HS9-565ARH [INTERSIL]

Radiation Hardened High Speed, Monolithic Digital-to-Analog Converter; 抗辐射高速,单片式数位类比转换器
HS9-565ARH
型号: HS9-565ARH
厂家: Intersil    Intersil
描述:

Radiation Hardened High Speed, Monolithic Digital-to-Analog Converter
抗辐射高速,单片式数位类比转换器

转换器
文件: 总10页 (文件大小:363K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Semiconductor  
HS-565ARH  
Radiation Hardened High Speed,  
Monolithic Digital-to-Analog Converter  
March 1996  
Features  
Description  
The HS-565ARH is a fast, radiation hardened 12-bit current out-  
put, digital-to-analog converter. The monolithic chip includes a  
precision voltage reference, thin-film R-2R ladder, reference  
control amplifier and twelve high-speed bipolar current  
switches.  
• Devices QML Qualified in Accordance with  
MIL-PRF-38535  
• Detailed Electrical and Screening Requirements  
are Contained in SMD# 5962-96755 and Harris’ QM  
Plan  
The Harris Semiconductor Dielectric Isolation process provides  
latch-up free operation while minimizing stray capacitance and  
leakage currents, to produce an excellent combination of speed  
and accuracy. Also, ground currents are minimized to produce a  
• DAC and Reference on a Single Chip  
• Pin Compatible with AD-565A and HI-565A  
• Very High Speed: Settles to 0.50 LSB in 500ns Max low and constant current through the ground terminal, which  
reduces error due to code-dependent ground currents.  
• Monotonicity Guaranteed Over Temperature  
HS-565ARH die are laser trimmed for a maximum integral nonlin-  
earity error of ±0.25 LSB at +25oC. In addition, the low noise bur-  
• 0.50 LSB Max Nonlinearity Guaranteed Over  
Temperature  
ied zener reference is trimmed both for absolute value and mini-  
• Low Gain Drift (Max., DAC Plus Reference) 50ppm/oC  
mum temperature coefficient.  
• Total Dose Hardness to 100K RAD  
Functional Diagram  
±0.75 LSB Accuracy Guaranteed Over Temperature  
BIP.  
REF OUT VCC  
(±0.125 LSB Typical at +25oC)  
OFF.  
8
11  
4
3
20V  
SPAN  
+
5K  
5K  
Applications  
10V  
10  
9
10V  
SPAN  
-
9.95K  
IO  
IREF  
• High Speed A/D Converters  
• Precision Instrumentation  
• Signal Reconstruction  
DAC  
0.5mA  
19.95K  
6
5
REF  
IN  
OUT  
+
-
3.5K  
3K  
2.5K  
(4X IREF  
X CODE)  
REF  
GND  
7
12  
24 . . . 13  
MSB LSB  
-VEE PWR  
GND  
Ordering Information  
PART NUMBER  
TEMPERATURE RANGE  
SCREENING LEVEL  
MIL-PRF-38535 Level V  
MIL-PRF-38535 Level V  
Sample  
PACKAGE  
o
o
5962R9675501VJC  
-55 C to +125 C  
24 Lead SBDIP  
o
o
5962R9675501VXC  
-55 C to +125 C  
24 Lead Ceramic Flatpack  
24 Lead SBDIP  
o
HS1-565ARH (SAMPLE)  
HS9-565ARH (SAMPLE)  
+25 C  
o
+25 C  
Sample  
24 Lead Ceramic Flatpack  
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.  
