HSP43891GC-25 [INTERSIL]

Digital Filter; 数字滤波器
HSP43891GC-25
型号: HSP43891GC-25
厂家: Intersil    Intersil
描述:

Digital Filter
数字滤波器

外围集成电路 LTE 时钟
文件: 总18页 (文件大小:145K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HSP43891  
Data Sheet  
May 1999  
File Number 2785.5  
Digital Filter  
Features  
The HSP43891 is a video-speed Digital Filter (DF)  
designed to efficiently implement vector operations such as  
FIR digital filters. It is comprised of eight filter cells  
cascaded internally and a shift and add output stage, all in  
a single integrated circuit. Each filter cell contains a 9x9  
two’s complement multiplier, three decimation registers and  
a 26-bit accumulator. The output stage contains an  
additional 26-bit accumulator which can add the contents of  
any filter cell accumulator to the output stage accumulator  
shifted right by 8-bits. The HSP43891 has a maximum  
sample rate of 30MHz. The effective multiply-accumulate  
(mac) rate is 240MHz.  
• Eight Filter Cells  
• 0MHz to 30MHz Sample Rate  
• 9-Bit Coefficients and Signal Data  
• 26-Bit Accumulator per Stage  
• Filter Lengths Over 1000 Taps  
• Expandable Coefficient Size, Data Size and Filter Length  
• Decimation by 2, 3 or 4  
Applications  
• 1-D and 2-D FIR Filters  
• Radar/Sonar  
The HSP43891 DF can be configured to process expanded  
coefficient and word sizes. Multiple DFs can be cascaded  
for larger filter lengths without degrading the sample rate or  
a single DF can process larger filter lengths at less than  
30MHz with multiple passes. The architecture permits  
processing filter lengths of over 1000 taps with the  
guarantee of no overflows. In practice, most filter  
coefficients are less than 1.0, making even larger filter  
lengths possible. The DF provides for 8-bit unsigned or  
9-bit two’s complement arithmetic, independently  
selectable for coefficients and signal data.  
• Digital Video  
• Adaptive Filters  
• Echo Cancellation  
• Complex Multiply-Add  
- Sample Rate Converters  
Ordering Information  
TEMP.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
PKG. NO.  
HSP43891VC-20  
HSP43891VC-25  
HSP43891VC-30  
HSP43891JC-20  
HSP43891JC-25  
HSP43891JC-30  
HSP43891GC-20  
HSP43891GC-25  
HSP43891GC-30  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
100 Lead MQFP Q100.14x20  
100 Lead MQFP Q100.14x20  
100 Lead MQFP Q100.14x20  
84 Lead PLCC N84.1.15  
84 Lead PLCC N84.1.15  
84 Lead PLCC N84.1.15  
85 Pin CPGA G85.A  
Each DF filter cell contains three resampling or decimation  
registers which permit output sample rate reduction at rates  
1
1
1
of / , / or / the input sample rate. These registers also  
2
3
4
provide the capability to perform 2-D operations such as  
matrix multiplication and NxN spatial  
correlations/convolutions for image processing applications.  
85 Pin CPGA G85.A  
85 Pin CPGA G85.A  
Block Diagram  
V
V
DIN0 - DIN8  
9
CC  
SS  
DIENB  
CIENB  
5
DCM0 - 1  
ERASE  
DF  
FILTER  
CELL 0  
DF  
FILTER  
CELL 1  
DF  
FILTER  
CELL 2  
DF  
FILTER  
CELL 3  
DF  
FILTER  
CELL 4  
DF  
FILTER  
CELL 5  
DF  
FILTER  
CELL 6  
DF  
FILTER  
CELL 7  
9
9
9
9
9
9
9
9
9
CIN0 - 8  
COUT0 - 8  
COENB  
RESET  
CLK  
ADRO - 2  
26  
26  
26  
26  
26  
26  
26  
5
5
26  
3
MUX  
26  
RESET  
CLK  
ADR0, ADR1, ADR2  
2
OUTPUT  
STAGE  
SHADD  
SENBL  
SENBH  
2
26  
SUM0 - 25  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
1
HSP43891  
Pinout  
85 PIN GRID ARRAY (PGA)  
1
2
3
4
5
6
7
8
9
10  
11  
1
2
3
4
5
6
7
8
9
10  
11  
V
V
V
SS  
L
A
B
RESET DIN7 DIN6 DIN3 DIN0 CIN8  
COENB  
CC  
V
CC  
SS  
DCM1SUM23 SUM22 SUM21 SUM18 SUM14 V  
SUM13  
V
SUM11 SUM9  
CC  
SS  
K
CIENB  
V
COUT7 COUT8 ERASE DIN8 DIN1 DIN2  
ALIGN  
CIN7 CIN6 CIN4  
CIN5 CIN3  
CC  
SENBH SUM24  
V
V
SUM19  
V
SUM15 SUM12 SUM10 SUM8 SUM6  
SS  
CC  
SS  
J
DIENB  
DIN5 DIN4  
C
D
E
COUT5 COUT6  
PIN  
V
SUM25  
SUM20 SUM17 SUM16  
SUM7  
V
SS  
CC  
H
V
COUT3 COUT4  
CIN2  
CIN0  
CC  
ADR1 ADR0  
SUM5 SUM4  
G
F
SENBL  
COUT1  
V
COUT2  
CIN1  
SS  
ADR2 DCM0 CLK  
SUM1 SUM3 SUM2  
HSP43891  
HSP43891  
TOP VIEW  
PINS DOWN  
BOTTOM VIEW  
PINS UP  
V
V
V
CC  
F
SS COUT0 SHADD  
SS  
SUM0  
SUM1  
V
COUT0 SHADD  
SUM0  
V
V
SS  
SS  
CC  
E
G
ADR2 DCM0 CLK  
ADR1 ADR0  
SUM3 SUM2  
COUT1  
V
COUT2  
CIN1 CIN0 SENBL  
SS  
D
H
J
SUM5 SUM4  
V
V
CIN2  
COUT3 COUT4  
COUT5COUT6  
CC  
C
B
V
SUM25  
SUM20 SUM17 SUM16  
SUM7  
SS  
CC  
ALIGN  
PIN  
DIENB DIN5 DIN4  
CIN5 CIN3  
K
SENBH SUM24  
V
V
SUM19  
V
SUM15 SUM12 SUM10 SUM8 SUM6  
CC  
SS  
SS  
V
COUT7 COUT8 ERASE DIN8 DIN1 DIN2 CIENB CIN7 CIN6 CIN4  
CC  
A
L
DCM1 SUM23 SUM22 SUM21 SUM18 SUM14  
SUM13  
SUM11 SUM9  
V
V
SS  
CC  
V
COENB  
V
DIN7 DIN6 DIN3 DIN0 CIN8  
V
V
SS  
RESET  
SS  
CC  
CC  
84 LEAD PLASTIC LEADED CHIP CARRIER (PLCC)  
11 10 9  
8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
COUT6  
COUT7  
SUM23  
SUM22  
V
V
SS  
CC  
COUT8  
COENB  
SUM21  
SUM20  
SUM19  
SUM18  
V
CC  
ERASE  
RESET  
DIENB  
DIN8  
DIN7  
DIN6  
DIN5  
DIN4  
DIN3  
DIN2  
V
SS  
SUM17  
SUM16  
HSP43891  
TOP VIEW  
V
CC  
SUM15  
SUM14  
SUM13  
SUM12  
V
SS  
SUM11  
SUM10  
SUM9  
SUM8  
SUM7  
DIN1  
DIN0  
CIENB  
CIN8  
V
CC  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
2
HSP43891  
Pinout (Continued)  
100 LEAD MQFP  
TOP VIEW  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
80  
COUT4  
COUT5  
1
2
DCM1  
SUM24  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
V
V
3
4
5
6
7
8
9
V
V
CC  
SS  
CC  
SS  
COUT6  
COUT7  
V
V
COUT8  
COENB  
