ICL7104 [INTERSIL]

14-Bit/16-Bit, Microprocessor- Compatible, 2-Chip, A/D Converter; 14位/ 16位微处理器兼容,双芯片, A / D转换器
ICL7104
型号: ICL7104
厂家: Intersil    Intersil
描述:

14-Bit/16-Bit, Microprocessor- Compatible, 2-Chip, A/D Converter
14位/ 16位微处理器兼容,双芯片, A / D转换器

转换器 微处理器
文件: 总21页 (文件大小:200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICL8052/ICL7104,  
ICL8068/ICL7104  
14-Bit/16-Bit, Microprocessor-  
August 1997  
Compatible, 2-Chip, A/D Converter  
Features  
Description  
• 16-Bit/14-Bit Binary Three-State Latched Outputs Plus  
Polarity and Overrange  
The ICL7104, combined with the ICL8052 or ICL8068,  
forms a member of Intersil’ high performance A/D converter  
family. The ICL7104-16, performs the analog switching and  
digital function for a 16-bit binary A/D converter, with full  
three-state output, UART handshake capability, and other  
outputs for easy interfacing. The ICL7014-14 is a 14-bit  
version. The analog section, as with all Intersil’ integrating  
converters, provides fully precise Auto-Zero, Auto-Polarity  
(including ±0 null indication), single reference operation,  
very high input impedance, true input integration over a  
constant period for maximum EMI rejection, fully  
• Ideally Suited for Interface to UARTs and  
Microprocessors  
• Conversion on Demand or Continuously  
• Guaranteed Zero Reading for 0V Input  
• True Polarity at Zero Count for Precise Null Detection  
• Single Reference Voltage for True Ratiometric  
Operation  
rationmetric operation, over-range indication, and  
a
medium quality built-in reference. The chip pair also offers  
optional input buffer gain for high sensitivity applications, a  
built-in clock oscillator, and output signals for providing an  
external Auto-Zero capability in preconditioning circuitry,  
synchronizing external multiplexers, etc.  
• Onboard Clock and Reference  
• Auto-Zero, Auto-Polarity  
• Accuracy Guaranteed to 1 Count  
• All Outputs TTL Compatible  
±4V Analog Input Range  
Ordering Information  
• Status Signal Available for External Sync, A/Z in  
Preamp, Etc.  
TEMP.  
PKG.  
NO.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
14 Ld PDIP  
ICL8052CPD  
lCL8052CDD  
lCL8052ACPD  
ICL8052ACDD  
ICL8068CDD  
ICL8068ACDD  
lCL8068ACJD  
ICL7104-14CPL  
lCL7104-16CPL  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
E14.3  
14 Ld CERDIP  
14 Ld PDIP  
F14.3  
E14.3  
F14.3  
F14.3  
F14.3  
F14.3  
E40.6  
E40.6  
14 Ld CERDIP  
14 Ld CERDIP  
14 Ld CERDIP  
14 Ld CERDIP  
40 Ld PDIP  
40 Ld PDIP  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
File Number 3091.1  
5-6  
ICL8052/ICL7104, ICL8068/ICL7104  
Pinouts  
ICL8052/ICL8068  
(CERDIP, PDIP)  
TOP VIEW  
ICL7104  
(PDIP)  
TOP VIEW  
ICL7104-16  
V++  
ICL7104-14  
V++  
ICL7104-14  
40 V-  
ICL7104-16  
1
2
3
4
5
6
7
8
9
V-  
1
14 INT OUT  
13 +BUFF IN  
12 +INT IN  
11 -INT IN  
-1.2V  
DIG GND  
STTS  
POL  
DIG GND  
STTS  
POL  
39 COMP IN  
COMP OUT  
REF CAP  
2
3
4
38 REFCAP 1  
37  
36 AZ  
ANALOG  
35  
V
REF  
REF BYPASS  
GND  
OR  
OR  
BIT 16  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
V
5
6
7
10 -BUFF IN  
REF  
GND  
34 REFCAP 2  
33 BUF IN  
32 ANALOG I/P  
31 V+  
REF OUT  
9
8
BUFF OUT  
V++  
ICL8052/  
ICL8068  
REF SUPPLY  
BIT 10 10  
BIT 9 11  
NC 12  
ICL7104-14  
(OUTLINE DWGS DL,  
JL, PL)  
(OUTLINE DWGS DD, JD, PD)  
30 CE/LD  
29 SEN  
NC 13  
28 R/H  
BIT 8 14  
BIT 7 15  
BIT 6 16  
BIT 5 17  
BIT 4 18  
BIT 3 19  
BIT 2 20  
27 MODE  
26 CLK 2  
25 CLK 1  
24 CLK 3  
23 HBEN  
22 LBEN  
21 BIT 1  
HBEN  
MBEN  
Functional Block Diagram  
R
C
INT  
INT  
+15V -15V  
BITS  
-BUF IN BUF OUT -INT IN INT OUT  
OR POL16 15 14 13 12 11 10 9  
8
7
6
5
4
3
2
1
REF  
OUT  
8
7
1
10  
BUFFER  
9
11  
INTEG.  
14  
COMP.  
5
4
6
7
8 9 10 11 12 13 14 15 16 17 18 19 20 21  
6
3
INT.  
REF.  
COMP  
OUT  
THREE-STATE OUTPUTS  
LATCHES  
-
-
A1  
+
A2  
-
300pF  
24  
+5V  
HBEN  
23 MBEN  
22  
+
A3  
5k  
8052/8068  
+INT IN 12  
2
+
-1.2V  
AZ  
5
+BUF IN 13  
50kΩ  
10kΩ  
-15V  
LBEN  
10µF  
C
COUNTER  
30 CE/LD  
+BUF IN  
33  
AZ  
COMP IN 300kΩ  
36  
39  
SW3  
7104  
29 SEN  
27 MODE  
28 R/H  
37  
ZERO  
CROSSING  
DETECTOR  
V
SW5  
SW6  
SW4  
REF  
CONTROL LOGIC  
SW1  
SW8 SW2  
32  
35  
ANALOG  
INPUT  
SW7  
SW9  
ANALOG  
GND  
38  
REF CAP (1)  
34  
REF CAP (2)  
1
31  
2
40  
25  
26  
3
+15V  
+5V  
-15V CLOCK CLOCK STTS  
(1) (2)  
C
REF  
FIGURE 1. ICL8052A (8068A)/ICL7104 16-BIT/14-BIT A/D CONVERTER FUNCTIONAL DIAGRAM  
5-7  
ICL8052/ICL7104, ICL8068/ICL7104  
Pin Descriptions  
PIN NO.  
SYMBOL  
V++  
OPTION  
DESCRIPTION  
Positive Supply Voltage: Nominally +15V.  
Digital Ground: 0V, ground return.  
1
2
3
GND  
STTS  
Status Output: HI during integrate and deintegrate until data is latched. LO when analog section  
is in auto-zero configuration.  
4
5
6
POL  
OR  
Polarity: Three-state output. HI for positive input.  
Over Range: Three-state output.  
BIT 16  
BIT 14  
-16  
-14  
Most Significant Bit (MSB).  
7
8
BIT 15  
BIT 13  
-16  
-14  
DATA Bits: Three-state outputs. See Table 3 for format of ENABLES and bytes. HIGH = true.  
BIT 14  
BIT 12  
-16  
-14  
9
BIT 13  
BIT 11  
-16  
-14  
10  
11  
12  
13  
BIT 12  
BIT 10  
-16  
-14  
BIT 11  
BIT 9  
-16  
-14  
BIT 10  
NC  
-16  
-14  
BIT 9  
NC  
-16  
-14  
14  
15  
16  
17  
18  
19  
20  
21  
22  
BIT 8  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
LBEN  
Least Significant Bit (LSB).  
LOW BYTE ENABLE: If not in handshake mode (see pin 27) when LO (with CE/LD, pin 30)  
activates low-order byte outputs, BITS 1-8. When in handshake mode (see pin 27), serves as a  
low byte flag output. See Figures 11, 12, 13.  
23  
24  
MBEN  
HBEN  
-16  
-14  
-16  
-14  
MID BYTE ENABLE: Activates Bits 9-16, see LBEN (pin 22)  
HIGH BYTE ENABLE: Activates Bits 9-14, POL, OR, see LBEN (pin 22)  
HIGH BYTE ENABLE: Activates POL, OR, see LBEN (pin 22).  
RC oscillator pin: Can be used as clock output.  
HBEN  
CLOCK3  
5-8  
ICL8052/ICL7104, ICL8068/ICL7104  
Pin Descriptions (Continued)  
PIN NO.  
25  
SYMBOL  
CLOCK 1  
CLOCK 2  
MODE  
OPTION  
DESCRIPTION  
Clock Input: External clock or ocsillator.  
26  
Clock Output: Crystal or RC oscillator.  
27  
INPUT LO: Direct output mode where CE/LD, HBEN, MBEN and LBEN act as inputs directly  
controlling byte outputs. If pulsed HI causes immediate entry into handshake mode (see Figure  
13). If HI, enables CE/LD, HBEN, MBEN and LBEN as outputs. Handshake mode will be entered  
and data output as in Figures 11 and 12 at conversion completion.  
17  
15  
28  
R/H  
RUN/HOLD: Input HI conversions continuously performed every 2 (-16) or 2 (-14) clock  
pulses. Input LO conversion in progress completed, converter will stop in Auto-Zero 7 counts  
before input integrate.  
29  
30  
SEN  
SEND ENABLE: Input controls timing of byte transmission in handshake mode. HI indicates  
‘send’.  
CE/LD  
CHIP ENABLE/ LOAD: WITH MODE (PIN 27) LO, CE/LD serves as a master output enable;  