Spec Number 518795  
File Number 3278.2  
Copyright © Harris Corporation 1996  
1
HS-565ARH  
Pinouts  
HS1-565ARH  
MIL-STD-1835 CDIP2-T24  
(SBDIP)  
TOP VIEW  
NC  
NC  
1
2
24 BIT 1 IN (MSB)  
23 BIT 2 IN  
22  
VCC  
3
BIT 3 IN  
REF OUT  
REF GND  
REF IN  
21 BIT 4 IN  
20 BIT 5 IN  
19 BIT 6 IN  
18 BIT 7 IN  
17 BIT 8 IN  
16 BIT 9 IN  
15 BIT 10 IN  
14 BIT 11 IN  
13 BIT 12 IN (LSB)  
4
5
6
-VEE  
7
BIPOLAR RIN  
IDAC OUT  
10V SPAN  
8
9
10  
20V SPAN 11  
PWR GND 12  
H59-565ARH  
MIL-STD-1835 CDFP4-F24  
(CERAMIC FLATPACK)  
TOP VIEW  
BIT 1 IN  
(MSB)  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
NC  
NC  
2
BIT 2 IN  
BIT 3 IN  
BIT 4 IN  
BIT 5 IN  
BIT 6 IN  
BIT 7 IN  
BIT 8 IN  
BIT 9 IN  
BIT 10 IN  
BIT 11 IN  
3
VCC  
4
REF OUT  
REF GND  
REF IN  
5
6
7
-VEE  
8
BIPOLAR RIN  
IDAC OUT  
10V SPAN  
20V SPAN  
PWR GND  
9
10  
11  
12  
BIT 12 IN  
(LSB)  
Spec Number 518795  
2
Specifications HS-565ARH  
Absolute Maximum Ratings  
Thermal Information  
o
o
VCC to Power Ground . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to +18V Thermal Resistance (Typical)  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
VEE to Power Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to -18V  
Voltage on DAC Output (Pin 9). . . . . . . . . . . . . . . . . . . . -3V to +12V  
Digital Input (Pins 13 - 24) to Power Ground . . . . . . . . . . -1V to +7V  
Ref In to Reference Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±12V  
Bipolar Offset to Reference Ground . . . . . . . . . . . . . . . . . . . . . . . ±12V  
10V Span R to Reference Ground. . . . . . . . . . . . . . . . . . . . . . . . . ±12V  
20V Span R to Reference Ground. . . . . . . . . . . . . . . . . . . . . . . . . ±24V  
SBDIP Package. . . . . . . . . . . . . . . . . .  
Ceramic Flatpack Package  
60  
80  
17  
15  
o
Maximum Package Power Dissipation at +125 C  
SBDIP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.83W  
Ceramic Flatpack Package . . . . . . . . . . . . . . . . . . . . . . . . . 0.62W  
If Device Power Exceeds Package Dissipation Capability, Provide  
Heat Sinking or Derate Linearly at the Following Rate:  
o
Junction Temperature (TJ) (Max) . . . . . . . . . . . . . . . . . . . . . +175 C  
o
o
o
SBDIP Package  
16.67mW/ C  
Storage Temperature Range . . . . . . . . . . . . . . . . . -65 C to +150 C  
o
o
Lead Temperature (Soldering 10s). . . . . . . . . . . . . . . . . . . . +300 C  
Ceramic Flatpack Package  
12.5mW/ C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Operating Conditions  
Operating Voltage Range (VCC) . . . . . . . . . . . . . +11.4V to +16.5V Digital Input Low Voltage. . . . . . . . . . . . . . . . . . . . . . . . .0V to +0.8V  
Operating Voltage Range (VEE). . . . . . . . . . . . . . . -11.4V to -16.5V Digital Input High Voltage . . . . . . . . . . . . . . . . . . . . . +2.2V to +5.5V  
o
o
Operating Temperature Range. . . . . . . . . . . . . . . . -55 C to +125 C  
TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS  
GROUPA  
SUB-  
LIMITS  
PARAMETERS  
Resolution  
SYMBOL  
CONDITIONS  
GROUP  
TEMPERATURE  
MIN  
TYP  
MAX UNITS  
o
o
VSSD = VSSA = 0V,  
VCC = +15V, VEE = -15V  
1, 2, 3  
1, 2, 3  
-55 C to +125 C  
-
-
12  
Bits  
o
o
Accuracy  
ILE  
VSSD = VSSA = 0V,  
-55 C to +125 C  
-
±0.125 ±0.75  
LSB  
VCC = +15V, VEE = -15V,  
Error Relative to Full Scale  
o
o
Digital Input High Current  
Digital Input Low Current  
Differential Nonlinearity  
IIH  
IIL  
VSSD = VSSA = 0V, VIN = 5.5V  
VCC = +15V, VEE = -15V  
1, 2, 3  
1, 2, 3  