V
V
SUM23  
SUM22  
V
SS  
CC  
V
SS  
CC  
SUM21  
SUM20  
SUM19  
SUM18  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
CC  
CC  
ERASE  
RESET  
DIENB  
DIN8  
DIN7  
DIN6  
DIN5  
DIN4  
DIN3  
DIN2  
DIN1  
DIN0  
CIENB  
CIN8  
V
CIN7  
CIN6  
V
V
V
SS  
SS  
SUM17  
SUM16  
V
V
CC  
CC  
SUM15  
SUM14  
SUM13  
SUM12  
V
SS  
SUM11  
SUM10  
SUM9  
SUM8  
SUM7  
NC  
CC  
SUM6  
SS  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
3
HSP43891  
Pin Description  
PIN  
SYMBOL  
NUMBER  
TYPE  
NAME AND FUNCTION  
V
B1, J1, A3, K4,  
L7, A10, F10,  
D11  
+5 power supply input.  
CC  
V
A1, F1, E2, K3,  
K6, L9, A11,  
F11, J11  
Power supply ground input.  
SS  
CLK  
G3  
I
I
The CLK input provides the DF system sample clock. The maximum clock frequency is 30MHz.  
DIN0-8  
A5-8, B5-7, C6,  
C7  
These nine inputs are the data sample input bus. Nine-bit data samples are synchronously loaded  
through these pins to the X register of each filter cell of the DF simultaneously. The DIENB signal en-  
ables loading, which is synchronous on the rising edge of the clock signal.  
The data samples can be either 9-bit two’s complement or 8-bit unsigned values. For 9-bit two’s com-  
plement values, DIN8 is the sign bit. For 8-bit unsigned values, DIN8 must be held at logical zero.  
DIENB  
CIN0-8  
C5  
I
I
I
A low on this input enables the data sample input bus (DIN0-8) to all the filter cells. A rising edge of the  
CLK signal occurring while DIENB is low will load the X register of every filter cell with the 9-bit value  
present on DIN0-8. A high on this input forces all the bits of the data sample input bus to zero; a rising  
CLK edge when DIENB is high will load the X register of every filter cell with all zeros. This signal is  
latched inside the device, delaying its effect by one clock internal to the device. Therefore it must be low  
during the clock cycle immediately preceding presentation of the desired data on the DIN0-8 inputs. De-  
tailed operation is shown in later timing diagrams.  
A9, B9-11, C10,  
C11, D10, E9,  
E10  
These nine inputs are used to input the 9-bit coefficients. The coefficients are synchronously loaded  
into the C register of filter CELL0 if a rising edge of CLK occurs while CIENB is low. The CIENB signal  
is delayed by one clock as discussed below.  
The coefficients can be either 9-bit two’s complement or 8-bit unsigned values. For 9-bit two’s comple-  
ment values, CIN8 is the sign bit. For 8-bit unsigned values, CIN8 must be held at logical zero.  
ALIGN PIN  
CIENB  
C3  
B8  
Used for aligning chip on socket or printed circuit board. This pin must be left as a no connect in circuit.  
A low on this input enables the C register of every filter cell and the D (decimation) registers of every  
filter cell according to the state of the DCM0-1 inputs. A rising edge of the CLK signal occurring while  
CIENB is low will load the C register and appropriate D registers with the coefficient data present at  
their inputs. This provides the mechanism for shifting coefficients from cell to cell through the device. A  
high on this input freezes the contents of the C register and the D registers, ignoring the CLK signal.  
This signal is latched and delayed by one clock internal to the DF. Therefore it must be low during the  
clock cycle immediately preceding presentation of the desired coefficient on the CIN0-8 inputs. Detailed  
operation is shown in later timing diagrams.  
COUT0-8 B2, B3, C1, D1,  
O
These nine three-state outputs are used to output the 9-bit coefficients from filter CELL7. These outputs  
are enabled by the COENB signal low. These outputs may be tied to the CIN0-8 inputs of the same DF  
to recirculate to coefficients, or they may be tied to the CIN0-8 inputs of another DF to cascade DFs for  
longer filter lengths.  
E1, C2, D2, F2,  
E3  
COENB  
DCM0-1  
A2  
I
I
A low on the COENB input enables the COUT0-8 outputs. A high on this input places all these outputs  
in their high impedance state.  
L1, G2  
These two inputs determine the use of the internal decimation registers as follows:  
DCM1  
DCM0  
DECIMATION FUNCTION  
Decimation registers not used  
0
0
1
1
0
1
0
1
One decimation register is used  
Two decimation registers are used  
Three decimation registers are used  
The coefficients pass from cell to cell at a rate determined by the number of decimation registers used.  
When no decimation registers are used, coefficients move from cell to cell on each clock. When one  
decimation register is used, coefficients move from cell to cell on every other clock, etc. These signals  
are latched and delayed by one clock internal to the device.  
4
HSP43891  
Pin Description (Continued)  
PIN  
SYMBOL  
NUMBER  
TYPE  
NAME AND FUNCTION  
SUM0-25  
F9, G9-G11,  
H10, H11, J2,  
J5-J7, J10, K2,  
K5, K7-K11,  
L2-L6, L8, L10,  
L11  
O
These 26 three-state outputs are used to output the results of the internal filter cell computations. Indi-  
vidual filter cell results or the result of the shift and add output stage can be output. If an individual filter  
cell result is to be output, the ADR0-2 signals select the filter cell result. The SHADD signal determines  
whether the selected filter cell result or the output stage adder result is output. The signals SENBH and  
SENBL enable the most significant and least significant bits of the SUM0-25 result respectively. Both  
SENBH and SENBL may be enabled simultaneously if the system has a 26-bit or larger bus. However  