when HI, the bit outputs and POL, OR are disabled. With MODE HI, pin serves as a LOAD strobe  
(-ve going) used in handshake mode. See Figures 11 and 12.  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
V+  
Positive Logic Supply Voltage: Nominally +5V.  
Analog Input: High Side.  
AN I/P  
BUF IN  
REFCAP2  
AN. GND  
A-Z  
Buffer Input: Buffer Analog to analog chip (ICL8052 or ICL8086).  
Reference Capacitor: Negative Side.  
Analog Ground: Input low side and reference low side.  
Auto-Zero node.  
V
Voltage Reference: Input (positive side).  
Reference Capacitor: Positive side.  
REF  
REFCAP1  
COMP-IN  
V-  
Comparator Input: From 8052/8068.  
Negative Supply Voltage: Nominally -15V.  
5-9  
ICL8052/ICL7104, ICL8068/ICL7104  
Absolute Maximum Ratings  
Thermal Information  
o
o
ICL8052, ICL8068  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18V  
Differential Input Voltage  
Thermal Resistance (Typical, Note 1)  
14 Ld PDIP Package . . . . . . . . . . . . . .  
40 Ld PDIP Package . . . . . . . . . . . . . .  
14 Ld CERDIP Package . . . . . . . . . . .  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
100  
60  
75  
N/A  
N/A  
20  
(8068) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30V  
o
(8052) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±6V Maximum Junction Temperature (Ceramic Package). . . . . . . . . 175 C  
o
Input Voltage (Note 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±15V  
Output Short Circuit Duration All Outputs (Note 3). . . . . . . Indefinite  
ICL7104  
Maximum Junction Temperature (Plastic Package) . . . . . . . . 150 C  
Maximum Storage Temperature Range . . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering, 10s) . . . . . . . . . . . . 300 C  
o
o
o
V+ Supply (GND to V+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V  
V++ to V-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32V  
Positive Supply Voltage (GND to V++) . . . . . . . . . . . . . . . . . . . . 17V  
Negative Supply Voltage (GND to V-). . . . . . . . . . . . . . . . . . . . .-17V  
Analog Input Voltage (Pins 32 - 39)(Note 4). . . . . . . . . . . . V++ to V-  
Digital Input Voltage  
(Pins 2 - 30) (Note 5) . . . . . . . . . . . . (GND - 0.3V) to (V+ + 0.3V)  
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 C to 70 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.  
o
3. Short circuit may be to ground or either supply. Rating applies to 70 C ambient temperature.  
4. Input voltages may exceed the supply voltages provided the input current is limited to ±100µA.  
5. Connecting any digital inputs or outputs to voltages greater than V+ or less than GND may cause destructive device latchup. For this  
reason it is recommended that the power supply to the ICL7104 be established before any inputs from sources not on that supply are  
applied.  
o
ICL7104 Electrical Specifications V+ = +5V, V++ = +15V, V- = -15V, T = 25 C, f  
= 200kHz  
CLOCK  
A
TEST  
PARAMETER  
Clock Input, CLK 1  
SYMBOL  
CONDITIONS  
= +5V to 0V  
= 0V to +5V  
= +5V  
MIN  
TYP  
±7  
MAX  
±30  
10  
UNITS  
µA  
I
I
I
V
V
V
V
V
V
±2  
-10  
1
IN  
IN  
IH  
IN  
IN  
IN  
IN  
IN  
IN  
Comparator I/P, COMP IN (Note 6)  
Inputs with Pulldown, MODE  
±0.001  
5
µA  
30  
µA  
I
= 0V  
-10  
-10  
-30  
±0.01  
±0.01  
-5  
10  
µA  
IL  
Inputs with Pullups  
SEN, R/H  
LBEN, MBEN, HBEN, CE/LD (Note 7)  
I
= +5V  
10  
µA  
IH  
I
= 0V  
-1  
µA  
IL  
Input High Voltage, All Digital Inputs  
Input Low Voltage, All Digital Inputs  
V
2.5  
-
2.0  
1.5  
-
1.0  
0.4  
-
V
V
IH  
V
IL  
Digital Outputs Three-Stated On,  
LBEN, MBEN (16 Only), HBEN, CE/LD  
BIT n, POL, OR (Note 8)  
V
I
I
I
= 1.6mA  
= -10µA  
= -240µA  
-
0.27  
4.5  
V
OL  
OL  
OH  
OH  
V
-
V
OH  
V
2.4  
-10  
3.5  
-
V
OH  
Digital Outputs Three-Stated Off  
Bit n, POL, OR  
I
0 V  
OUT  
V+  
±0.001  
+10  
µA  
OL  
Non Three-State Digital Output  
STTS  
V
I
I
I
I
I
I
= 3.2mA  
-
2.4  
-
0.3  
3.3  
0.5  
4.5  
0.27  
3.5  
0.4  
V
V
V
V
V
V
OL  
OL  
V
= -400µA  
-
OH  
OH  
Clock 2  
V
= 320µA  
-
-
OL  
OL  
OH  
OL  
OH  
V
= -320µA  
= 1.6mA  
= -320µA  
-
OH  
Clock 3 (-14 Only)  
V
-
0.4  
-
OL  
V
2.4  
OH  
5-10  
ICL8052/ICL7104, ICL8068/ICL7104  
o
ICL7104 Electrical Specifications V+ = +5V, V++ = +15V, V- = -15V, T = 25 C, f  
= 200kHz (Continued)  
CLOCK  
A
TEST  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Switch  
Switch 1  
Switches 2, 3  
r
r
r
-
25k  
4k  
-
DS(ON)  
DS(ON)  
DS(ON)  
-
-
20k  
10k  
-
Switches 4, 5, 6, 7, 8, 9  
Switch Leakage  
2k  
I
-
15  
pA  
kHz  
D(OFF)  
Clock Frequency (Note 9)  
Supply Currents  
f
DC  
200  
400  
CLOCK  
+5V Supply Current  
I+  
Frequency = 200kHz  
-
200  
600  
µA  
All outputs high impedance  
+5V Supply Current  
-5V Supply Current  
I++  
I-  
Frequency = 200kHz  
Frequency = 200kHz  
-
-
0.3  
25  
1.0  
mA  
200  
µA  
Supply Voltage Range  
Logic Supply  
V+  
V++  
V-  
Note 10  
4
-
-
-
11  
16  
V
V
V
Positive Supply  
Negative Supply  
NOTES:  
10  
-16  
-10  
6. This specification applies when not in Auto-Zero phase.  
7. Apply only when these pins are inputs, i.e., the mode pin is low, and the 7104 is not in handshake mode.  
8. Apply only when these pins are outputs, i.e., the mode pin is high, or the 7104 is in handshake mode.  
9. Clock circuit shown in Figures 14 and 15.  
10. V+ must not be more positive than V++.  
ICL8068 Electrical Specifications V  
= ±15V, Unless Otherwise Specified  
SUPPLY  
ICL8068  
TEST  
ICL8068A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
EACH OPERATIONAL AMPLIFIER  
Input Offset Voltage  
V
V
V
V
V
= 0V  
-
-
20  
175  
90  
65  
-
-
20  
80  
65  
mV  
pA  
dB  
dB  
OS  
CM  
CM  
CM  
CM  
Input Current (Either Input) (Note 11)  
Common-Mode Rejection Ratio  
I
= 0V  
250  
150  
IN  
CMRR  
= ±10V  
= ±2V  
70  
-
-
-
70  
-
90  
-
-
Non-Linear Component of Common-  
Mode Rejection Ratio (Note 12)  
110  
110  
Large Signal Voltage Gain  
Slew Rate  
A
R
= 50kΩ  
L
20,000  
-
-
-
-
-
20,000  
-
-
-
-
-
V/V  
V/µs  
MHz  
mA  
V
SR  
-
-
-
6
2
5
-
-
-
6
2
5
Unity Gain Bandwidth  
GBW  
Output Short-Circuit Current  
COMPARATOR AMPLIFIER  
Small-Signal Voltage Gain  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
VOLTAGE REFERENCE  
Output Voltage  
I
SC  
A
R = 30kΩ  
-
4000  
13  
-
-
-
-
-
-
-
-
V/V  
V
VOL  
L
+V  
12  
12  
13  
O
-V  
-2.0  
-2.6  
-2.0  
-2.6  
V
O
V
1.5  
-
1.75  
5
2.0  
-
1.60  
-
1.75  
5
1.90  
-
V
O
Output Resistance  
R
O
5-11  
ICL8052/ICL7104, ICL8068/ICL7104  
ICL8068 Electrical Specifications V  
= ±15V, Unless Otherwise Specified (Continued)  
SUPPLY  
ICL8068  
TEST  
ICL8068A  
PARAMETER  
Temperature Coefficient  
Supply Voltage Range  
Supply Current Total  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
-
MIN  
TYP  
40  
-
MAX  
-
UNITS  
o
TC  
-
±10  
-
50  
-
-
±10  
-
ppm/ C  
V
±16  
14  
±16  
14  
V
SUPPLY  
I
-
8
mA  
SUPPLY  