1, 2, 3  
-55 C to +125 C  
-
-20  
-
0.01  
-2.0  
+1.0  
-
µA  
µA  
o
o
VSSD = VSSA = 0V, V = 0V  
-55 C to +125 C  
IN  
VCC = +15V, VEE = -15V  
o
o
DLE  
VSSD = VSSA = 0V,  
-55 C to +125 C  
±0.25  
±0.50  
LSB  
VCC = +15V, VEE = -15V,  
o
+25 C (Monotonicity  
Guaranteed Over Temp)  
Power Supply Currents  
VCC  
o
o
ICC  
IEE  
VSSD = VSSA = 0V,  
VCC = +15V, VEE = -15V  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
-55 C to +125 C  
-
9.0  
-9.5  
10  
11.8  
mA  
mA  
V
o
o
VEE  
VSSD = VSSA = 0V,  
VCC = +15V, VEE = -15V  
-55 C to +125 C  
-14.5  
9.9  
-
10.1  
-
o
o
Reference Output  
Voltage  
Ref Out VSSD = VSSA = 0V,  
VCC = +15V, VEE = -15V  
-55 C to +125 C  
o
o
Reference Output  
Current  
IREF  
VSSD = VSSA = 0V,  
VCC = +15V, VEE = -15V,  
Available for external loads  
-55 C to +125 C  
1.5  
2.5  
mA  
Output Current  
Unipolar  
o
o
I
I
VSSD = VSSA = 0V,  
VCC = +15V, VEE = -15V,  
All Bits On  
1, 2, 3  
1, 2, 3  
-55 C to +125 C  
-1.6  
-2.0  
-2.4  
mA  
mA  
OUT1  
OUT2  
o
o
Bipolar  
VSSD = VSSA = 0V,  
VCC = +15V, VEE = -15V,  
All Bits On or Off  
-55 C to +125 C  
±0.8  
±1.0  
±1.2  
Spec Number 518795  
3
Specifications HS-565ARH  
TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)  
GROUPA  
SUB-  
GROUP  
LIMITS  
TYP  
PARAMETERS  
Output Offset  
SYMBOL  
CONDITIONS  
TEMPERATURE  
MIN  
MAX UNITS  
o
o
Unipolar  
VOS  
VSSD = VSSA = 0V,  
VCC = +15V, VEE = -15V  
Figure 3, R2 = 50Fixed  
1, 2, 3  
-55 C to +125 C  
-
±0.01  
±0.05  
±0.05  
±0.15  
% of  
F.S.  
o
o
Bipolar  
BPOE  
VSSD = VSSA = 0V,  
VCC = +15V, VEE = -15V,  
R3 and R4 = 50Fixed  
Figure 4  
1, 2, 3  
-55 C to +125 C  
-
% of  
F.S.  
Power Supply Gain  
Sensitivity  
o
o
VCC  
+PSS  
-PSS  
Note 3  
Note 3  
1, 2, 3  
1, 2, 3  
-55 C to +125 C  
-
-
3
10  
25  
ppm of  
F.S./%  
o
o
VEE  
-55 C to +125 C  
15  
ppm of  
F.S./%  
Temperature  
Coefficients  
o
o
o
Unipolar Zero  
Bipolar Zero  
With Internal Reference  
With Internal Reference  
With Internal Reference  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
-55 C to +125 C  
-
-
-
-
1
5
2
20  
ppm/ C  
o
o
o
-55 C to +125 C  
ppm/ C  
o
o
o
Gain (Full Scale)  
External Adjustments  
-55 C to +125 C  
10  
50  
ppm/ C  
o
o
AE  
Fixed 50Resistor for R2  
Figures 3  
-55 C to +125 C  
±0.10  
±0.25  
% of  
F.S.  
o
o
Gain Error  
Bipolar Zero Error  
NOTES:  
BPAE  
BPZE  
Fixed 50Resistor for R3 and  
R4, Figure 4  
1, 2, 3  
1, 2, 3  
-55 C to +125 C  
-
-
±0.10  
±0.05  
±0.25  
±0.10  
% of  
F.S.  
o
o
Fixed 50Resistor for R3 and  
R4, Figure 4  
-55 C to +125 C  
% of  
F.S.  
1. All voltages referenced to VSSD = VSSA = 0V  
2. Unless otherwise specified VCC = +15V and VEE = -15V.  
3. The Power Supply Gain Sensitivity is tested in reference to a VCC = +15V and VEE = -15V.  
TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS  
Table 2 Intentionally Left Blank. See AC Specifications in Table 3  
TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS  
LIMITS  
PARAMETERS  
SYMBOL  
CONDITIONS  
f = 1MHz  
NOTES  
1, 2  
TEMPERATURE  
MIN  
-
TYP  
20  
-
MAX  
-
UNITS  
pF  
o
Output Capacitance  
COUT  
+25 C  
o
o
Output Compliance  
Voltage  
1
-55 C to +125 C  
-1.5  
10  
V
o
o
Programmable Output  
Ranges  
1
1
1
1
1
1
-55 C to +125 C  
0
-2.5  
0
-
-
-
-
-
-
5
2.5  
10  
5
V
V
V
V
V
o
o
-55 C to +125 C  
o
o
-55 C to +125 C  
o
o
-55 C to +125 C  
-5  
o
o
-55 C to +125 C  
-10  
±0.25  
10  
-
o
o
Gain Adjustment Range  
Figures 3, 4  
Figure 4  
-55 C to +125 C  
% of  
F.S.  