individual enables are provided to facilitate use with a 16-bit bus.  
SENBH  
SENBL  
ADR0-2  
K1  
E11  
I
I
I
A low on this input enables result bits SUM16-25. A high on this input places these bits in their high  
impedance state.  
A low on this input enables result bits SUM0-15. A high on this input places these bits in their high im-  
pedance state.  
G1, H1, H2  
These three inputs select the one cell whose accumulator will be read through the output bus (SUM0-  
25) or added to the output stage accumulator. They also determine which accumulator will be cleared  
when ERASE is low. These inputs are latched in the DF and delayed by one clock internal to the device.  
If ADR0-2 remains at the same address for more than one clock, the output at SUM0-25 will not change  
to reflect any subsequent accumulator updates in the addressed cell. Only the result available during  
the first clock, when ADR0-2 selects the cell, will be output. This does not hinder normal operation since  
the ADR0-2 lines are changed sequentially. This feature facilitates the interface with slow memories  
where the output is required to be fixed for more than one clock.  
SHADD  
RESET  
ERASE  
F3  
A4  
B4  
I
I
I
The SHADD input controls the activation of the shift and add operation in the output stage. This signal  
is latched on chip and delayed by one clock internal to the device. Detailed explanation is given in the  
DF Output Stage section.  
A low on this input synchronously clears all the internal registers, except the cell accumulators It can  
be used with ERASE to also clear all the accumulators simultaneously. This signal is latched in the DF  
and delayed by one clock internal to the device.  
A low on this input synchronously clears the cell accumulator selected by the ADR0-2 signals. If RESET  
is also low simultaneously, all cell accumulators are cleared.  
The C and D registers are enabled for loading by CIENB.  
Loading is synchronous with CLK when CIENB is low. Note  
Functional Description  
The Digital Filter Processor (DF) is composed of eight filter  
cells cascaded together and an output stage for combining  
or selecting filter cell outputs (See Block Diagram). Each  
filter cell contains a multiplier-accumulator and several  
registers (Figure 1). Each 9-bit coefficient is multiplied by a  
9-bit data sample, with the result added to the 26-bit  
accumulator contents. The coefficient output of each cell is  
cascaded to the coefficient input of the next cell to its right.  
that CIENB is latched internally. It enables the register for  
loading after the next CLK following the onset of CIENB low.  
Actual loading occurs on the second CLK following the onset  
of CIENB low. Therefore CIENB must be low during the clock  
cycle immediately preceding presentation of the coefficient  
on the CIN0-8 inputs. In most basic FIR operations, CIENB  
will be low throughout the process, so this latching and delay  
sequence is only important during the initialization phase.  
When CIENB is high, the coefficients are frozen.  
DF Filter Cell  
The C and D registers are cleared synchronously under control  
of RESET, which is latched and delayed exactly like CIENB.  
The output of the C register (C0-8) is one input to 9 x 9  
multiplier.  
A 9-bit coefficient (CIN0-8) enters each cell through the C  
register on the left and exits the cell on the right as signals  
COUT0-8. With no decimation, the coefficient moves directly  
from the C register to the output, and is valid on the clock  
following its entrance. When decimation is selected the  
coefficient exit is delayed by 1, 2 or 3 clocks by passing  
through one or more decimation registers (D1, D2 or D3).  
The other input to the 9 x 9 multiplier comes from the output  
of the X register. This register is loaded with a data sample  
from the device input signals DIN0-8 discussed above. The  
X register is enabled for loading by DIENB. Loading is  
synchronous with CLK when DIENB is low. Note that DIENB  
is latched internally. It enables the register for loading after  
the next CLK following the onset of DIENB low. Actual  
loading occurs on the second CLK following the onset of  
DIENB low; therefore, DIENB must be low during the clock  
The combination of D registers through which the coefficient  
passes is determined by the state of DCM0 and DCM1. The  
output signals (COUT0-8) are connected to the CIN0-8  
inputs of the next cell to its right. The COENB input signal  
enables the COUT0-8 outputs of the right most cell to the  
COUT0-8 pins of the device.  
5
HSP43891  
cycle immediately preceding presentation of the data sample  
The second accumulator clearing mechanism clears a single  
accumulator in a selected cell. The cell select signal, CELLn,  
decoded from ADR0-2 and the ERASE signal enable  
clearing of the accumulator on the next CLK.  
on the DIN0-8 inputs. In most basic FIR operations, DIENB  
will be low throughout the process, so this latching and delay  
sequence is only important during the initialization phase.  
When DIENB is high, the X register is loaded with all zeros.  
The ERASE and RESET signals clear the DF internal  
registers and states as follows:  
The multiplier is pipelined and is modeled as a multiplier core  
followed by two pipeline registers, MREG0 and MREG1  
(Figure 1). The multiplier output is sign extended and input as  
one operand of the 26-bit adder. The other adder operand is  
the output of the 26-bit accumulator. The adder output is  
