATURE  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1.0  
2.0  
1.5  
2.7V  
1.0  
3.3V  
5.0V  
0.5  
5.25V  
2.7V  
3.3V  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
5.0V  
5.25V  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 7. GAIN ERROR vs SUPPLY VOLTAGE AND TEMPERATURE  
FIGURE 8. OFFSET ERROR vs SUPPLY VOLTAGE AND TEMPERATURE  
FN7549.1  
July 3, 2012  
9
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Typical Performance Characteristics T = +25°C, V = 5V, V = 5V, f  
= 125kHz, f  
= 20MHz,  
SCLK  
A
DD  
REF  
SAMPLE  
unless otherwise specified. (Continued)  
25  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
20  
15  
10  
5
5.25V  
5.0V  
3.3V  
2.7V  
0
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
SUPPLY VOLTAGE  
TEMPERATURE (°C)  
FIGURE 9. APERTURE DELAY vs SUPPLY VOLTAGE  
FIGURE 10. SUPPLY CURRENT vs VOLTAGE AND TEMPERATURE  
2.5  
50  
45  
40  
2.0  
1.5  
1.0  
35  
5.25V  
30  
25  
NORMAL MODE  
AUTO POWER DOWN MODE  
5.0V  
AUTO SLEEP MODE  
20  
15  
3.3V  
0.5  
0.0  
10  
5
2.7V  
100  
0
100  
1k  
10k  
100k  
-40  
-20  
0
20  
40  
60  
80  
120  
SAMPLE RATE (Sps)  
TEMPERATURE (°C)  
FIGURE 11. SUPPLY CURRENT vs SAMPLING RATE (V = 5V)  
DD  
FIGURE 12. SHUTDOWN CURRENTS vs VOLTAGE AND TEMPERATURE  
-80  
-82  
75  
5.25V  
5.0V  
74  
73  
72  
-84  
-86  
5.25V  
5.0V  
3.3V  
2.7V  
-88  
-90  
71  
70  
3.3V  
2.7V  
100  
-40  
-20  
0
20  
40  
60  
80  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 13. SNR AND SINAD vs SUPPLY VOLTAGE AND TEMPERATURE  
FIGURE 14. THD vs SUPPLY VOLTAGE AND TEMPERATURE  
FN7549.1  
July 3, 2012  
10  
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Typical Performance Characteristics T = +25°C, V = 5V, V = 5V, f  
= 125kHz, f  
= 20MHz,  
A
DD  
REF  
SAMPLE  
SCLK  
unless otherwise specified. (Continued)  
75  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
SNR  
70  
SINAD  
65  
60  
55  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
FIGURE 15. SNR AND SINAD vs INPUT FREQUENCY  
FIGURE 16. THD vs INPUT FREQUENCY  
70,000  
60,000  
50,000  
40,000  
30,000  
20,000  
10,000  
0
0
-20  
SNR: 72.93dB  
SINAD: 72.71dB  
THD: -85.84dB  
65,536  
CODES  
SFDR: 96.16dBc  
ENOB: 11.79  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0
0
CODES  
CODES  
0
10  
20  
30  
40  
50  
60  
70  
-3  
-2  
-1  
0
1
2
3
FREQUENCY (kHz)  
CODE  
FIGURE 17. SINGLE-TONE FFT  
FIGURE 18. SHORTED INPUT HISTOGRAM  
FN7549.1  
July 3, 2012  
11  
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Figures 19 and 20 illustrate simplified representations of the  
Circuit Description  
converter analog section for differential and single-ended inputs,  
The ISL26310/11/12/13/14/15/19 family of 12-bit ADCs are  
low-power Successive Approximation-type (SAR) ADCs with 1-,  
2-, 4-, or 8-channels and a choice of single-ended or differential  
inputs. The high-impedance buffered input simplifies interfacing  
to sensors and external circuitry.  
respectively. During the acquisition phase (CNV = 0) the input  
signal is presented to the Cs samples capacitors. To properly  
sample the signal, the CNV signal must remain low for the  
specified time. When CNV is taken high (CNV = 1), the switches  
that connect the sampling capacitors to the input are opened  
and the control logic begins the successive approximation  
sequence to convert the captured signal into a digital word. The  
conversion sequence timing is determined by the on-chip  
oscillator.  
The entire ISL26310/11/12/13/14/15/19 family follows the  
same base pinout and differs only in the analog input pins,  
allowing the user to replicate the basic board layout across  
multiple platforms with a minimum redesign effort.  
The simple serial digital interface is compatible with popular  
FPGAs and microcontrollers and allows direct conversion control  
by the CNV pin.  
ADC Transfer Function  
The ISL26310, the ISL26312, and the ISL26314 feature  
differential inputs with output data coding in two's complement  
format (see Table 1). The size of one LSB in these devices is  
(2*VREF)/4096. Figure 21 on page 13 illustrates the ideal  
transfer function for these devices.  
Functional Description  
The ISL26310/11/12/13/14/15/19 devices are SAR  
(Successive Approximation Register) analog-to-digital converters  