ICL8052 Electrical Specifications V  
= ±15V, Unless Otherwise Specified  
SUPPLY  
ICL8052  
TEST  
ICL8052A  
TYP  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
EACH OPERATIONAL AMPLIFIER  
Input Offset Voltage  
V
V
V
V
V
= 0V  
-
-
20  
5
75  
50  
-
-
-
20  
2
75  
10  
-
mV  
pA  
dB  
dB  
OS  
CM  
CM  
CM  
CM  
Input Current (Either Input) (Note 11)  
Common-Mode Rejection Ratio  
I
= 0V  
IN  
CMRR  
= ±10V  
= ±2V  
70  
-
90  
110  
70  
-
90  
110  
Non-Linear Component of Common-  
Mode Rejection Ratio (Note 12)  
-
-
Large Signal Voltage Gain  
Slew Rate  
A
R
= 50kΩ  
L
20,000  
-
6
-
-
-
-
20,000  
-
6
-
-
-
-
V/V  
V/µs  
MHz  
mA  
V
SR  
-
-
-
-
-
-
Unity Gain Bandwidth  
Output Short-Circuit Current  
COMPARATOR AMPLIFIER  
Small-Signal Voltage Gain  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
VOLTAGE REFERENCE  
Output Voltage  
GBW  
1
1
I
20  
20  
SC  
A
R = 30kΩ  
-
4000  
13  
-
-
-
-
-
-
-
-
V/V  
V
VOL  
L
+V  
12  
12  
13  
O
O
-V  
-2.0  
-2.6  
-2.0  
-2.6  
V
V
1.5  
1.75  
5
2.0  
-
1.60  
1.75  
5
1.90  
-
V
O
Output Resistance  
R
-
-
O
o
Temperature Coefficient  
Supply Voltage Range  
Supply Current Total  
NOTES:  
TC  
-
±10  
-
50  
-
-
-
±10  
-
40  
-
-
ppm/ C  
V
±16  
12  
±16  
12  
V
SUPPLY  
I
6
6
mA  
SUPPLY  
o
11. The input bias currents are junction leakage currents which approximately double for every 10 C increase in the junction temperature,  
T . Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation  
J
the junction temperature rises above the ambient temperature as a result of internal power dissipation, P . T = T + R  
P where  
D
D
J
A
θJA  
R
is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.  
θJA  
12. This is the only component that causes error in dual-slope converter.  
5-12  
ICL8052/ICL7104, ICL8068/ICL7104  
System Electrical Specifications: ICL8068/ICL7104 V++ = +15V, V+ = +5V, V- = -15V, f  
= 200kHz (Note 16)  
CLOCK  
ICL8068A/ICL7104-16  
MIN TYP MAX  
ICL8068A/ICL7104-14  
MIN TYP MAX  
TEST  
CONDITIONS  
PARAMETER  
Zero Input Reading  
UNITS  
V
V
= 0V, V = 2V -00000 ±00000 +00000 -00000 ±00000 +00000 Counts  
REF  
IN  
IN  
Ratiometric Error (Note 13)  
= V  
REF  
= 2V  
-1  
-
0
1
1
-1  
-
0
1
1
LSB  
LSB  
Linearity Over ± Full Scale (Error of  
-4V V +4V  
IN  
0.5  
0.5  
Reading from Best Straight Line)  
Differential Linearity (Difference  
between Worst Case Step of Adjacent  
Counts and Ideal Step)  
-4V V +4V  
IN  
-
-
-
0.01  
0.5  
2
-
1
-
-
-
-
0.01  
0.5  
2
-
1
-
LSB  
LSB  
Rollover Error (Difference in Reading  
for Equal Positive & Negative Voltage  
Near Full Scale)  
-V = +V  
IN  
4V  
IN  
Noise (P-P Value Not Exceeded 95%  
of Time)  
V
= 0V,  
µV  
IN  
Full Scale = 4V  
Leakage Current at Input (Note 14)  
Zero Reading Drift  
V
V
= 0V  
-
-
100  
0.5  
165  
-
-
-
100  
0.5  
165  
-
pA  
IN  
IN  
o
= 0V,  
µV/ C  
o
o
0 C to 70 C  
o
Scale Factor Temperature Coefficient  
(Note 15)  
V
= 4V,  
-
2
5
-
2
5
ppm/ C  
IN  
o
o
0 C to 50 C  
ext. ref. 0ppm/ C  
o
System Electrical Specifications: ICL8052/ICL7104 V++ = +15V, V+ = +5V, V- = -15V, f  
= 200kHz (Note 16)  
CLOCK  
ICL8052A/ICL7104-14  
MIN TYP MAX  
ICL8052A/ICL7104-16  
MIN TYP MAX  
TEST  
CONDITIONS  
PARAMETER  
Zero Input Reading  
UNITS  
V
V
= 0V, V = 2V -00000 ±00000 +00000 -00000 ±00000 +00000 Counts  
REF  
IN  
IN  
Ratiometric Error (Note 15)  
= V  
REF  
= 2V  
-1  
-
0
1
1
-1  
-
0
1
1
LSB  
LSB  
Linearity Over ± Full Scale (Error of  
-4V V +4V  
IN  
0.5  
0.5  
Reading from Best Straight Line)  
Differential Linearity (Difference  
between Worst Case Step of Adjacent  
Counts and Ideal Step)  
-4V V +4V  
IN  
-
-
-
0.01  
0.5  
30  
-
1
-
-
-
-
0.01  
0.5  
30  
-
1
-
LSB  
LSB  
Rollover Error (Difference in Reading  
for Equal Positive and Negative  
Voltage Near Full Scale)  
-V = +V 4V  
IN IN  
Noise (Peak-to-Peak Value Not  
Exceeded 95% of Time)  
V
= 0V,  
µV  
IN  
Full Scale = 4V  
Leakage Current at Input (Note 14)  
Zero Reading Drift  
V
V
= 0V  
-
-
20  
30  
-
-
-
20  
30  
-
pA  
IN  
IN  
o
= 0V,  
0.5  
0.5  
µV/ C  
o
o
0 C to 70 C  
o
Scale Factor Temperature Coefficient  
V
= 4V,  
-
2
-
-
2
-
ppm/ C  
IN  
o
o
0 C to 50 C  
ext. ref. 0ppm/ C  
o
NOTES:  
13. Tested with low dielectric absorption integrating capacitor.  
14. The input bias currents are junction leakage currents which approximately double for every 10 C increase in the junction temperature,  
T . Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal oper-  
o
J
ation the junction temperature rises above the ambient temperature as a result of internal power dissipation, P . T = T + R  
P
D
D
J
A
θJA  
where R  
θJA  
is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.  
o
15. The temperature range can be extended to 70 C and beyond if the Auto-Zero and Reference capacitors are increased to absorb the  
high temperature leakage of the 8068. See note 14 above.  
16. System Electrical Specifications are not tested; for reference only.  
5-13  
ICL8052/ICL7104, ICL8068/ICL7104  
CONTROL  
CONVERT  
MODE  
R/H  
OR  
18  
POL  
MSB  
7104 -16  
8052A/  
8068A  
18  
LSB  
CE/LD HBEN MBEN LBEN  
OR CHIP SELECT 2  
CHIP SELECT 1  
FIGURE 2. FULL 18-BIT THREE-STATE OUTPUT  
CONVERT  
R/H  
CONVERT  
CONVERT  
R/H  
MODE CE/LD  
7104  
MODE CE/LD  
7104  
R/H  
OR  
MODE CE/LD  
7104  
OR  
OR  
2
8
2
POL  
POL  
MSB  
POL  
10  
8
MSB  
MSB  
8052A/  
8068A  
8052A/  
8068A  
8052A/  
8068A  
16  
8
LSB  
LSB  
LSB  
HBEN MBEN LBEN  
CONTROL  
HBEN MBEN LBEN  
HBEN MBEN LBEN  
CONTROL  
CONTROL  
FIGURE 3. VARIOUS COMBINATIONS OF BYTE DISABLES  
t
CEA  
CE/LD  
AS INPUT  
t
BEA  
HBEN  
AS INPUT  
MBEN  
AS INPUT  
LBEN  
AS INPUT  
t
t
DHB  
DAB  
HIGH BYTE  
DATA  
DATA  
DATA  
VALID  
VALID  
t
t
DHC  
DAC  
MIDDLE  
BYTE  
ENABLE  
DATA  
VALID  
DATA  
VALID  
LOW BYTE  
ENABLE  
DATA  
VALID  
= HIGH IMPEDANCE  
FIGURE 4. DIRECT MODE TIMING DIAGRAM  
5-14  
ICL8052/ICL7104, ICL8068/ICL7104  
TABLE 1. DIRECT MODE TIMING REQUIREMENTS (Note: Not tested in production)  
SYMBOL  
DESCRIPTION  
XBEN (Min) Pulse Width.  
MIN  
TYP  
300  
300  
200  
350  
350  
280  
1000  
MAX  
UNIT  
ns  
t
t
-
-
-
-
-
-
-
-
-
-
-
-
-
-
BEA  
DAB  
DHB  
Data Access Time from XBEN.  
Data Hold Time from XBEN.  
CE/LD Min. Pulse Width.  
ns  
t
ns  
t
ns  
CEA  
DAC  
DHC  
t
Data Access Time from CE/LD.  
Data Hold Time from CE/LD.  
CLOCK 1 High Time.  
ns  
t
ns  
t
ns  
CWH  
TABLE 2. HANDSHAKE TIMING REQUIREMENTS (Note: Not tested in production)  
SYMBOL  
DESCRIPTION  
MIN  
TYP  
20  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Mode Pulse (Min).  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
MW  
t
Mode Pin Set-Up Time.  
-
-150  
200  
SM  
ME  
MB  
t
Mode Pin High to Low Z CE/LD High Delay.  
Mode Pin High to XBEN Low Z (High) Delay.  
Clock 1 High to CE/LD Low Delay.  
Clock 1 High to CE/LD High Delay.  
Clock 1 High to XBEN Low Delay.  