loaded synchronously into both the accumulator and the  
TREG.  
ERASE  
RESET  
CLEARING EFFECT  
1
1
No clearing occurs, internal state remains  
same.  
1
0
0
0
1
0
RESET only active, all registers except ac-  
cumulators are cleared, including the inter-  
nal pipeline registers.  
The TREG loading is disabled by the cell select signal,  
CELLn, where n is the cell number. The cell select is decoded  
from the ADR0-2 signals to generate the TREG load enable.  
The cell select is inverted and applied as the load enable to  
the TREG. Operation is such that the TREG is loaded  
whenever the cell is not selected. Therefore, TREG is loaded  
every clock except the clock following cell selection. The  
purpose of the TREG is to hold the result of a sum-of-  
products calculation during the clock when the accumulator is  
cleared to prepare for the next sum-of-products calculation.  
This allows continuous accumulation without wasting clocks.  
ERASE only active, the accumulator  
whose address is given by the ADR0-2 in-  
puts is cleared.  
Both RESET and ERASE active, all accu-  
mulators as well as all other registers are  
cleared.  
The DF Output Stage  
The output stage consists of a 26-bit adder, 26-bit register,  
feedback multiplexer from the register to the adder, an output  
multiplexer and a 26-bit three-state driver stage (Figure 2).  
The accumulator is loaded with the adder output every clock  
unless it is cleared. It is cleared synchronously in two ways.  
When RESET and ERASE are both low, the accumulator is  
cleared along with all other registers on the device. Since  
ERASE and RESET are latched and delayed one clock  
internally, clearing occurs on the second CLK following the  
onset of both ERASE and RESET low.  
The 26-bit output adder can add any filter cell accumulator  
result to the 18 most significant bits of the output buffer. This  
result is stored back in the output buffer. This operation takes  
place in one clock period. The eight LSBs of the output  
buffer are lost. The filter cell accumulator is selected by the  
ADR0-2 inputs.  
The 18 MSBs of the output buffer actually pass through the  
zero mux on their way to the output adder input. The zero  
mux is controlled by the SHADD input signal and selects  
either the output buffer 18 MSBs or all zeros for the adder  
input. A low on the SHADD input selects zero. A high on the  
SHADD input selects the output buffer MSBs, thus,  
activating the shift-and-add operation. The SHADD signal is  
latched and delayed by one clock internally.  
6
HSP43891  
DCM1.D  
DCM0.D  
RESET.D  
CIENB.D  
CLR  
CLR  
CLR  
CLR  
LD  
LD  
LD  
LD  
THREE-STATE BUFFERS  
ON CELL 7 ONLY  
C REG  
D1 REG  
D2 REG  
D3 REG  
1
1
C0-8  
CIN0-8  
MUX  
MUX  
COUT0-8  
CLK  
CLK  
CLK  
D0-8  
0
0
C0-8  
RESET.D  
DIENB.D  
COENB  
CLR  
LD  
C
X REG  
X0-8  
MULTI-  
PLIER  
CORE  
DIN0-8  
X
P0-17  
CLK  
MREG0  
CLK  
RESET.D  
CLR  
LATCHES  
DCM1  
DCM0  
RESET  
DIENB  
CIENB  
ADR0  
DCM1.D  
DCM0.D  
RESET.D  
DIENB.D  
CIENB.D  
ADR0.D  
ADR1.D  
ADR2.D  
ERASE.D  
MREG1  
CLR  
0-17  
SIGN EXTENSION  
ADR1  
ACC.D0-25  
ADR2  
ERASE  
ADDER  
CLK  
ACC0-25  
ACC  
CLR  
ERASE.D  
CELLn  
CLK  
CELL 0  
CELL 1  
ADR0  
ADR1  
ADR2  
DE-  
CODER  
CELL 7  
T REG  
LD  
D
Q
CELLn  
CLK  
AOUT0-25  
FIGURE 1. HSP43891 DF FILTER CELL  
7
HSP43891  
The SUM0-25 output bus is controlled by the SENBH and  
0
1
6
7
SENBL signals. A low on SENBL enables bits SUM0-15. A  
low on SENBH enables bits SUM16-25. Thus, all 26 bits can  
be output simultaneously if the external system has a 26-bit  
or larger bus. If the external system bus is only 16 bits, the  
bits can be enabled in two groups of 16 and 10 bits (sign  
extended).  
CELL RESULTS  
26 26  
26 26  
3
CELL RESULT  
MUX  
ADR0.D - ADR2.D  
0-18  
18  
DF Arithmetic  
SIGN EXT  
18-25  
8
26  
Both data samples and coefficients can be represented as  
either 8-bit unsigned or 9-bit two’s complement numbers.  
The 9x9 bit multiplier in each cell expects 9-bit two’s  
complement operands. The binary format of 8-bit two’s  
complement is shown below. Note that if the most significant  
or sign bit is held at logical zero, the 9-bit two’s complement  
multiplier can multiply 8-bit unsigned operands. Only the  
upper (positive) half of the two’s complement binary range is  
used.  
18 (LSBs)  
0-17  
+
RESET.D  
CLR  
26  
SHADD.D  
ZERO  
MUX  
OUTPUT  
BUFFER  
CLK  
8-25  
Q
D
SHADD  
0
1
RESET.D  
26  
18  
CLK  
0-17  
0’s  
The multiplier output is 18 bits and the accumulator is 26  
bits. The accumulator width determines the maximum  
possible number of terms in the sum of products without  
overflow. The maximum number of terms depends also on  
the number system and the distribution of the coefficient and  
data values. Then maximum numbers of terms in the sum  
products are:  
26 26  
18 MSBs SHIFTED  
8 BITS TO RIGHT  
1
0
OUTPUT  
MUX  
RESET.D  
26  
CLR  
CLK  
MAXIMUM # OF TERMS  
2
3-STATE  
BUFFER  
SENBL  
SENBH  
Q
D
NUMBER SYSTEM  
Two Unsigned Vectors  
8-BIT  
9-BIT  
1032  
N/A  
26  
Two Two’s Complement Vectors  
• Two Positive Vectors  
• Negative Vectors  
SUM0-25  
2080  
2047  
2064  
1032  
1024  
1028  
FIGURE 2. HSP43891 DFP OUTPUT STAGE  
The 26 least significant bits (LSBs) from either a cell  
• One Positive and One Negative  
Vector  
accumulator or the output buffer are output on the SUM0-25  
bus. The output mux determines whether the cell  
accumulator selected by ADR0-2 or the output buffer is  