that use capacitor-based charge redistribution as their  
conversion method.  
The ISL26311, ISL26313, ISL26315, and ISL26319 feature  
single-ended inputs with output coding in binary format (see  
Table 2). The size of one LSB in these devices is VREF/4096.  
Figure 22 on page 13 illustrates the ideal transfer function for  
these devices.  
These devices include an on-chip power-on reset (POR) circuit to  
initialize the internal digital logic when power is applied. An  
on-chip oscillator provides the master clock for the conversion  
logic. The CNV signal controls when the converter enters into its  
signal acquisition time (CNV = 0), and when it begins the  
conversion sequence after the signal has been captured  
(CNV = 1). The converters include a configuration register that  
can be accessed via the serial port. The configuration register  
has various bits to indicate which channel (where applicable) is  
selected, to activate the auto-power-down feature where the ADC  
is shut down between conversions, or to output the configuration  
register contents along with the data conversion word whenever  
a conversion word is read from the serial port. The serial port  
supports three different modes of reading the conversion data.  
These will be discussed later in this data sheet.  
VREF  
VREF  
CNV  
CNV  
CS  
ACQ  
C
S
ACQ  
ACQ  
CNV  
CNV  
AIN  
ACQ  
CNV  
CNV  
AIN+  
SAR  
LOGIC  
SAR  
LOGIC  
COMPARATOR  
Buffer  
VCM  
ACQ  
COMPARATOR  
Buffer  
VCM  
ACQ  
AIN  
ACQ  
CS  
ACQ  
CNV  
C
S
CNV  
VREF  
FIGURE 19. ARCHITECTURAL BLOCK DIAGRAM, DIFFERENTIAL INPUT  
FIGURE 20. ARCHITECTURAL BLOCK DIAGRAM, SINGLE-ENDED  
FN7549.1  
July 3, 2012  
12  
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
1LSB = 2•VREF/4096  
1LSB = 2•VREF/4096  
011...111  
011...110  
111...111  
111...110  
000...001  
000...000  
111...111  
100...001  
100...000  
011...111  
100...010  
100...001  
100...000  
000...010  
000...001  
000...000  
VREF  
+ ½LSB  
+VREF +VREF  
1½LSB 1LSB  
VREF  
+ ½LSB  
+VREF +VREF  
1½LSB 1LSB  
0V  
ANALOG INPUT  
AIN+ – (AIN–)  
ANALOG INPUT  
FIGURE 21. IDEAL TRANSFER CHARACTERISTICS, DIFFERENTIAL INPUT  
FIGURE 22. IDEAL TRANSFER CHARACTERISTICS, SINGLE-ENDED INPUT  
Analog Inputs  
V
Some members of the ISL26310/11/12/13/14/15/19 family  
feature a fully differential input with a nominal full-scale range  
equal to twice the applied VREF voltage. Those devices with  
differential inputs have a nominal full scale range equal to twice  
the applied VREF voltage. Each input swings VREF volts (peak-to-  
peak), 180° out of phase from one another for a total differential  
input of 2*VREF (refer to Figures 23 and 24).  
5.0  
4.0  
AIN–  
3.0  
2.0  
1.0  
AIN+  
2.5Vpp  
Allowable VCM Range  
t
VREF PP  
AIN+  
ISL2631X/32X  
VREF = 2.5V  
AIN+  
V
AIN–  
VCM  
AIN-  
VREF PP  
5Vpp  
5.0  
4.0  
3.0  
2.0  
1.0  
FIGURE 23. DIFFERENTIAL INPUT SIGNALING  
VCM  
Allowable VCM Range  
Differential signaling offers several benefits over a single-ended  
input, such as:  
• Doubling of the full-scale input range (and therefore the  
dynamic range)  
• Improved even order harmonic distortion  
t
VREF = 5V  
• Better noise immunity due to common mode rejection  
FIGURE 24. RELATIONSHIP BETWEEN VREF AND FULL-SCALE  
RANGE FOR DIFFERENTIAL INPUTS  
Figure 24 shows the relationship between the reference voltage  
and the full-scale differential input range for two different values  
of VREF. Note that the common-mode input voltage must be  
maintained within ±200mV of VREF/2 for differential inputs.  
Those devices with singled-ended inputs have a ground-  
referenced peak-to-peak input voltage span equal to the  
reference voltage.  
FN7549.1  
July 3, 2012  
13  
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Voltage Reference Input  
V
An external reference voltage must be supplied to the VREF pin  
to set the full-scale input range of the converter. The VREF input  
5.0  
on these devices can accept voltages ranging from 2V (nominal)  
4.0  
to VDD, however, they are specified with VREF at a voltage of 5V  
with VDD at 5V. Note that exceeding VDD by more than 100mV  
3.0  
2.0  
1.0  
AIN  
2.5Vpp  
can forward bias the ESD protection diodes and degrade  
measurement accuracy due to leakage current. A lower value  