o
o
Bipolar Zero  
Adjustment Range  
1
1
1
-55 C to +125 C  
±0.15  
15K  
-
-
% of  
F.S.  
o
o
Reference Input  
Impedance  
RREF  
ROUT  
VSSD = VSSA = 0V, -15  
VCC = +15V, VEE = -15V  
-55 C to +125 C  
20K  
2.5K  
25K  
3.2K  
o
o
Output Resistance  
VSSD = VSSA = 0V,  
-55 C to +125 C  
1.8K  
VCC = +15V, VEE = -15V,  
Exclusive of Span Resistors  
Spec Number 518795  
4
Specifications HS-565ARH  
TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)  
LIMITS  
TYP  
PARAMETERS  
SYMBOL  
CONDITIONS  
NOTES  
TEMPERATURE  
MIN  
MAX  
UNITS  
o
o
Settling Time (Note 3)  
TS1  
VSSD = VSSA = 0V,  
VCC = +15V, VEE = -15V,  
High Z External Load  
1
-55 C to +125 C  
-
350  
500  
ns  
o
o
TS2  
VSSD = VSSA = 0V,  
VCC = +15V, VEE = -15V,  
75External Load  
1
-55 C to +125 C  
-
150  
250  
ns  
Full Scale Transition  
Rise Time  
o
o
TRISE VSSD = VSSA = 0V,  
VCC = +15V, VEE = -15V  
1
1
-55 C to +125 C  
-
-
15  
30  
30  
60  
ns  
ns  
o
o
Fall Time  
NOTES:  
TFALL VSSD = VSSA = 0V,  
VCC = +15V, VEE = -15V  
-55 C to +125 C  
1. The parameters listed in Table 3 are controlled via design or process and are not tested. These parameters are characterized upon initial  
design release.  
2. 24 lead DIP package only.  
3. Reference the Settling Time discussion and Figure 3.  
TABLE 4. POST 100 K RAD ELECTRICAL PERFORMANCE  
o
Post 100K RAD Electrical Performance Is Per Table 1 (+25 C Only) Except As Follows:  
LIMITS  
o
PARAMETER  
DIGITAL INPUTS  
SYMBOL  
CONDITIONS: +25 C ONLY  
MIN  
MAX  
UNITS  
Low Current  
Low Voltage  
High Voltage  
UNIPOLAR  
I
V
= 0.0V  
IN  
-40  
-
-
0.5  
-
µA  
V
IL  
V
(Note 1)  
(Note 1)  
IL  
V
2.5  
V
IH  
Full Scale Error  
BIPOLAR  
AE  
Figure 3, R2 = 50Fixed  
-
±0.85  
% of F.S.  
Offset Error  
BPOE  
BPZE  
BPAE  
DLE  
Figure 4, R3 and R4 = 50Fixed  
Figure 5, R3 and R4 = 50Fixed  
Figure 5, R3 and R4 = 50Fixed  
Monotonicity Guaranteed  
-
-
-
-
-
±0.25  
±0.25  
±0.85  
±1.0  
% of F.S  
% of F.S.  
% of F.S.  
LSB  
Zero Error  
Full Scale Error  
Differential Nonlinearity  
Accuracy  
ILE  
Error Relative to Full Scale  
±1.0  
LSB  
NOTES:  