Clock 1 High to XBEN High Delay.  
Clock 1 High to Data Enabled Delay.  
Clock 1 Low to Data Disabled Delay.  
Send ENABLE Set-Up Time.  
-
t
-
200  
t
-
700  
CEL  
t
-
600  
CEH  
t
-
900  
CBL  
CBH  
CDH  
t
-
700  
t
-
1100  
1100  
-350  
2000  
2000  
1000  
t
-
CDL  
t
-
SS  
t
Clock 1 High to XBEN Disabled Delay.  
Clock 1 High to CE/LD Disabled Delay.  
Clock 1 High Time.  
-
-
CBZ  
CEZ  
t
t
1250  
CWH  
5-15  
ICL8052/ICL7104, ICL8068/ICL7104  
t
t
SM  
CWH  
H
L
CLOCK 1  
(PIN 25)  
t
MW  
H
L
EITHER:  
MODE PIN  
DON’T CARE  
STABLE  
OR  
INTERNAL  
LATCH PULSE IF  
MODE “HI”  
IGNORED  
IGNORED  
UART  
INTERNAL  
MODE  
NORM  
t
t
CEH  
CEL  
H
CE/LD  
L
t
t
ME  
CEZ  
t
EXT  
EXT  
SS  
SEN  
H
DON’T CARE  
DON’T CARE  
(EXTERNAL  
SIGNAL)  
L
t
MB  
H
L
HBEN  
t
t
t
CBL  
CBH  
CBZ  
H
L
O/R, POL  
01-14  
DATA VALID, STABLE  
t
t
CDL  
CDH  
H
L
LBEN  
DATA VALID, STABLE  
BITS 1-5  
HANDSHAKE MODE  
TRIGGERED BY  
THREE-STATE  
-16 HAS EXTRA (MBEN) PHASE  
OR  
THREE-STATE WITH PULLUP  
FIGURE 5. HANDSHAKE MODE TIMING DIAGRAM  
Detailed Description  
ANALOG SECTION  
Deintegrate Phase III (Figures 6C and 6D)  
Figure 6 shows the equivalent Circuit of the Analog Section  
of both the ICL7104/8052 and the ICL7104/8068 in the 3  
different phases of operation. If the Run/Hold pin is left open  
or tied to V+, the system will perform conversions at a rate  
determined by the clock frequency: 131,072 for - 16 and  
32,368 for - 14 clock periods per cycle (see Figure 8  
conversion timing).  
During the Deintegrate phase, the switch drive logic uses the  
output of the polarity F/F in determining whether to close  
switches 6 and 9 or 7 and 8. If the input signal was positive,  
switches 7 and 8 are closed and a voltage which is V  
REF  
more negative than during Auto-Zero is impressed on the  
buffer input. Negative inputs will cause +V to be applied  
REF  
to the buffer input via switches 6 and 9. Thus, the reference  
capacitor generates the equivalent of a (+) reference or a (-)  
reference from the single reference voltage with negligible  
error. The reference voltage returns the output of the integra-  
tor to the zero-crossing point established in Phase I. The  
time, or number of counts, required to do this is proportional  
to the input voltage. Since the Deintegrate phase can be  
twice as long as the Input integrate phase, the input voltage  
Auto-Zero Phase I (Figure 6A)  
During Auto-Zero, the input of the buffer is shorted to analog  
ground thru switch 2, and switch 1 closes a loop around the  
integrator and comparator. The purpose of the loop is to  
charge the Auto-Zero capacitor until the integrator output no  
longer changes with time. Also, switches 4 and 9 recharge  
the reference capacitor to V  
.
required to give a full scale reading = 2V  
.
REF  
REF  
Input Integrate Phase II (Figure 6B)  
NOTE: Once a zero crossing is detected, the system automatically  
reverts to Auto-Zero phase for the leftover Deintegrate time (unless  
RUN/HOLD is manipulated, see RUN/HOLD input in detailed  
description, digital section).  
During input integrate the Auto-Zero loop is opened and the  
analog input is connected to the buffer input thru switch 3.  
(The reference capacitor is still being charged to V  
REF  
during this time.) If the input signal is zero, the buffer,  
integrator and comparator will see the same voltage that  
existed in the previous sate (Auto-Zero). Thus the integrator  
output will not change but will remain stationary during the  
entire Input Integrate cycle. If V is not equal to zero, an  
IN  
unbalanced condition exists compared to the Auto-Zero  
phase, and the integrator will generate a ramp whose slope  
is proportional to V . At the end of this phase, the sign of  
IN  
the ramp is latched into the polarity F/F.  
5-16  
ICL8052/ICL7104, ICL8068/ICL7104  
R
INT  
C
INT  
AN  
I/P  
BUFFER  
INTEGRATOR  
COMP.  
3
-
-
ZERO  
CROSS.  
DET.  
A1  
+
A2  
+
-
D
Q
A3  
+
ZERO  
CROSSING  
F/F  
2
8
6
7
C
AZ  
CL  
9
1
CL  
POL  
-
C
+
V
REF  
4
REF  
FIGURE 6A. PHASE I AUTO-ZERO  
R
INT  
C
INT  
D
POL  
F/F  
CL  
Q
Q
POL  
AN  
I/P  
BUFFER  
INTEGRATOR  
COMP.  
PHASE II  
3
-
-
ZERO  
CROSS.  
DET.  
A1  
+
A2  
+
-
D
A3  
+
ZERO  
CROSSING  
F/F  
2
8
6
7
C
AZ  
CL  
9
1
CL  
POL  
-
C
+
REF  
V
REF  
4
FIGURE 6B. PHASE II INTEGRATE INPUT  
R
C
INT  
INT  
+AN  
I/P  
BUFFER  
INTEGRATOR  
COMP.  
3
-
-
ZERO  
CROSS.  
DET.  
A1  
+
A2  
+
-
D
Q
A3  
+
ZERO  
CROSSING  
F/F  
2
8
6
7
C
AZ  
CL  
9
1
CL  
POL  
-
C
+
V
REF  
4
REF  
FIGURE 6C. PHASE III + DEINTEGRATE  
R
C
INT  
INT  
-AN  
I/P  
BUFFER  
INTEGRATOR  
COMP.  
3
-
-
ZERO  
CROSS.  
DET.  
A1  
+
A2  
+
-
D
Q
A3  
+
ZERO  
CROSSING  
F/F  
2
8
6
7
C
AZ  
CL  
9
1
CL  
POL  
-
C
+
V
REF  
4
REF  
FIGURE 6D. PHASE III DEINTEGRATE  
5-17  
ICL8052/ICL7104, ICL8068/ICL7104  
TABLE 3. THREE-STATE BYTE FORMATS AND ENABLE PINS  
CE/LD  
HBEN  
MBEN  
LBEN  
B5 B4  
LBEN  
ICL7104-16 POL O/R B16 B15 B14 B13 B12 B11 B10 B9  
B8  
B8  
B7  
B7  
B6  
B6  
B3  
B3  
B2  
B2  
B1  
B1  
HBEN  
ICL7104-14  
POL O/R B14 B13 B12 B11 B10 B9  
B5  
B4  
TABLE 4. TYPICAL COMPONENT VALUES (V++ = +15V, V+ = 5V, V- = 5V, V- = -15V, f  
= 200kHz)  
CLOCK  
ICL8052/8068 WITH  
ICL7104-16  
ICL7104-14  
UNIT  
Full scale V  
Buffer Gain  
200  
10  
800  
1
4000  
1
100  
10  
47  
0.1  
1
4000  
1
mV  
V/V  
kΩ  
µF  
IN  
R
C
C
C
100  
0.33  
1
43  
0.33  
1
200  
0.33  
1
180  
0.1  
1
INT  
INT  
AZ  
µF  
10  
1
1
10  
50  
6.1  
1
µF  
REF  
REF  
V
100  
3.1  
400  
12  
2000  
61  
2000  
244  
mV  
µV  
Resolution  
10-50K  
R
C
INT  
INT  
100kΩ  
+15V -15V  
-BUF IN BUF OUT -INT IN INT OUT  
REF  
OUT  
8
7
1
10  
BUFFER  
9
11  
INTEG.  
14  
6
3
INT.  
REF.  
COMP.  
COMP  
OUT  
300pF  
-
-
A1  
+
A2  
-
+5V  
+
A3  
5kΩ  
8068  
2
+
-1.2V  
5
+BUF IN 13  
+INT IN 12  
10kΩ  
-15V  
TO ICL7104  
FIGURE 7. ADDING BUFFER GAIN TO ICL8068  
Buffer Gain  
At the end of the auto-zero interval, the instantaneous noise on the order of 1 to 2µV, allowing full 16-bit use with full scale  
voltage on the auto-zero capacitor is stored, and subtracts inputs of a low as 150mV. Note that at this level, thermoelec-  
from the input voltage while adding to the reference voltage tric EMFs between PC boards, IC pins, etc., due to local  
during the next cycle. The result is that this noise voltage temperature changes can be very troublesome. For further  
effectively is somewhat greater than the input noise voltage discussion, see Application Note AN030.  
of the buffer itself during integration. By introducing some  
voltage gain into the buffer, the effect of the auto-zero noise  
(referred to the input) can be reduced to the level of the  
ICL8052 vs ICL8068  
The ICL8052 offers significantly lower input leakage currents  
than the ICL8068, and may be found preferable in systems  
with high input impedances. However, the ICL8068 has  
substantially lower noise voltage, and for systems where  