voltage reference must be used if the device is operated with  
VDD at voltages lower than 5V. If the VREF pin is tied to the VDD  
pin, the VREF pin should be decoupled with a local 1µF ceramic  
capacitor as described in a later paragraph.  
t
VREF = 2.5V  
AIN  
V
Figures 27 and 28 illustrate possible voltage reference options  
for these ADCs. Figure 27 uses the precision ISL21090 voltage  
reference, which exhibits exceptionally low drift and low noise.  
The ISL21090 must be powered from a supply greater than 4.7V.  
5Vpp  
5.0  
4.0  
3.0  
2.0  
1.0  
Figure 28 illustrates the ISL21010 voltage reference used with  
these ADCs. The ISL21010 series voltage references have higher  
noise and drift than the ISL21090 devices, but operate at lower  
supply voltages. Therefore, these devices can readily be used  
when these SAR ADCs operate with VDD at voltages less than 5V.  
The outputs of ISL21090 or the ISL21010 devices should be  
decoupled with a 1µF ceramic capacitor. A 1µF, 6.3 V, X7R, 0603  
(1608 metric) MLCC type capacitor is recommended for its high  
frequency performance. The trace length from the VREF pin to  
this capacitor and the voltage reference output should be as  
short as possible.  
t
VREF = 5V  
FIGURE 25. RELATIONSHIP BETWEEN VREF AND FULL-SCALE  
RANGE FOR SINGLE-ENDED INPUTS  
Input Multiplexer  
The ISL26310 and ISL26313 devices (packaged in 8 pin SOIC  
packages) derive their voltage reference from the VDD pin. To  
achieve best performance, the VDD pin of these devices should  
be bypassed with the 1µF ceramic capacitor mentioned above.  
The input of the multiplexer connects the selected analog input  
pins to the ADC input. A proprietary sampling circuit significantly  
reduces the input drive requirements, resulting in lower overall  
cost and board space in addition to improved performance. Note  
that the input capacitance is only 2-3pF during the Sampling  
phase, changing to 40pF during the Settling phase, resulting in  
an average input current of 2.5µA and an effective input  
capacitance of only 4pF. See Figure 26.  
Power-Down/Standby Modes  
In order to reduce power consumption between conversions, a  
number of user-selectable modes can be utilized by setting the  
appropriate bits in the Configuration Register.  
TOTAL  
ERROR ERROR  
DC  
AC  
ERROR  
INPUT VOLTAGE  
Auto Power-down (PD0 = 0) reduces power consumption by  
shutting down all portions of the device except the oscillator and  
digital interface after completion of a conversion. There is a short  
recovery period after CNV is asserted Low (150µs with external  
reference).  
OFFSET ERROR  
SETTLING ERROR AND NOISE  
In Auto Sleep mode (PD1 = 1), the device will automatically enter  
the low-power Sleep mode at the end of the current conversion.  
Recovery from this mode involves only 2.1µs and may offer an  
alternative to Power-down mode in some applications.  
SAMPLING PHASE  
Output Data Format  
The converter output word is delivered in two’s complement  
format in differential input mode, and straight binary in  
SETTLING PHASE  
single-ended input mode of operation respectively, all MSB-first.  
Input exceeding the specified full-scale voltage results in a clipped  
output which will not return to in-range values until after the input  
signal has returned to the specified allowable voltage range.  
FIGURE 26. INPUT SAMPLING OPERATION  
Data must be read prior to the completion of the current  
conversion to avoid conflict and loss of data, due to overwriting of  
the new conversion data into the output register.  
FN7549.1  
July 3, 2012  
14  
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
5V  
BULK  
+
0.1µF  
DNC  
VIN  
DNC  
DNC  
1
8
7
6
5
VDD  
ISL2631X  
ISL2632X  
2
3
4
VREF  
2.5V  
COMP VOUT  
GND TRIM  
0.1µF  
1µF (see text)  
ISL21090  
FIGURE 27. PRECISION VOLTAGE REFERENCE FOR +5V SUPPLY  
+2.7V TO +3.6V  
OR +5V  
+
BULK  
0.1µF  
VIN  
1
2
0.1µF  
GND  
3
VDD  
ISL2631X  
ISL2632X  
VREF  
VOUT  
1.25, 2.048 OR 2.5V  
ISL21010  
1µF (see text)  
FIGURE 28. VOLTAGE REFERENCE FOR +2.7V TO +3.6V, OR FOR +5V SUPPLY  
+2.7V TO +5V  
BULK  
1µF (see text)  
VDD  
ISL26310  
ISL26313  
FIGURE 29. VOLTAGE REFERENCE FOR ISL26310/313 IS DERIVED FROM VDD  
TABLE 1. OUTPUT CODES - DIFFERENTIAL  
INPUT VOLTAGE TWO’S COMPLEMENT (12-bit)  