output to the bus. This mux is controlled by the SHADD input  
signal. Control is based on the state of the SHADD during  
two successive clocks; in other words, the output mux  
selection contains memory. If SHADD is low during a clock  
cycle and was low during the previous clock, the output mux  
selects the contents of the filter cell accumulator addressed  
by ADR0-2. Otherwise the output mux selects the contents  
of the output buffer.  
One Unsigned 8-Bit Vector and One  
Two’s Complement Vector  
• Positive Two’s Complement Vector  
• Negative Two’s Complement Vector  
1036  
1028  
1032  
1028  
For practical FIR filters, the coefficients are never all near  
maximum value, so even larger vectors are possible in  
practice.  
Basic FIR Operation  
A simple, 30MHz 8-tap filter example serves to illustrate  
more clearly the operation of the DF. The sequence table  
(Table 1) shows the results of the multiply accumulate in  
If the ADR0-2 lines remain at the same address for more  
than one clock, the output at SUM0-25 will not change to  
reflect any subsequent accumulator updates in the  
addressed cell. Only the result available during the first clock  
when ADR0-2 selects the cell will be output.  
each cell after each clock. The coefficient sequence, C ,  
N
enters the DF on the left and moves from left to right through  
the cells. The data sample sequence, X , enters the DF  
N
This does not hinder normal FIR operation since the ADR0-2  
lines are changed sequentially. This feature facilitates the  
interface with slow memories where the output is required to  
be fixed for more than one clock.  
from the top, with each cell receiving the same sample  
simultaneously. Each cell accumulates the sum of products  
for one output point. Eight sums of products are calculated  
simultaneously, but staggered in time so that a new output is  
available every system clock.  
8
HSP43891  
TABLE 1. HSP43891 30MHz, 8-TAP FIR FILTER SEQUENCE  
X
. . . X , X , X . . . X , X  
9 8 7 1  
15  
0
. . . Y , Y . . . Y , Y  
HSP43891  
C
. . . C , C , C . . . C , C  
6 7 0 6  
15 14  
8
7
0
7
CLK  
0
CELL 0  
x X  
CELL 1  
CELL 2  
CELL 3  
CELL 4  
CELL 5  
CELL 6  
CELL 7  
SUM/CLR  
C
0
0
0
0
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
7
0
1
+C x X  
C x X  
7 1  
6
1
2
3
4
5
6
7
2
+C x X  
+C x X  
C x X  
7 2  
5
6
2
3
4
5
6
7
8
3
+C x X  
+C x X  
+C x X  
C x X  
7 3  
4
5
6
3
4
4
+C x X  
+C x X  
+C x X  
+C x X  
C x X  
7 4  
3
4
5
6
4
5
5
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
C x X  
7 5  
2
3
4
5
5
6
5
6
6
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
C x X  
7 6  
1
2
3
6
4
6
5
6
6
7
7
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
C
x X  
Cell 0 (Y )  
7
0
1
2
7
3
7
4
7
5
6
7
7
7
8
C
x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
Cell 1 (Y )  
8
7
8
0
1
8
2
8
3
8
4
8
5
8
6
8
9
+C x X  
C
x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
Cell 2 (Y )  
9
6
9
7
9
0
9
1
9
2
9
3
9
4
9
5
9
10  
11  
12  
13  
14  
15  
+C x X  
+C x X  
C
x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
Cell 3 (Y  
Cell 4 (Y  
Cell 5 (Y  
Cell 6 (Y  
Cell 7 (Y  
Cell 0 (Y  
)
)
)
)
)
)
5
10  
11  
12  
13  
14  
15  
6
10  
11  
12  
13  
14  
15  
7
10  
0
10  
1
10  
2
10  
11  
12  
3
10  
11  
12  
13  
14  
15  
4
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
15  
+C x X  
+C x X  
+C x X  
C
x X  
+C x X  
+C x X  
+C x X  
+C x X  
3
4
5
6
11  
12  
13  
14  
15  
7
11  
0
11  
1
2
+C x X  
+C x X  
+C x X  
+C x X  
C
x X  
+C x X  
+C x X  
+C x X  
2
3
4
5
6
12  
13  
14  
15  
7
12  
0
1
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
C
x X  
+C x X  
+C x X  
1
2
3
4
5
6
13  
14  
15  
7
13  
0
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
0
1
2
3
4
5
6
14  
7
+C x X  
+C x X  
+C x X  
2
+C x X  
+C x X  
+C x X  
+C x X  
C x X  
7 15  
0
1
3
4
5
15  
6
SAMPLE  
DATA IN (X )  
N
3-BIT  
COUNTER  
30MHz  
CLOCK  
+5V  
Y
Y
Y
0
2
1
ADR2 ADR1 ADR0 V  
DIN0-8  
SHADD SENBH SENBL  
SUM0-25  
CC  
26  
9
SUM  
OUT (Y )  
N
DIENB  
CLK  
A
A
A
0
2
1
HSP43891  
D0-D8  
9 x 8 COEFF.  
RAM/ROM  
9
9
CIN0-8  
COUT0-8  
COENB  
NC  
CIENB DCM1 DCM0 RESET ERASE V  
SS  
SYSTEM  
RESET  
ERASE  
FIGURE 3. HSP43891 30MHz, 8-TAP FIR FILTER APPLICATION SCHEMATIC  
9
HSP43891  
Detailed operation of the DF to perform a basic 8-tap, 9-bit  
length and Td = 4, the internal pipeline delay of the DF. After  
the pipeline has filled, a new output sample is available  
every clock. The delay to last sample output from last  
coefficient, 9-bit data, 30MHz FIR filter is best understood by  
observing the schematic (Figure 3) and timing diagram  
(Figure 4). The internal pipeline length of the DF is four (4)  
clock cycles, corresponding to the register levels CREG (or  
XREG), MREG0, MREG1, and TREG (Figures 1 and 2).  
Therefore, the delay from presentation of data and  
sample input is Td. The output sums, Y , shown in the  
N
timing diagram are derived from the sum-of-products  
equation.  
7
Y
=
C
X
K NK  
Σ
coefficients at the DIN0-8 and CIN0-8 inputs to a sum  
appearing at the SUM0-25 output is: k + Td, where k = filter  
N
K = 0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
CLK  
RESET  
ERASE  
DIN0-8  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
17 18  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DIENB  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
5
CIN0-8  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
CIENB  
ADR0-2  