system noise is a limiting factor, particularly in low signal  
level conditions, will give better performance.  
inherent buffer noise. This generally occurs with a buffer gain  
of between 3 and 10. Further increase in buffer gain merely  
increases the total offset to be handled by the auto-zero  
loop, and reduces the available buffer and integrator swings,  
without improving the noise performance of the system. The  
circuit  
recommended  
for  
doing  
this  
with  
the  
ICL8068/ICL7104 is shown in Figure 7. With careful layout,  
the circuit shown can achieve effective input noise voltages  
5-18  
ICL8052/ICL7104, ICL8068/ICL7104  
ratiometric errors. A good test for dielectric absorption is to  
use the capacitor with the input tied to the reference.  
Component Value Selection  
For optimum performance of the analog section, care must  
be taken in the selection of values for the integrator capacitor  
and resistor, auto-zero capacitor, reference voltage, and  
conversion rate. These values must be chosen to suit the  
particular application.  
This ratiometric condition should read half scale (100...000)  
and any deviation is probably due to dielectric absorption.  
Polypropylene capacitors give undetectable errors at reason-  
able cost. Polystyrene and polycarbonate capacitors may  
also be used in less critical applications.  
Integrating Resistor  
Auto-Zero and Reference Capacitor  
The integrating resistor is determined by the full scale input  
voltage and the output current of the buffer used to charge  
the integrator capacitor. This current should be small  
compared to the output short circuit current such that  
thermal effects are kept to a minimum and linearity is not  
affected. Values of 5 to 40µA give good results with a  
nominal of 20µA. The exact value may be chosen by:  
The size of the auto-zero capacitor has some influence on  
the noise of the system, a large capacitor giving less noise.  
The reference capacitor should be large enough such that  
stray capacitance to ground from its nodes is negligible.  
NOTE: When gain is used in the buffer amplifier the reference  
capacitor should be substantially larger than the auto-zero capacitor.  
As a rule of thumb, the reference capacitor should be approximately  
the gain times the value of the auto-zero capacitor. The dielectric  
absorption of the reference cap and auto-zero cap are only important  
at power-on or when the circuit is recovering from an overload. Thus,  
smaller or cheaper caps can be used here if accurate readings are  
not required for the first few seconds of recovery.  
full scale voltage (see note)  
R
= ------------------------------------------------------------------------  
INT  
20µA  
NOTE: If gain is used in the buffer amplifier then  
(BufferGain) (full scale voltage)  
R
= ---------------------------------------------------------------------------------------  
INT  
20µA  
Reference Voltage  
Integrating Capacitor  
The analog input required to generate a full scale output is  
V
= 2V  
.
IN  
REF  
The product of integrating resistor and capacitor is selected  
to give 9 volt swing for full scale inputs. This is a compromise  
between possibly saturating the integrator (at +14 volts) due  
to tolerance build-up between the resistor, capacitor and  
clock and the errors a lower voltage swing could induce due  
to offsets referred to the output of the comparator. In  
The stability of the reference voltage is a major factor in the  
overall absolute accuracy of the converter. The resolution of  
the ICL7104 at 16 bits is one part in 65536, or 15.26ppm.  
Thus, if the reference has a temperature coefficient of  
50ppm/C (on board reference) a temperature change of  
1/3C will introduce a one-bit absolute error. For this reason,  
it is recommended that an external high quality reference be  
used where the ambient temperature is not controlled or  
where high-accuracy absolute measurements are being  
made.  
general, the value of C  
is given by:  
INT  
(32768 for - 16)  
(8192 for -14)  
× 20µA × clock period  
= ---------------------------------------------------------------------------------------------------------  
C
INT  
Integrator Output Voltage Swing  
A very important characteristic of the integrating capacitor is  
that it have low dielectric absorption to prevent roll-over or  
COUNTS  
PHASE I  
32768  
8192  
PHASE II  
32768  
PHASE III  
65536  
-16  
-14  
8192  
16384  
POLARITY  
DETECTED  
ZERO CROSSING  
OCCURS  
INTEGRATOR  
OUTPUT  
ZERO CROSSING  
DETECTED  
AZ PHASE I  
INT PHASE II  
DEINT PHASE III  
AZ  
INTERNAL CLOCK  
INTERNAL LATCH  
STATUS OUTPUT  
AFTER ZERO CROSSING,  
ANALOG SECTION WILL  
BE IN AUTOZERO  
NUMBER OF COUNTS TO ZERO CROSSING  
PROPORTIONAL TO V  
IN  
CONFIGURATION  
FIGURE 8. CONVERSION TIMING  
5-19  
ICL8052/ICL7104, ICL8068/ICL7104  
ensure a low level when the pin is left open), the converter is  
Detailed Description  
in its “Direct” output mode, where the output data is directly  
accessible under the control of the chip and byte enable  
inputs. When the MODE input is pulsed high, the converter  
enters the UART handshake mode and outputs the data in  
three bytes for the 7104-16 or two bytes for the 7104-14 then  
returns to “direct” mode. When the MODE input is left high,  
the converter will output data in the handshake mode at the  
end of every conversion cycle. (See section entitled “Hand-  
shake Mode” for further details).  
DIGITAL SECTION  
The digital section includes the clock oscillator circuit, a  
16-bit or 14-bit binary counter with output latches and TTL-  
compatible three-state output drivers, polarity, over-range  
and control logic and UART handshake logic, as shown in  
the Block Diagram Figure 9 (16-bit version shown).  
Throughout this description, logic levels will be referred to as  
“low” or “high”. The actual logic levels are defined under  
“ICL7104 Electrical Specification”. For minimum power con-  
sumption, all inputs should swing from GND (low) to V+  
(high). Inputs driven from TTL gates should have 3 - 5kΩ  
pullup resistors added for maximum noise immunity.  
STATUS Output  
During a conversion cycle, the STATUS output goes high at  
the beginning of Input Integrate (Phase II), and goes low  
one-half clock period after new data from the conversion has  
been stored in the output latches. See Figure 8 for details of  
this timing. This signal may be used as a “data valid” flag  
(data never changes while STATUS is low) to drive inter-  
rupts, or for monitoring the status of the converter.  
MODE Input  
The MODE input is used to control the output mode of the  
converter. When the MODE pin is connected to GND or left  
open (this input is provided with a pulldown resistor to  
TABLE 5. THREE-STATE BYTE FORMATS AND ENABLE PINS  
CE/LD  
HBEN  
MBEN  
LBEN  
B5 B4  
LBEN  
B5 B4  
ICL7104-16 POL O/R B16 B15 B14 B13 B12 B11 B10 B9  