TABLE 2. OUTPUT CODES - SINGLE-ENDED  
INPUT VOLTAGE BINARY (12-bit)  
>(VFS - 1.5 LSB)  
7FF  
>AIN - 1.5 LSB  
AIN - 1.5 LSB  
0.5 LSB  
FFF  
7FF  
...  
7FE  
VFS - 1.5 LSB  
FFF  
FFE  
000  
FFF  
-0.5 LSB  
001  
000  
801  
-VFS +0.5 LSB  
800  
<0.5 LSB  
000  
NOTE: VFS in the table above equals the voltage between AIN+ and AIN-.  
Differential full scale is equal to 2* VREF.  
NOTE: Single-ended full scale is equal to VREF.  
FN7549.1  
July 3, 2012  
15  
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Reading During Conversion Mode  
Without EOC  
Serial Digital Interface  
The ISL26310/11/12/13/14/15/19 family utilizes an SPI-  
compatible interface to set the device configuration and read  
conversion data. This flexible interface provides 3 modes of  
operation: Reading After Conversion (RAC), Reading During  
Conversion (RDC), and Reading Spanning Conversions (RSC),  
with an additional option providing an End of Conversion (EOC)  
indication on the SDO output in all 3 modes. The choice of  
operating mode is determined by the timing of the signals on the  
serial interface.  
From Idle, the user initiates the input signal Acquisition mode by  
taking CNV Low, and then initiates a conversion after t by  
pulsing CNV High. After the conversion starts, data is exchanged  
on the serial interface while CNV is held Low (as shown in  
ACQ  
Figure 31). CNV must also be asserted High before t  
to avoid  
DATA  
enabling EOC. This method is ideal for hosts with high SCLK  
communication rates to operate the device at the highest  
conversion rates.  
The interface consists of the data clock (SCLK), serial digital  
input (SDI), serial digital output (SDO), and the conversion control  
input (CNV). From the Idle state (after completion of a prior  
conversion), a High-to-Low transition on CNV indicates the  
beginning of input signal acquisition, with the Conversion then  
initiated by a subsequent Low-to-High transition. When CNV is  
Low, input data presented to SDI is latched on the rising edge of  
SCLK. Output data will be present at SDO on the falling edge of  
SCLK. SDO is in the high-impedance state whenever CNV is High,  
and activity on SCLK should be avoided during this time to avoid  
corruption of the conversion process. SCLK should be Low when  
CNV is High.  
At the end of conversion the device enters the Idle state. After the  
host is certain that the conversion is completed (7.2µs after  
conversion is initiated at 125kSPS) a new acquisition can be  
initiated by pulling CNV Low which will initiate the Acquisition state.  
Reading Spanning Conversion Mode  
Without EOC  
In applications desiring slower interface data rates and while still  
maintaining maximum possible throughput, RSC mode can be  
used to transfer data during both the Acquisition and Conversion  
phases, as shown in Figure 32.  
Data exchange begins during the Acquisition phase until CNV is  
asserted High to initiate a conversion and SDO returns to the  
high-impedance state, interrupting the exchange. After CNV is  
returned Low, SDO will return to the state prior to the CNV pulse  
in order to avoid data loss. Once again data exchange occurs  
During the Nth conversion, output data indicates the conversion  
data and configuration settings for the N-1th conversion, while  
the current configuration settings apply to the N+1th conversion.  
In order to minimize errors due to digital noise coupling, there  
should be no activity on the serial interface after the specified  
when CNV is Low. CNV must be asserted High before t  
order to avoid enabling EOC.  
in  
DATA  
t
period. Data should be read before the conversion is  
DATA  
completed to avoid the newer results being overwritten resulting  
in a permanent loss of data.  
At the end of conversion the device enters the Idle state. After  
the host is certain that the conversion is completed (7.2µs after  
conversion is initiated at 125kSPS) a new acquisition can be  
initiated by pulling CNV Low, which will take the device back to  
Acquisition state from Idle state.  
Reading After Conversion Mode Without EOC  
In this mode, data transfer always occurs during the Acquisition  
phase, supporting the widest variety of interface data rates.  
Figure 30 depicts a timing waveform in this mode. From Idle, the  