SUM0-25  
SHADD  
SENBL  
SENBH  
DCM0-1  
0
1
2
3
4
5
6
7
0
Y
Y
Y
Y
Y
Y
Y
Y
13 14  
7
8
9
10  
11  
12  
0
FIGURE 4. HSP43891 30MHz, 8-TAP FIR FILTER TIMING  
SAMPLE  
D
Q
DATA IN (X )  
N
C
Q
30MHz  
CLOCK  
+5V  
+5V  
ADR1  
ADR2  
SHADD  
SENBL  
ADR1  
ADR2  
SHADD  
SENBL  
ADR0  
V
SENBH  
ADR0  
V
CC  
SENBH  
CC  
26  
26  
9
9
DIN0-8  
DIENB  
SUM0-25  
DIN0-8  
DIENB  
SUM0-25  
CLK  
CLK  
HSP43891  
DF0  
HSP43891  
DF1  
9x16 COEFF  
RAM/ROM  
CLK  
Y
Y
Y
Y
A
A
A
A
0
1
2
3
0
1
2
3
D0-D8  
4-BIT  
CTR  
NC  
9
9
9
CIN0-8  
COUT0-8  
CIN0-8  
COUT0-8  
DCM1  
CIENB  
RESET  
V
DCM1  
CIENB  
RESET  
V
SS  
SS  
RESET  
DCM0  
ERASE  
COENB  
DCM0  
ERASE  
COENB  
SUM  
OUT  
(Y )  
N
SYSTEM  
RESET  
FIGURE 5. HSP43891 30MHz, 16-TAP FIR FILTER CASCADE APPLICATION SCHEMATIC  
10  
HSP43891  
Cascade Configuration  
Extended FIR Filter Length Filter  
lengths greater that eight taps can be created by either  
cascading together multiple DF devices or “reusing” a single  
device. Using multiple devices, an FIR filter of over 1000  
taps can be constructed to operate at a 30MHz sample rate.  
Using a single device clocked at 30MHz, an FIR filter of over  
500 taps can be constructed to operate at less than a  
30MHz sample rate. Combinations of these two techniques  
are also possible.  
To design a filter length L>8, L/8 DFs are cascaded by  
connecting the COUT0-8 outputs of the (i)th DF to the CIN0-  
8 inputs of the (i+1)th DF. The DIN0-8fs inputs and SUM0-25  
outputs of all the DFs are also tied together. A specific  
example of two cascaded DFs illustrates the technique  
(Figure 5). Timing (Figure 6) is similar to the simple 8-tap  
FIR, except the ERASE and SENBL/SENBH signals must be  
enabled independently for the two DFs in order to clear the  
correct accumulators and enable the SUM0-25 output  
signals at the proper times.  
TABLE 2.  
DATA SEQUENCE INPUT X . . . X , X , X . . . X , X  
30 22 0  
9
8
1
. . . 0, Y . . . Y , 0. . . 0, Y . . . Y , 0. . . 0  
HSP43891  
COEFFICIENT SEQUENCE INPUT C . . . C , C , 0 . . . C . . . C , C  
14 15  
30  
23  
22  
15  
0
14 15  
0
CLK  
CELL 0  
x X  
CELL 1  
CELL 2  
CELL 3  
CELL 4  
CELL 5  
CELL 6  
CELL 7  
SUM/CLR  
6
7
8
9
C
0
0
0
0
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
15  
0
+C x X  
C
15  
x X  
14  
1
2
3
4
5
1
+C x X  
13  
C
15  
x X  
2
+C x X  
C
x X  
12  
15  
3
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
+C x X  
11  
+C x X  
C
x X  
4
14  
4
5
6
7
8
15  
+C x X  
+C x X  
C
x X  
10  
+C x X  
13  
15  
5
+C x X  
C
x X  
6
9
6
12  
+C x X  
15  
+C x X  
C
x X  
8
7
11  
15  
7
+C x X  
+C x X  
+C x X  
7
8
10  
+C x X  
14  
8
9
+C x X  
+C x X  
6
9
9
9
13  
+C x X  
+C x X  
+C x X  
5
10  
11  
12  
13  
14  
15  
8
10  
11  
12  
13  
14  
15  
16  
17  
18  
12  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
+C x X  
+C x X  
+C x X  
4
7
11  
+C x X  
+C x X  
+C x X  
3
6
10  
+C x X  
+C x X  
+C x X  
2
5
9
+C x X  
+C x X  
+C x X  
1
4
8
+C x X  
+C x X  
+C x X  
Cell 0 (Y  
Cell 1 (Y  
Cell 2 (Y  
Cell 3 (Y  
Cell 4 (Y  
Cell 5 (Y  
Cell 6 (Y  
Cell 7 (Y  
)
)
)
)
)
)
)
)
0
3
7
15  
16  
17  
18  
19  
20  
21  
22  
0
0
0
0
0
0
0
C
x X  
16  
+C x X  
+C x X  
0
2
6
0
0
0
0
0
0
0
C
x X  
17  
+C x X  
+C x X  
0
1
5
0
0
0
0
0
0
+C x X  
+C x X  
0
4
0
0
0
0
0
0
0
C
x X  
+C x X  
0
19  
3
0
0
0
0
0
0
0
C x X  
0
+C x X  
20  
2
0
0
0
0
0
0
0
C
x X  
21  
+C x X  
0
1
0
0
0
0
0
0
0
+C x X  
0
C
x X  
0
0
0
0
0
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
15  
8
+C x X  
+C x X  
15  
14  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
9
0
+C x X  
+C x X  
13  
15 10  
+C x X  
+C x X  
15 11  
12  
+C x X  
11  
+C x X  
15 12  
+C x X  
+C x X  
15  
10  
+C x X  
12  
+C x X  
15 14  
9
+C x X  
C
x X  
8
15  
15  
+C x X  
+C x X  
7
14  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
+C x X  
+C x X  
13  
6
+C x X  
+C x X  
5
12  
+C x X  
+C x X  
11  
4
+C x X  
+C x X  
3
10  
+C x X  
+C x X  
-
-
2
9
+C x X  
+C x X  
1
8
+C x X  
+C x X  
Cell 0 (Y  
Cell 1 (Y  
Cell 2 (Y  
Cell 3 (Y  
Cell 4 (Y  
)
)
)
)
)
0
7
23  
24  
25  
26  
27  
0
0
0
0
C
x X  
0
+C x X  
0
23  
6
C
x X  
0
+C x X  
5
0
25  
0
0
C
x X  
0
+C x X  
0
26  
4
0
C
x X  
+C x X  
3
0
27  
11  
HSP43891  
Single DF Configuration  
Decimation/Resampling  
Using a single DF, a lter of length L>8 can be constructed  
by processing in L/8 passes, as illustrated in Table 2, for a  
16-tap FIR. Each pass is composed of Tp = 7 + L cycles and  
computes eight output samples. In pass i, the sample with  
indices i*8 to i*8 +(L-1) enter the DIN0-8 inputs. The  
The HSP43891 DF provides a mechanism for decimating by  
factors of 2, 3, or 4. From the DF filter cell block diagram  
(Figure 1), note the three D registers and two multiplexers in  
the coefficient path through the cell. These allow the  
coefficients to be delayed by 1, 2, or 3 clocks through the  
cell. The sequence table (Table 3) for a decimate-by-two  
filter illustrates the technique (internal cell pipelining ignored  
for simplicity). Detailed timing for a 30MHz input sample rate,  
15MHz output sample rate (i.e., decimate-by-two), 16-tap  
FIR filter, including pipelining, is shown in Figure 7. This filter  
requires only a single HSP43891 DF.  
coefficients C - C - 1 enter the CIN0-8 inputs, followed by  
0
L
seven zeros. As these zeros are entered, the result samples  
are output and the accumulators reset. Initial filing of the  