B8  
B8  
B7  
B7  
B6  
B6  
B3  
B3  
B2  
B2  
B1  
B1  
HBEN  
ICL7104-14  
POL O/R B14 B13 B12 B11 B10 B9  
18/16 THREE-STATE OUTPUTS  
18/16 LATCHES  
HBEN  
MBEN  
(-16 ONLY)  
INITIAL  
CLEAR  
18/16 BIT COUNTER  
LATCH  
LBEN  
CLOCK  
COMP OUT  
CE/LD  
TO  
AZ  
CONVERSION  
CONTROL  
LOGIC  
OSCILLATOR  
AND CLOCK  
CIRCUITRY  
HANDSHAKE  
LOGIC  
ANALOG  
INT  
DEINT(+)  
DEINT(-)  
SECTION  
2
26  
R/H  
24  
23  
25  
21  
27  
SEND  
STATUS  
CLOCK CLOCK CLOCK  
(1) (2) (3)  
MODE  
FIGURE 9. DIGITAL SECTION  
5-20  
ICL8052/ICL7104, ICL8068/ICL7104  
OPTION -14  
-16  
MIN  
7161 28665  
8185 32761  
MAX  
DEINT TERMINATED  
AT ZERO CROSSING  
DETECTION  
STATIC IN  
HOLD STATE  
INT  
PHASE  
INTEGRATOR  
OUTPUT  
7 COUNTS  
INTERNAL  
CLOCK  
INTERNAL  
LATCH  
STATUS  
OUTPUT  
RUN/HOLD  
INPUT  
FIGURE 10. RUN/HOLD OPERATION  
Run/Hold Input  
Integrate (Phase II) begins seven clock periods after the high  
level is detected.  
When the Run/Hold input is connected to V+ or left open  
(this input has pullup resistor to ensure a high level when the  
pin is left open), the circuit will continuously perform  
conversion cycles, updating the output latches at the end of  
every Deintegrate (Phase III) portion of the conversion cycle  
(See Figure 8). (See under “Handshake Mode” for  
exception.) In this mode of operation, the conversion cycle  
will be performed in 131,072 for 7104-16 and 32768 for  
7104-14 clock periods, regardless of the resulting value.  
Direct Mode  
When the MODE pin is left at a low level, the data outputs  
[bits 1 through 8 low order byte, See Table 3 for format of  
middle (-16) and high order bytes] are accessible under  
control of the byte and CHIP ENABLE terminals as inputs.  
These ENABLE inputs are all active low, and are provided  
with pullup resistors to ensure an inactive high level when  
left open. When the CHIP ENABLE input is low, taking a byte  
ENABLE input low will allow the outputs of that byte to  
become active (three-stated on). This allows a variety of  
parallel data accessing techniques to be used. The timing  
requirements for these outputs are shown under AC  
Specifications and Table 1.  
If Run/Hold goes low at any time during Deintegrate (Phase  
III) after the zero crossing has occurred, the circuit will  
immediately terminate Deintegrate and jump to Auto-Zero.  
This feature can be used to eliminate the time spent in  
Deintegrate after the zero-crossing. If Run/Hold stays or  
goes low, the converter will ensure a minimum Auto-Zero  
time, and then wait in Auto-Zero until the Run/Hold input  
goes high. The converter will begin the Integrate (Phase II)  
portion of the next conversion (and the STATUS output will  
go high) seven clock periods after the high level is detected  
at Run/Hold. See Figure 10 for details.  
It should be noted that these control inputs are asynchro-  
nous with respect to the converter clock - the data may be  
accessed at any time. Thus it is possible to access the data  
while it is being updated, which could lead to scrambled  
data. Synchronizing the access of data with the conversion  
cycle by monitoring the STATUS output will prevent this.  
Data is never updated while STATUS is low. Also note the  
potential bus conflict described under “Initial Clear Circuitry”.  
Using the Run/Hold input in this manner allows an easy  
“convert on demand” interface to be used. The converter  
may be held at idle in Auto-Zero with Run/Hold low. When  
Run/Hold goes high the conversion is started, and when the  
STATUS output goes low the new data is valid (or trans-  
ferred) to the UART - see Handshake Mode). Run/Hold may  
now go low terminating Deintegrate and ensuring a minimum  
Auto-Zero time before stopping to wait for the next  
conversion. Alternately, Run/Hold can be used to minimize  
conversion time by ensuring that it goes low during Deinte-  
grate, after zero crossing, and goes high after the hold point  
is reached. The required activity on the Run/Hold input can  
be provided by connecting it to the CLOCK3 (-14), CLOCK2  
(-16) Output. In this mode the conversion time is dependent  
on the input value measured. Also refer to Intersil Application  
Bulletin A030 for a discussion of the effects this will have on  
Auto-Zero performance.  
Handshake Mode  
The handshake output mode is provided as an alternative  
means of interfacing the ICL7104 to digital systems, where  
the A/D converter becomes active in controlling the flow of  
data instead of passively responding to chip and byte  
ENABLE inputs. This mode is specifically designed to allow  
a direct interface between the ICL7104 and industry-stan-  
dard UARTs (such as the Intersil CMOS UARTs, IM6402/3)  
with no external logic required. When triggered into the  
handshake mode, the ICL7104 provides all the control and  
flag signals necessary to sequence the three (ICL7106-16)  
or two (ICL7104-14) bytes of data into the UART and initiate  
their transmission in serial form. This greatly eases the task  
and reduces the cost of designing remote data acquisition  
stations using serial data transmission to minimize the  
number of lines to the central controlling processor.  
If the Run/Hold input goes low and stays low during Auto-  
Zero (Phase I), the converter will simply stop at the end of  
the Auto-Zero and wait for Run/Hold to go high. As above,  
5-21  
ICL8052/ICL7104, ICL8068/ICL7104  
Entry into the handshake mode will occur if either of two LBEN while the remaining byte outputs (see Table 3) are  
conditions are fulfilled; first, if new data is latched (i.e., a activated. The handshake mode is terminated when all bytes  
conversion is completed) while MODE pin (pin 27) is high, in are sent (3 for -16, 2 for -14).  
which case entry occurs at the end of the latch cycle; or  
Figure 12 shows an output sequence where the SEN input is  
secondly, if the MODE pin goes from low to high, when entry  
used to delay portions of the sequence, or handshake, to  
will occur immediately (if new data is being latched, entry is  
ensure correct data transfer. This timing diagram shows the  
delayed to the end of the latch cycle). While in the  
relationships that occur using an industry-standard IM6402/3  
handshake mode, data latching is inhibited, and the MODE  
CMOS UART to interface to serial data channels. In this  
pin is ignored. (Note that conversion cycles will continue in  
interface, the SEN input to the ICL7104 is driven by the  
the normal manner). This allows versatile initiation of hand-  
TBRE (Transmitter Buffer Register Empty) output of the  
shake operation without danger of false data generation; if  
UART, and the CE/LD terminal of the ICL7104 drives the  
the MODE pin is held high, every conversion (other than  
TBRL (Transmitter Buffer Register Load) input to the UART.  
those completed during handshake operations) will start a  
The data outputs are paralleled into the eight Transmitter  