device enters the Acquisition phase when CNV is taken Low. SDO  
emerges High from a high-impedance state, waiting for an SCLK  
to present the MSB of the current output data word. The  
configuration settings can be updated using SDI and at the same  
time previous conversion results can be read from SDO. After the  
communication is completed or the required acquisition time  
(t  
) has elapsed – whichever is later – CNV transitions High  
ACQ  
indicating the start of conversion. CNV must be held High  
continuously for a minimum of 7.2µs (at 125kSPS) so that the  
conversion is completed without enabling EOC. Subsequently  
CNV may be asserted Low at any time so that the next  
Acquisition phase can begin. This method is suitable for hosts  
which operate with lower frequency SCLK.  
Note that when using slower SPI rates the data transfer time can  
exceed the minimum acquisition time, which will limit the  
conversion throughput to less than the maximum specified rate.  
For example, a 12-bit data transfer takes 12µs with a 1MHz SPI  
clock. This adds to the 7.2µs conversion time for an effective  
throughput of 52ksps.  
FN7549.1  
July 3, 2012  
16  
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
ADC STATE  
Conversion N  
Acquisition  
Conversion N+1  
Acquisition  
Power-Up Idle  
CNV  
Conversion  
Idle  
Conversion  
Idle  
Acq.  
tACQ  
tSCLK  
tSCLKH  
tSDOZ_D  
tCNV_SCLK  
SCLK  
SDI  
tSCLKL  
D5  
tSDI_H  
tSDI_SU  
D15  
D14  
D4  
D1  
D15  
D14  
D5  
D4  
. . .  
. . .  
Configuration N+1  
Configuration N+2  
Hi-Z State  
tSDO_V  
LSB  
MSB MSB-1  
LSB  
MSB MSB-1  
SDO  
. . .  
. . .  
Conversion Result N-1  
Conversion Result N  
FIGURE 30. TIMING DIAGRAM FOR READING AFTER CONVERSION MODE, WITHOUT EOC  
ADC STATE  
Conversion N  
Conversion  
Conversion N+1  
tCNV  
Power-Up Idle Acquisition  
Idle  
Acquisition  
Conversion  
Idle  
tACQ  
tDATA  
CNV  
tSCLK  
tSCLKH  
tCNV_CLK  
SCLK  
SDI  
tSCLKL  
D5  
tSDI_H  
tSDI_SU  
D4  
D1  
D5  
D4  
D1  
D15  
D14  
D14  
. . .  
. . .  
Configuration N+1  
Configuration N+2  
Hi-Z State  
tSDO_V  
MSB MSB-1  
LSB  
MSB MSB-1  
SDO  
. . .  
. . .  
Conversion Result N-1  
Conversion Result N  
FIGURE 31. TIMING DIAGRAM FOR READING DURING CONVERSION MODE, WITHOUT EOC  
ADC STATE  
Conversion N  
tCNV  
Conversion N+1  
Conversion  
Power-Up Idle  
CNV  
Acquisition  
tACQ  
Conversion  
Idle  
Acquisition  
Idle  
tDATA  
tSCLKH  
tCNV_SCLK  
SCLK  
SDI  
tSCLK  
tSCLKL  
tSDI_H  
D12  
D15  
D14  
D13  
D12  
D4  
D15  
D14  
D13  
D4  
. . .  
. . .  
tSDI_SU  
Configuration N+1  
Configuration N+2  
Hi-Z State  
LSB  
tSDO_V  
MSB  
MSB-1  
MSB-1 MSB-2  
D1  
MSB  
MSB-1  
MSB-1 MSB-2  
D1  
SDO  
. . .  
. . .  
Conversion Result N-1  
Conversion Result N  
Note: Transition from Acquisition to Conversion mode may occur after any integer number of clock cycles (provided that the minimum tACQ is satisfied).  
FIGURE 32. TIMING DIAGRAM FOR READING SPANNING CONVERSION MODE, WITHOUT EOC  
FN7549.1  
July 3, 2012  
17  
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Reading After Conversion Mode, with EOC  
Reading Spanning Conversion Mode, with EOC  
In this mode (Figure 33), after CNV is asserted Low to start input  
acquisition, a data exchange is executed by SCLK during the  
Acquisition period. CNV is asserted High briefly to initiate a  
Conversion, forcing SDO to a high-impedance state. SDO returns  
HIGH when CNV is asserted Low during the entire conversion period.  
After initiating an Acquisition by bringing CNV Low, the user  
begins exchanging data as previously mentioned, until CNV is  
asserted High to initiate a conversion and SDO returns to a  
high-impedance state, interrupting the exchange. And, after CNV  
is returned Low, SDO will return to the state prior to the CNV  
pulse in order to avoid losing data interrupted by the conversion  
pulse. See Figure 35. The user should take care to observe the  
At the end of conversion, the device asserts SDO Low to indicate  
that the conversion is complete. This may be used as an interrupt  
to start the Acquisition phase. It should be noted (as indicated in  
Figure 33) that an additional pulse on CNV is required at the end  
of conversion to take the part back to Acquisition from Idle state.  
t
period in order to minimize the effects of digital noise on  