pipeline is not shown in this sequence table. Filter outputs  
can be put through a FIFO to even out the sample rate.  
Extended Coefficient and Data Sample  
Word Size  
The sample and coefficient word size can be extended by  
utilizing several DFs in parallel to get the maximum sample  
rate or a single DF with resulting lower sample rates. The  
technique is to compute partial products of 9 x 9 and  
combine these partial products by shifting and adding to  
obtain the final result. The shifting and adding can be  
accomplished with external adders (at full speed) or with the  
DF’s shift-and-add mechanism contained in its output stage  
(at reduced speed).  
12  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
CLK  
RESET  
DF0  
ERASE  
DF1  
ERASE  
3
X
X
X
X
X
X
X
C
X
C
X
C
X
C
X X X X X X X X X X X X X X X X X X X X X X X X X X X X  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37  
DIN0-8  
0
1
2
3
4
5
6
7
8
9
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C C C C C C  
15 14 13 12 11 10  
CIN0-8  
CIENB  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
ADR0-2  
DF0  
SUM0-25  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y Y  
31 32 33  
15 16 17 18 19 20 21 22  
8
DF1  
SUM0-25  
Y
Y
Y
Y
Y
Y
Y
Y
23 24 25 26 27 28 29 30  
SHADD  
DF0  
SENBL/H  
DF1  
SENBL/H  
DCM0-1  
0
15  
Y
=
C
X
N
K
NK  
K = 0  
FIGURE 6. HSP43891 16-TAP 30MHz FILTER TIMING USING TWO CASCADED HSP43891s  
HSP43891  
TABLE 3. HSP43891 16-TAP DECIMATE-BY-TWO FIR FILTER SEQUENCE; 30MHz IN, 15MHz OUT  
DATA SEQUENCE INPUT . . . X , X , X  
0
2
1
. . . Y , - ,Y , - , Y  
19 17  
HSP43891  
COEFFICIENT SEQUENCE INPUT . . . C , C . . . C , C , C  
15  
15  
0
13 14 15  
CLK  
6
CELL 0  
x X  
CELL 1  
CELL 2  
CELL 3  
CELL 4  
CELL 5  
CELL 6  
CELL 7  
SUM/CLR  
C
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
15  
0
7
+C x X  
14  
0
1
2
3
4
5
8
+C x X  
13  
C
x X  
0
15  
2
9
+C x X  
12  
+C x X  
0
14  
3
4
5
6
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
+C x X  
11  
+C x X  
C
x X  
4
0
13  
15  
+C x X  
+C x X  
+C x X  
0
10  
12  
14  
5
6
+C x X  
+C x X  
+C x X  
C
x X  
6
0
9
6
11  
13  
15  
+C x X  
+C x X  
+C x X  
+C x X  
0
8
7
10  
12  
7
14  
7
8
+C x X  
+C x X  
+C x X  
+C x X  
C
x X  
8
0
7
8
9
8
11  
8
13  
15  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
0
6
9
8
9
10  
+C x X  
9
12  
9
14  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
+C x X  
+C x X  
+C x X  
11  
+C x X  
13  
C x X  
15 10  
0
5
10  
11  
12  
13  
14  
15  
16  
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
12  
+C x X  
14  
0
4
6
8
10  
11  
12  
13  
14  
15  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
11  
+C x X  
13  
C
x X  
12  
3
5
7
9
15  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
12  
+C x X  
14  
2
4
6
8
10  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
11  
+C x X  
13  
C x X  
15 14  
1
3
5
7
9
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
12  
+C x X  
14  
Cell0 (Y  
)
)
)
)
)
)
)
)
)
0
2
4
6
8
10  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
15  
17  
19  
21  
23  
25  
27  
29  
31  
C
x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
11  
+C x X  
13  
-
15  
1
3
5
7
9
16  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
10  
+C x X  
12  
Cell1 (Y  
14  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
2
4
6
8
17  
18  
19  
20  
21  
22  
23  
24  
25  
+C x X  
C
x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
11  
-
13  
15  
1
3
5
7
9
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
10  
Cell2 (Y  
12  
14  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
2
4
6
8
+C x X  
+C x X  
C
x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
-
11  
13  
15  
1
3
5
7
9
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
Cell3 (Y  
10  
12  
14  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
2
4
6
8
+C x X  
+C x X  
+C x X  
C
x X  
+C x X  
+C x X  
+C x X  
+C x X  
-
9
11  
13  
15  
1
3
5
7
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
Cell4 (Y  
8
10  
12  
14  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
2
4
6
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
15  
+C x X  
+C x X  
+C x X  
-
7
9
11  
13  
24  
25  
26  
27  
28  
29  
30  
31  
1
3
5
+C x X  
+C x X  
+C x X  
+C x X  
12  
+C x X  
14  
+C x X  
+C x X  
+C x X  
Cell5 (Y  
6
8
10  
0
2
4
+C x X  
+C x X  
+C x X  
+C x X  
11  
+C x X  
13  
+C x X  
15  
+C x X  
+C x X  
-
Cell6 (Y  
-
5
7
9
26  
27  
28  
29  
30  
31  
1
3
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
12  
+C x X  
14  
+C x X  
+C x X  
2
4
6
8
10  
0
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
11  
+C x X  
13  
+C x X  
15  
+C x X  
1
3
5
7
9
28  
29  
30  
31  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
10  
+C x X  
12  
+C x X  
14  
+C x X  
Cell7 (Y  
-
2
4
6
8
0
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
11  
+C x X  
13  
C
x X  
1
3
5
7
9
15  
+C x X  
31  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
10  
+C x X  
12  
Cell8 (Y  
0
2
4
6
8
14  
14  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
CLK  
RESET  
ERASE  
DIN0-8  
5
X
X
X
X
X
C
X
X
C
X
C
X
C
X
C
X X X X X X X X X X X X X X X X X X X X X X X X X X X X  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37  
0
1
2
3
4
5
6
7
8
9
DIENB  
CIN0-8  
CIENB  
ADR0-2  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C C C C C C  
15 14 13 12 11 10  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
0
1