new handshake operation, while if the MODE pin is pulsed  
Buffer Register inputs.  
high, handshake operations can be obtained “on demand.”  
Assuming the UART Transmitter Buffer Register is empty,  
When the converter enters the handshake mode, or when  
the SEN input will be high when the handshake mode is  
the MODE input is high, the chip and byte ENABLE termi-  
entered after new data is stored. The CE/LD and HBEN ter-  
nals become TTL-compatible outputs which provide the con-  
minals will go low after SEN is sensed, and the high order  
trol signals for the output cycle. The Send ENABLE pin  
byte outputs become active. When CE/LD goes high at the  
(SEN) (pin 29) is used as an indication of the ability of the  
end of one clock period, the high order byte data is clocked  
external device to receive data. The condition of the line is  
into the UART Transmitter Buffer Register. The UART TBRE  
sensed once every clock pulse, and if it is high, the next (or  
output will now go low, which halts the output cycle with the  
first) byte is enabled on the next rising CLOCK 1 (pin 25)  
HBEN output low, and the high order byte outputs active.  
clock edge, the corresponding byte ENABLE line goes low,  
When the UART has transferred the data to the Transmitter  
and the CHIP ENABLE / LOAD pin (pin 30) (CE/LD) goes  
Register and cleared the Transmitter Buffer Register, the  
low for one full clock pulse only, returning high.  
TBRE returns high. On the next ICL7104 internal clock high  
On the next falling CLOCK 1 clock pulse edge, if SEN to low edge, the high order byte outputs are disabled, and  
remains high, or after it goes high again, the byte output one-half internal clock later, the HBEN output returns high.  
lines will be put in the high impedance state (or three-stated At the same time, the CE/LD and MBEN (-16) or LBEN out-  
off). One half pulse later, the byte ENABLE pin will be puts go low, and the corresponding byte outputs become  
cleared high, and (unless finished) the CE/LD and the next active. Similarly, when the CE/LD returns high at the end of  
byte ENABLE pin will go low. This will continue until all three one clock period, the enabled data is clocked into the UART  
(2 in the case of the 14-bit device) bytes have been sent. Transmitter Buffer Register, and TBRE again goes low.  
The bytes are individually put into the low impedance state When TBRE returns to a high it will be sensed on the next  
i.e.: three-stated on during most of the time that their byte ICL7104 internal clock high to low edge, disabling the data  
ENABLE pin is (active) low. When receipt of the last byte has outputs. For the 16-bit device, the sequence is repeated for  
been acknowledged by a high SEN, the handshake mode LBEN. One-half internal clock later, the handshake mode will  
will be cleared, re-enabling data latching from conversion, be cleared, and the chip and byte ENABLE terminals return  
and recognizing the condition of the MODE pin again. The high and stay active (as long as MODE stays high).  
byte and CHIP ENABLE will be three-stated off, if MODE is  
With the MODE input remaining high as in these examples,  
low, but held by their (weak) pullups. These timing relation-  
the converter will output the results of every conversion  
ships are illustrated in Figures 11, 12, and 13, and Table 2.  
except those completed during a handshake operation. By  
Figure 11 shows the sequence of the output cycle with SEN triggering the converter into handshake mode with a low to  
held high. The handshake mode (Internal MODE high) is high edge on the MODE input, handshake output sequences  
entered after the data latch pulse (since MODE remains high may be performed on demand. Figure 13 shows a  
the CE/LD, LBEN, MBEN and HBEN terminals are active as handshake output sequence triggered by such an edge. In  
outputs). The high level at the SEN input is sensed on the addition, the SEN input is shown as being low when the con-  
same high to low internal clock edge. On the next to high verter enters handshake mode. In this case, the whole out-  
internal clock edge, the CE/LD and the HBEN outputs put sequence is controlled by the SEN input, and the  
assume a low level and the high-order byte (POL and OR, sequence for the first (high order) byte is similar to the  
and except for -16, Bits 9 - 14) outputs are enabled. The sequence for the other bytes. This diagram also shows the  
CE/LD output remains low for one full internal clock period output sequence taking longer than a conversion cycle. Note  
1
only, the data outputs remain active for 1 / internal clock that the converter still makes conversions, with the STATUS  
2
periods, and the high byte ENABLE remains low for two output and Run/Hold input functioning normally. The only  
clock periods. Thus the CE/LD output low level or low to high difference is that new data will not be latched when in  
edge may be used as a synchronizing signal to ensure valid handshake mode, and is therefore lost.  
data, and the byte ENABLE as an output may be used as a  
byte identification flag. With SEN remaining high the con-  
verter completes the output cycle using CE/LD, MBEN and  
5-22  
ICL8052/ICL7104, ICL8068/ICL7104  
ZERO-CROSSING OCCURS  
INTEGRATOR OUTPUT  
INTERNAL CLOCK  
ZERO-CROSSING DETECTED  
FOR -16 MBEN SEQUENCE INSERTED HERE  
INTERNAL LATCH  
STATUS OUTPUT  
MODE INPUT  
UART  
NORM  
TERMINATES  
UART MODE  
INTERNAL MODE  
SEN  
SENSED  
SEN  
SENSED  
SEN INPUT  
CE/LOAD  
HBEN  
MODE LOW NOT IN HANDSHAKE MODE  
DISABLES OUTPUTS CE/LD, HBEN, MBEN, LBEN  
HIGH BYTE DATA  
DATA VALID  
LBEN  
LOW BYTE DATA  
LBEN  
DATA VALID  
MODE HIGH ACTIVATES  
CE/LD, HBEN, LBEN  
LOW BYTE DATA  
DATA VALID  
THREE-STATE WITH PULLUP  
DON’T CARE  
THREE-STATE HIGH IMPEDANCE  
FIGURE 11. HANDSHAKE WITH SEN HELD POSITIVE  
ZERO-CROSSING OCCURS  
ZERO-CROSSING DETECTED  
INTEGRATOR  
OUTPUT  
INTERNAL  
CLOCK  
INTERNAL  
LATCH  
STATUS  
OUTPUT  
MODE  
INPUT  
UART  
NORM  
INTERNAL  
MODE  
SEN INPUT  
(UART TBRE)  
CE/LOAD  
(UART TBRL)  
HBEN  
HIGH BYTE  
DATA  
DATA VALID  
MBEN  
MIDDLE  
BYTE DATA  
DATA VALID  
LBEN  
LOW BYTE  
DATA  
DATA VALID  
DON’T CARE  
THREE-STATE HIGH IMPEDANCE  
FIGURE 12. HANDSHAKE - TYPICAL UART INTERFACE TIMING  
5-23  
ICL8052/ICL7104, ICL8068/ICL7104  
POSITIVE TRANSITION  
CAUSES ENTRY INTO  
UART MODE  
ZERO-CROSSING OCCURS  
ZERO-CROSSING DETECTED  
INTERNAL  
CLOCK  
LATCH PULSE INHIBITED  
IN UART MODE  
INTERNAL  
LATCH  
STATUS OUTPUT UNAFFECTED  
BY UART MODE  
STATUS  
OUTPUT  
DEINT PHASE III  
MODE  
INPUT  
UART  
INTERNAL  
NORM  
MODE  
SEN INPUT  
CE/LOAD  
AS OUTPUT  
HBEN  
HIGH BYTE  
DATA  
DATA VALID  
MBEN  
MIDDLE  
DATA VALID  
BYTE DATA  
LBEN  
LOW BYTE  
DATA  
DATA VALID  
DON’T CARE  
THREE-STATE HIGH IMPEDANCE  
THREE-STATE WITH PULLUP  
FIGURE 13. HANDSHAKE TRIGGERED BY MODE  
Initial Clear Circuitry  