DATA  
sensitive portions of conversion. After completion of the data  
exchange, an additional pulse on SCLK forces SDO to a  
high-impedance state. At the end of conversion, the device  
asserts SDO Low indicating the end of conversion. The device  
then returns to Idle, waiting for a pulse on CNV to initiate a new  
Acquisition cycle.  
As discussed in the “Reading After Conversion Mode Without  
EOC” section, the acquisition time (t  
) may limit the  
ACQ  
conversion throughput at slower SPI clock rates.  
Accessing the Configuration Register During  
Data Readback  
Reading During Conversion Mode, with EOC  
From Idle, a falling edge on CNV initiates the Acquisition mode,  
and then a rising edge initiates a Conversion. After the  
conversion is initiated, CNV is asserted Low once again. Data  
exchange across SDI and SDO can proceed while CNV is Low,  
The Configuration Register contains the channel address of the  
current conversion data. The contents can be accessed during a  
normal data output sequence by continuing to clock data from  
SDO if the register readback mode is enabled. Both 12-bit output  
data words and the 16-bit configuration word are output in 28  
SCLK periods, as shown in Figure 36, which demonstrates an  
example sequence. Note that SDO goes into the high-impedance  
state when CNV is High. The Configuration Register can be read  
during any Read Sequence by generating the additional SCLKs,  
with the restriction that the sequence must be completed prior to  
the end of the current conversion. This will prevent loss of data  
due to overwriting of the new conversion data into the output and  
configuration registers.  
again observing the requirements of the t  
period in order to  
DATA  
minimize the effects of digital noise on sensitive portions of the  
conversion. In this mode, an additional pulse is required on SCLK  
after the completion of the data exchange, to transition SDO to  
the high-impedance state. Later, SDO is asserted low by the  
device indicating end of conversion. The device then returns to  
Idle. The falling edge of SDO may be used as an interrupt to start  
the Acquisition phase. See Figure 34.  
ADC STATE  
Conversion N  
Conversion N+1  
Power-Up Idle  
CNV  
Acquisition  
Conversion  
Idle  
Acquisition  
Conversion  
Idle  
Acq.  
tCNV  
tACQ  
tSCLK  
tSCLKH  
tCNV_SCLK  
SCLK  
SDI  
tSCLKL  
tSDI_H  
D15  
D14  
D5  
D4  
D15  
D14  
D5  
D4  
. . .  
. . .  
tSDI_SU  
Configuration N+1  
Configuration N+2  
Hi-Z State  
D1 LSB  
tSDO_V  
LSB  
MSB MSB-1  
MSB MSB-1  
SDO  
. . .  
. . .  
Conversion Result N-1  
Conversion Result N  
FIGURE 33. TIMING DIAGRAM FOR READING AFTER CONVERSION MODE WITH EOC ON SDO OUTPUT  
FN7549.1  
July 3, 2012  
18  
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
ADC STATE  
Conversion N  
Conversion  
Conversion N+1  
tCNV  
Power-Up Idle Acquisition  
Idle  
Acquisition  
Conversion  
Idle  
tACQ  
tDATA  
CNV  
tSCLK  
tSCLKH  
tCNV_CLK  
SCLK  
SDI  
tSCLKL  
D5  
tSDI_H  
tSDI_SU  
D4  
D1  
D5  
D4  
D1  
D15  
D14  
D14  
. . .  
. . .  
Configuration N+1  
Configuration N+2  
Hi-Z State  
tSDO_V  
MSB MSB-1  
LSB  
MSB MSB-1  
SDO  
. . .  
. . .  
Conversion Result N-1  
Conversion Result N  
FIGURE 34. TIMING DIAGRAM FOR READING DURING CONVERSION MODE WITH EOC ON SDO OUTPUT  
ADC STATE  
Conversion N  
tCNV  
Conversion N+1  
Power-Up Idle  
CNV  
Acquisition  
tACQ  
Conversion  
Idle  
Acquisition  
Conversion  
Idle  
tDATA  
tSCLKH  
tCNV_SCLK  
SCLK  
SDI  
tSCLK  
tSCLKL  
tSDI_H  
D12  
D15  
D14  
D13  
D12  
D4  
D15  
D14  
D13  
D4  
. . .  
. . .  
tSDI_SU  
Configuration N+1  
Configuration N+2  
Hi-Z State  
MSB  
tSDO_V  
MSB-1  
MSB-1 MSB-2  
D1  
LSB  
MSB  
MSB-1  
MSB-1 MSB-2  
D1  
SDO  
. . .  
. . .  
Conversion Result N-1  
Conversion Result N  
Note: Transition from Acquisition to Conversion mode may occur after any integer number of clock cycles (provided that the minimum tACQ is satisfied).  
FIGURE 35. TIMING DIAGRAM FOR READING SPANNING CONVERSIONS MODE WITH EOC ON SDO OUTPUT  
ADC STATE  
Conversion N  
Power-Up Idle  
CNV  
Acquisition  
Conversion  
Idle  
SCLK  
SDI  
D15  
D14  
D5  
D4  
D1  
. . .  
Configuration N+1  
Hi-Z State  
MSB MSB-1  
LSB  
Cfg15 Cfg14  
Cfg1  
Cfg0  
SDO  
. . .  
. . .  
Conversion Result N-1  