DF0  
SUM0-25  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
33  
15  
17  
19  
21  
23  
25  
27  
29  
31  
8
SHADD  
SENBL  
SENBH  
DCM0-1  
1
FIGURE 7. HSP43891 16-TAP DECIMATE-BY-TWO FIR FILTER TIMING; 30MHz IN, 15MHz OUT  
HSP43891  
Absolute Maximum Ratings  
Thermal Information  
o
o
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . +8.0V  
Input, Output Voltage . . . . . . . . . . . . . . . . .GND -0.5V to V +0.5V  
Thermal Resistance (Typical, Note 1)  
MQFP Package . . . . . . . . . . . . . . . . . . . .  
PLCC Package. . . . . . . . . . . . . . . . . . . . .  
CPGA Package . . . . . . . . . . . . . . . . . . . .  
θ
( C/W)θ ( C/W)  
JC  
JA  
47  
37  
34.66  
N/A  
N/A  
7.78  
CC  
o
o
Maximum Storage Temperature. . . . . . . . . . . . . . . . -65 C to 150 C  
ESD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Class 1  
Junction Temperature  
o
Typical Package Power Dissipation at 70 C  
o
PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150 C  
MQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.7W  
PLCC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.2W  
CPGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.88W  
Gate Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17763  
(PLCC MQFP Lead Tips Only)  
o
CPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 C  
o
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 C  
Operating Conditions  
Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V ±5  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 70 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
DC Electrical Specifications  
PARAMETER  
Power Supply Current  
SYMBOL  
TEST CONDITIONS  
= Max, CLK Frequency 20MHz (Notes 2, 4)  
= Max (Note 4)  
MIN  
MAX  
140  
500  
10  
10  
-
UNITS  
mA  
µA  
µA  
µA  
V
I
V
V
V
V
V
V
-
CCOP  
CC  
CC  
CC  
CC  
CC  
CC  
Standby Power Supply Current  
Input Leakage Current  
Output Leakage Current  
Logical One Input Voltage  
Logical Zero Input Voltage  
Logical One Output Voltage  
Logical Zero Output Voltage  
Clock Input High  
I
-
-10  
-10  
2.0  
-
CCSB  
I
= Max, Input = 0V or V  
= Max, Input = 0V or V  
= Max  
I
CC  
CC  
I
O
V
IH  
V
= Min  
0.8  
-
V
IL  
V
I
I
= -400µA, V  
= Min  
= Min  
2.6  
-
V
OH  
OH  
OL  
CC  
V
= 2mA, V  
CC  
0.4  
-
V
OL  
V
V
V
= Max  
= Min  
3.0  
-
V
IHC  
CC  
CC  
Clock Input Low  
V
0.8  
10  
15  
10  
15  
V
ILC  
Input Capacitance  
Output Capacitance  
NOTES:  
PLCC  
C
CLK Frequency 1MHz  
All measurements referenced to GND, T = 25 C  
-
pF  
pF  
pF  
pF  
IN  
o
A
CPGA  
PLCC  
CPGA  
-
(Note 3)  
C
-
OUT  
-
2. Operating supply current is proportional to frequency. Typical rating is 7mA/MHz.  
3. Controlled via design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design  
changes.  
4. Output load per test load circuit and C = 40pF.  
L
16  
HSP43891  
o
o
AC Electrical Specifications  
V
= 5V, ±5%, T = 0 C to 70 C  
CC  
A
-20 (20MHz)  
MIN MAX  
50  
-25 (25.6MHz)  
-30 (30MHz)  
MIN MAX  
33  
TEST  
CONDITIONS  
PARAMETER  
Clock Period  
SYMBOL  
MIN  
MAX  
UNITS  
ns  
t
-
39  
16  
16  
14  
0
-
-
-
CP  
Clock Low  
t
20  
20  
16  
0
-
-
-
13  
13  
13  
0
-
-
-
ns  
CL  
Clock High  
t
-
ns  
CH  
Input Setup  
t
-
-
-
ns  
IS  
IH  
Input Hold  
t
-
-
-
ns  
CLK to Coefficient Output Delay  
Output Enable Delay  
Output Disable Delay  
CLK to SUM Output Delay  
Output Rise  
t
24  
20  
20  
27  
6
-
20  
15  
15  
25  
6
18  
15  
15  
21  
6
ns  
ODC  
t
-
-
-
ns  
OED  
ODD  
t
Note 5  
-
-
-
ns  
t
-
-
-
ns  
ODS  
t
Note 5  
Note 5  
-
-
-
ns  
OR  
Output Fall  
t
-
6
-
6
-
6
ns  
OF  
NOTE:  
5. Controlled by design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design  
changes.  
Test Load Circuit  
S
1
DUT  
C  
L
I
1.5V  
I
OL  
±
OH  
(NOTE) INCLUDES STRAY  
AND JIG CAPACITANCE  
EQUIVALENT CIRCUIT  
NOTE: Switch S Open for I  
and I  
Tests.  
CCOP  
1
CCSB  
17  
HSP43891  
Waveforms  
4.0V  
0.0V  
2.0V  
CLK  
3.0V  
t
CP  
t
t
IH  
IS  
t
t
CH  
CL  
INPUT  
0.0V  
1.5V  
1.5V  
2.0V  
2.0V  
2.0V  
CLK  
NOTE: Input includes:DIN0-7, CIN0-7, DIENB, CIENB, ERASE, RE-  
SET, DCM0-1, ADR0-1, TCS, TCCI, SHADD  
FIGURE 9. INPUT SETUP AND HOLD  
FIGURE 8. CLOCK AC PARAMETERS  
2.0  
0.8  
2.0V  
CLK  
t
, t  
ODC ODS  
t
t
OF  
SUM0-25  
COUT0-8  
OR  
1.5V  
OUTPUT  
FIGURE 10. SUM0-25, COUT0-8, OUTPUT DELAYS  
FIGURE 11. RISE AND FALL TIMES  
ENABLE  
DEVICE  
UNDER  
TEST  
3.0V  
INPUT  
0.0V  
1.5V  
1.5V  
1.5V  
1.5V  
t
OED  
t
ODD  
1.7V  
1.3V  
OUTPUT 1.5V  
NOTE: AC Testing: Inputs are driven at 3.0V for a Logic “1” and 0.0V  
for a Logic “0”. Input and output timing measurements are made at  
1.5V for both a Logic “1” and “0”. CLK is driven at 4.0V and 0V and  
measured at 2.0V.  
FIGURE 12. OUTPUT ENABLE, DISABLE TIMING  
FIGURE 13. AC TESTING INPUT, OUTPUT WAVEFORM  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (407) 724-7000  
FAX: (407) 724-7240  
18  

相关型号:

HSP43891GC-30

Digital Filter
INTERSIL

HSP43891GM-20/883

Digital Filter
INTERSIL

HSP43891GM-25/883

Digital Filter
INTERSIL

HSP43891JC-20

Digital Filter
INTERSIL

HSP43891JC-25

Digital Filter
INTERSIL

HSP43891JC-30

Digital Filter
INTERSIL

HSP43891QM-20/883

IC,DIGITAL FILTER,CMOS,QFL,84PIN,CERAMIC
RENESAS

HSP43891VC-20

Digital Filter
INTERSIL

HSP43891VC-25

Digital Filter
INTERSIL

HSP43891VC-30

Digital Filter
INTERSIL

HSP45102

12-Bit Numerically Controlled Oscillator
INTERSIL

HSP45102PC-33

12-Bit Numerically Controlled Oscillator
INTERSIL