The internal logic of the 7104 is supplied by an internal  
regulator between V++ and Digital Ground. The regulator  
includes a low-voltage detector that will clear various  
registers. This is intended to ensure that on initial power-up,  
the control logic comes up in Auto-Zero, with the 2nd, 3rd,  
and 4th MSB bits cleared, and the “mode” F/F cleared (i.e.,  
in “direct” mode). This, however, will also clear these regis-  
ters if the supply voltage “glitches” to a low enough value.  
Additionally, if the supply voltage comes up too fast, this  
clear pulse may be too narrow for reliable clearing. In gen-  
eral, this is not a problem, but if the UART internal “MODE”  
F/F should come up set, the byte and chip ENABLE lines will  
become active outputs. In many systems this could lead to  
bus conflicts, especially in non-handshake systems. In any  
case, SEN should be high (held high for non-handshake sys-  
tems) to ensure that the MODE F/F will be cleared as fast as  
possible (see Figure 11 for timing). For these and other  
reasons, adequate supply bypass is recommended.  
25  
24  
26  
R
CLOCK  
1
CLOCK  
2
CLOCK  
3
C
f
= 0.45/RC  
OSC  
NOTE: Clock 3 has the same output drive as the bit outputs.  
FIGURE 14. RC OSCILLATOR (ICL7104-14 ONLY)  
As a result of pin count limitations, the ICL7104-16 has only  
CLOCK 1 and CLOCK 2 available, and cannot be used as  
an RC oscillator. The internal clock will correspond to the  
inverse of the signal on CLOCK 2. Figure 15 shows a crystal  
oscillator circuit, which can be used with both 7104 versions.  
If an external clock is to be used, it should be applied to  
CLOCK 1. This internal clock will correspond to the signal  
applied to this pin.  
Oscillator  
The ICL7104-14 is provided with a versatile three terminal  
oscillator to generate the internal clock. The oscillator may  
be overdriven, or may be operated as an RC or crystal  
oscillator.  
V+  
Figure 14 shows the oscillator configured for RC operation.  
The internal clock will be of the same frequency and phase  
as the voltage on the CLOCK 3 pin. The resistor and  
capacitor should be connected as shown. The circuit will  
oscillate at a frequency given by f = 0.45/RC. A 50 - 100kΩ  
resistor is recommended for useful ranges of frequency. For  
optimum 60Hz line rejection, the capacitor value should be  
chosen such that 32768 (-16), 8192 (-14) clock periods is  
close to an integral multiple of the 60Hz period.  
25  
26  
CLOCK  
1
CLOCK  
2
CAPACITOR VALUE  
DEPENDS ON CRYSTAL  
TYP 0-30pF  
CRYSTAL  
FIGURE 15. CRYSTAL OSCILLATOR  
5-24  
ICL8052/ICL7104, ICL8068/ICL7104  
Application Notes  
Power Supply Sequencing  
Because of the nature of the CMOS process used to Some application notes that may be found useful are listed  
fabricate the ICL7104, and the multiple power supplies here:  
used, there are certain conditions of these supplies under  
which a disabling and potentially damaging SCR action can  
AnswerFAX  
DOC. #  
NOTE #  
DESCRIPTION  
occur. All of these conditions involve the V+ supply (Norm  
+5V) being more positive than the V++ supply. If there is  
any possibility of this occurring during start-up, shut down,  
under transient conditions during operation, or when insert-  
ing a PC board into a “hot” socket, etc., a diode should be  
placed between V+ and V++ to prevent it. A germanium or  
Schottky rectifier diode would be best, but in most cases a  
silicon rectifier is adequate.  
AN016 “Selecting A/D Converters”, by Dave  
Fullagar  
9016  
AN017 “The Integrating A/D Converter”, by Lee  
Evans  
9017  
9018  
AN018 “Do’s and Don’ts of Applying A/D  
Converters,” by Peter Bradshaw and Skip  
Osgood  
Analog and Digital Grounds  
AN030 “Building a Battery-Operated Auto  
Ranging DVM with the ICL7106”  
9030  
Extreme care must be taken to avoid ground loops in the  
layout of ICL8068 or ICL8052/7104 circuits, especially in  
16-bit and high sensitivity circuits. It is most important that  
return currents from digital loads are not fed into the analog  
ground line. A recommended connection sequence for the  
ground lines is shown in Figure 16.  
REF  
VOLTAGE  
BUFF  
OUT  
EXTERNAL  
REFERENCE  
(IF USED)  
+15V  
-15V  
BUFF  
-IN  
(IF USED)  
V
PIN 35  
ICL7104  
AN GND  
PIN 35  
ICL7104  
AN GND  
REF  
I/P  
FILTER  
CAP  
+
V
C
IN  
-
AZ  
8068 PIN 2  
COMP  
BOARD  
EDGE  
SUPPLY  
RETURN  
DIGITAL  
LOGIC  
DIG GND  
ICL7104  
PIN 2  
DEVICE PIN  
+5V SUPPLY BYPASS CAPACITOR(S)  
FIGURE 16. GROUNDING SEQUENCE  
5-25  
ICL8052/ICL7104, ICL8068/ICL7104  
ICL7104 with ICL8052/8068 Integrating A/D Converter Equations  
• Oscillator  
• Integrate Capacitor  
(t  
)(I  
)
CRYSTAL or RC (RC on -14 Part Only)  
INT INT  
V
C
= -------------------------------  
INT  
f
f
(Typ) 200kHz  
= 0.45/RC (ICL7104-14 Only)  
INT  
OSC  
OSC  
• Integrator Output Voltage  
C
> 50pF and R > 50K  
OSC  
• Oscillator Period  
= 1/f  
OSC  
(t  
)(I  
)
INT INT  
V
= -------------------------------  
INT  
C
INT  
t
OSC  
OSC  
• Integration Clock Frequency  
= f  
V
(Typ) = 9V  
INT  
• Output Count  
f
CLOCK  
OSC  
V
IN  
• Integration Period  
--------------  
Count = 8192 ×  
(7104-14)  
V
REF  
t
t
= 8192 x t  
OSC  
(7104-14)  
(7104-16)  
INT  
INT  
V
= 32768 x t  
IN  
OSC  
--------------  
Count = 32768 ×  
(7104-16)  
V
REF  
• 60/50Hz Rejection Criterion  
/t or t /t = Integer  
• Output Type:  
t
INT 60Hz INT 50Hz  
Binary Amplitude with Polarity and Overrange Bits.  
• Optimum Integration Current  
= 20µA  
• Power Supply: ±15V, +5V  
I
INT  
• Full Scale Analog Input Voltage  
(Typ) = 200mV to 2V = 2V  
V++ = +15V  
V- = -15V  
V+ = +5V  
V
INFS  
REF  
V
1.75V  
REF  
If V  
• Integrate Resistor  
not used, float output pin.  
REF  
(BufferGain) × V  
• Auto Zero Capacitor Values  
INFS  
R
= ------------------------------------------------------------  
INT  
I
INT  
0.01µF < C < 1µF  
AZ  
• Reference Capacitor Value  
C
= (Buffer Gain) x C  
REF  
AZ  
AUTOZERO  
(COUNT)  
INTEGRATE  
(FIXED COUNT)  
DEINTEGRATE  
(COUNT)  
ICL7104 - 14  
ICL7104 - 16  
24,576 - 8,193  
98,304 - 32,769  
8192  
32768  
0 - 16383  
0 - 65535  
CONVERSION TIME (IN CONTINUOUS MODE):  
32,768 t  
131,072 t  
(7104 - 14)  
(7104 - 16)  
OSC  
OSC  
FIGURE 17.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
5-26  

相关型号:

ICL7104-12CDL

Data Acquisition
INTERSIL

ICL7104-12CJL

Data Acquisition
INTERSIL

ICL7104-12CPL

Data Acquisition
INTERSIL

ICL7104-14CDL

Data Acquisition
INTERSIL

ICL7104-14CJL

Data Acquisition
INTERSIL

ICL7104-14CPL

14-Bit/16-Bit, Microprocessor- Compatible, 2-Chip, A/D Converter
INTERSIL

ICL7104-16CDL

Data Acquisition
INTERSIL

ICL7104-16CJL

Data Acquisition
INTERSIL

ICL7104-16CPL

14-Bit/16-Bit, Microprocessor- Compatible, 2-Chip, A/D Converter
INTERSIL

ICL7106

3 Digit A/D Converter
MAXIM

ICL7106

3 1/2 Digit, LCD/LED Display, A/D Converters
INTERSIL

ICL7106

True Differential input and Reference, Direct Display
ESTEK