Configuration settings of N-1 Result  
FIGURE 36. TIMING DIAGRAM FOR READING AFTER CONVERSION WITH REGISTER READBACK, WITHOUT EOC  
FN7549.1  
July 3, 2012  
19  
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Device Configuration Registers  
Power Management Modes  
The Input Multiplexer Channel Select and power management  
features are controlled by loading the appropriate bits into the  
16-bit Configuration Register through the serial port, MSB-first,  
as shown below. The first two Load bits LD1-LD0 must be set to  
“11” in order to perform a Register update: any other setting will  
leave the Register unchanged. Changes to the Configuration  
Register will be implemented internally immediately following  
the completion of the current conversion, or require a dummy  
conversion in order to take effect. Also, in the case of all power  
management features, a recovery time will be incurred when  
returning to normal operation, as indicated.  
In all SPI interface modes (RAC, RDC, etc.) the device has three  
states of operation: Acquisition, Conversion and Idle. Power  
management modes decide the state of the ADC in Idle mode  
and are selected by the PM bits in the Configuration Register as  
shown in Table 3 and Table 4.  
In the default mode (Continuous Operation) the ADC is fully  
powered in the Idle state and can be taken back to the  
Acquisition state instantaneously. In this mode the ADC can be  
operated with maximum throughput and hence is ideally suitable  
for applications where the ADC is operated continuously.  
In Auto Sleep Mode the ISL263XX will be in a sleep state  
consuming less than 0.4mA. However, it should be noted that the  
TABLE 3. CONFIGURATION REGISTER  
BIT 15  
requirements on t  
are more stringent in Auto Sleep mode  
ACQ  
(MSB)  
14  
13  
12  
11  
10  
9
8
since the device must wake up and then perform the Acquisition.  
LD1  
LD0 ADDR2 ADDR1 ADDR0 PM1 PM0 Unused  
In Auto Power Down Mode (as selected by PM bits) the ADC will be in  
power-down condition during the Idle period, consuming less than  
5µA of current. Wake-up time takes 150µs. The acquisition time  
BIT 0  
BIT 2 BIT 1 (LSB)  
(t  
) must be increased to account for this delay.  
BIT 7 BIT 6  
RGRD  
BIT 5  
BIT 4  
BIT 3  
ACQ  
Unused  
The power management modes provide a high degree of  
flexibility in trading average power consumption versus the  
required throughput. Significant power savings can be achieved  
by operating in either Auto Sleep Mode or Auto Power-Down  
mode depending on the throughput requirements.  
TABLE 4. CONFIGURATION REGISTER 2  
DESCRIPTION  
BIT(S)  
15:14 Register Load word, set to “11” to update registers,  
otherwise previous settings are retained.  
13:11 Multiplexer Channel Select word ADDR2:0.  
000H: Channel AIN0 (single-ended input devices) or AIN0+/AIN0-  
(differential input devices)  
001H: Channel AIN1 or AIN1+/AIN1-  
010H: Channel AIN2 or AIN2+/AIN2-  
011H: Channel AIN3 or AIN3+/AIN3-  
100H: Channel AIN4  
101H: Channel AIN5  
110H: Channel AIN6  
111H: Channel AIN7  
10:9 Power Management Configuration Control  
00H: Auto Power-Down mode. Device will go into Power-down  
mode automatically at the end of the next conversion cycle.  
01H: Continuous Operation mode (default). Device remains fully  
powered at all times.  
1xH: Auto Sleep Mode. Device will enter reduced-power Sleep  
mode automatically at the end of the next conversion cycle. A "1"  
in PM1 overrides the setting in PM0.  
8
7
Unused  
Register readback mode. "1" means register readback is enabled  
resulting in configuration settings to be output along with  
conversion results. "0" (default) mode of operation register  
settings are not output.  
6:0 Unused  
FN7549.1  
July 3, 2012  
20  
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev.  
DATE  
REVISION  
CHANGE  
June 22, 2012  
FN7549.1 Added Part Numbers ISL26310, ISL26311, ISL26313 throughout document  
Added SOIC Package throughout document  
Updated Features List by Removing following bullets:  
o 125kSPS Conversion Rate  
o Pin-Compatible 2/4-Channel Differential or 4/8-Channel Single-Ended Inputs  
o Internal 2.5V Reference  
o Available in Popular TSSOP Package  
o Pb-Free (RoHS Compliant)  
Updated Functional Block Diagram on page 1 by removing voltage reference  
Updated Pin Compatible Family by removing ISL264XX PARTS  
Updated Pin Description Table to include all parts  
Updated conditions in Electrical Spec Table from:  
Electrical Specifications VREF+ = VDD(External) V, VDD = 3.3V to 5V, VCM = VDD/2, SCLK = 20MHz...  
To:  
Electrical Specifications VREF = VDD V, VDD = 2.7V to 5V, VCM = VDD/2, SCLK = 20MHz...  
Removed VREFIN specs from Voltage Reference Section  
Removed Test Level from tACQ in Auto Power Down Mode  
Replaced Figures 3 and 4 DNL and INL  
Replaced Figure 17 by changing from single line curve to frequency mode  
Rewrote Functional Description Section  
January 11, 2012 FN7549.0 Initial Release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7549.1  
July 3, 2012  
21  
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Package Outline Drawing  
M16.173  
16 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)  
Rev 2, 5/10  
A
1
3
5.00 ±0.10  
SEE DETAIL "X"  
9
16  
6.40  
PIN #1  
I.D. MARK  
4.40 ±0.10  
2
3
0.20 C B A  
1
8
B
0.09-0.20  
0.65  
TOP VIEW  
END VIEW  
1.00 REF  
-
0.05  
H
C
0.90 +0.15/-0.10  
1.20 MAX  
SEATING  
PLANE  
GAUGE  
PLANE  
0.25 +0.05/-0.06  
0.25  
5
0.10  
C B A  
M
0.10 C  
0°-8°  
0.60 ±0.15  
0.05 MIN  
0.15 MAX  
SIDE VIEW  
DETAIL "X"  
(1.45)  
NOTES:  
1. Dimension does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.  
2. Dimension does not include interlead flash or protrusion. Interlead  
flash or protrusion shall not exceed 0.25 per side.  
3. Dimensions are measured at datum plane H.  
(5.65)  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
5. Dimension does not include dambar protrusion. Allowable protrusion  
shall be 0.08mm total in excess of dimension at maximum material  
condition. Minimum space between protrusion and adjacent lead  
is 0.07mm.  
(0.65 TYP)  
(0.35 TYP)  
6. Dimension in ( ) are for reference only.  
TYPICAL RECOMMENDED LAND PATTERN  
7. Conforms to JEDEC MO-153.  
FN7549.1  
July 3, 2012  
22  
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319  
Package Outline Drawing  
M8.15  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 4, 1/12  
DETAIL "A"  
1.27 (0.050)  
0.40 (0.016)  
INDEX  
AREA  
6.20 (0.244)  
5.80 (0.228)  
0.50 (0.20)  
0.25 (0.01)  
x 45°  
4.00 (0.157)  
3.80 (0.150)  
8°  
0°  
1
2
3
0.25 (0.010)  
0.19 (0.008)  
SIDE VIEW “B”  
TOP VIEW  
2.20 (0.087)  
1
8
SEATING PLANE  
0.60 (0.023)  
1.27 (0.050)  
1.75 (0.069)  
5.00 (0.197)  
4.80 (0.189)  
2
3
7
6
1.35 (0.053)  
-C-  
4
5
0.25(0.010)  
0.10(0.004)  
1.27 (0.050)  
0.51(0.020)  
0.33(0.013)  
5.20(0.205)  
SIDE VIEW “A  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
2. Package length does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
3. Package width does not include interlead flash or protrusions. Interlead  
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.  
4. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
5. Terminal numbers are shown for reference only.  
6. The lead width as measured 0.36mm (0.014 inch) or greater above the  
seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).  
7. Controlling dimension: MILLIMETER. Converted inch dimensions are not  
necessarily exact.  
8. This outline conforms to JEDEC publication MS-012-AA ISSUE C.  
FN7549.1  
July 3, 2012  
23  

相关型号:

ISL26314FVZ

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels
INTERSIL

ISL26314FVZ

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels; TSSOP16; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL26314FVZ-T7A

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels; TSSOP16; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL26315

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels
INTERSIL

ISL26315FVZ

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels
INTERSIL

ISL26315FVZ

暂无描述
RENESAS

ISL26315FVZ-T7A

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels; TSSOP16; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL26319

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels
INTERSIL

ISL26319FVZ

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels
INTERSIL

ISL26319FVZ

暂无描述
RENESAS

ISL26319FVZ-T7A

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels; TSSOP16; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL26320

12-bit, 250kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels
INTERSIL