1. This parameter is an applied condition of test.  
o
TABLE 5. BI DELTA PARAMETERS (±25 C)  
PARAMETER  
DELTA LIMIT  
±1.18mA  
±1.45mA  
±240µA  
±240µA  
±0.02%  
±0.15%  
±0.10%  
±0.10%  
±1.0µA  
I
CC  
I
EE  
I
I
OUT1  
OUT2  
VOS  
AE  
BPOE  
BPZE  
I
IL  
I
±40nA  
IH  
Spec Number 518795  
5
Specifications HS-565ARH  
Radiation Bias Circuit  
Burn-In Bias Circuit  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
NC  
BIT 1  
BIT 2  
BIT 3  
NC  
BIT 1  
BIT 2  
BIT 3  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
F10  
NC  
NC  
+15V  
+15V  
3
3
VCC  
VCC  
C1  
D1  
4
4
REF OUT BIT 4  
REF GND BIT 5  
REF OUT  
REF GND  
REF IN  
-VEE  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
BIT 9  
5
5
+5V  
6
6
REF IN  
-VEE  
BIT 6  
BIT 7  
BIT 8  
BIT 9  
-15V  
D2  
-15V  
7
7
C2  
C3  
8
8
BIP OFF  
OUT  
BIP OFF  
OUT  
9
9
+10V  
D3  
+10V  
10  
11  
12  
10  
11  
12  
10V SPAN BIT 10  
20V SPAN BIT 11  
PWR GND BIT 12  
10V SPAN BIT 10  
20V SPAN BIT 11  
PWR GND BIT 12  
F11  
NOTES:  
NOTE:  
Power Supply Levels are ±0.5V  
D1 = D2 = D3 = IN4002 or Equivalent  
F0 to F11:  
VIH = 5.0V ±0.5V  
VIL = 0.0V ±0.5V  
F0 = 100kHz ±10% (50% Duty Cycle)  
F1 = F0/2  
F2 = F0/4  
F3 = F0/8  
F4 = F0/16  
F5 = F0/32  
F6 = F0/64  
F7 = F0/128  
F8 = F0/256  
F9 = F0/512  
F10 = F0/1024  
F11 = F0/2048  
Definitions of Specifications  
Digital Inputs  
ideal (1 LSB) voltage change for a one bit change in code. A  
Differential Nonlinearity of ±1 LSB or less guarantees  
monotonicity; i.e., the output always increases and never  
decreases for an increasing input.  
The HS-565ARH accepts digital input codes in binary format  
and may be user connected for any one of three binary  
codes. Straight binary, Two’s Complement (see note below),  
or Offset Binary, (See Operating Instructions).  
Settling Time  
Settling time is the time required for the output to settle to  
within the specified error band for any input code transition.  
It is usually specified for a full scale or major carry transition,  
settling to within 0.50 LSB of final value.  
DIGITAL  
INPUT  
ANALOG OUTPUT  
(NOTE)  
TWO’S  
STRAIGHT  
BINARY  
OFFSET  
BINARY  
MSB . LSB  
000 . . .000  
100 . . .000  
111 . . .111  
COMPLEMENT  
Drift  
Zero  
-FS (Full Scale)  
Zero  
Zero  
-FS  
Gain Drift - The change in full scale analog output over the  
specified temperature range expressed in parts per million of  
full scale range per oC (ppm of FSR/oC). Gain error is  
measured with respect to +25oC at high (TH) and low (TL)  
temperatures. Gain drift is calculated for both high (TH - 25oC)  
and low ranges (+25oC - TL) by dividing the gain error by the  
respective change in temperature. The specification is the  
larger of the two representing worst case drift.  
0.50 FS  
+FS - 1LSB  
+FS - 1LSB  
Zero - 1LSB  
+FS - 1LSB  
011 . . .111 0.50 FS - 1LSB Zero - 1LSB  
NOTE: Invert MSB with external inverter to obtain Two’s  
Complement Coding  
Accuracy  
Nonlinearity - Nonlinearity of a D/A converter is an impor-  
tant measure of its accuracy. It describes the deviation from  
an ideal straight line transfer curve drawn between zero (all  
bits OFF) and full scale (all bits ON).  
Offset Drift - The change in analog output with all bits OFF  
over the specified temperature range expressed in parts per  
million of full scale range per oC (ppm of FSR/oC). Offset error  
is measured with respect to +25oC at high (TH) and low (TL)  
temperatures. Offset drift is calculated for both high (TH - 25oC)  
and low (+25oC - TL) ranges by dividing the offset error by the  
Differential Nonlinearity - For a D/A converter, it is the  
difference between the actual output voltage change and the  
Spec Number 518795  
6
HS-565ARH  
respective change in temperature. The specification given is No Trim Operation  
the larger of the two, representing worst case drift.  
The HS-565ARH will perform as specified without calibration  
Power Supply Sensitivity  
adjustments. To operate without calibration, substitute 50Ω  
resistors for the 100trimming potentiometers: In Figure 3  
replace R2 with 50; also remove the network on pin 8 and  
connect 50to ground. For bipolar operation in Figure 4,  
replace R3 and R4 with 50resistors.  
Power Supply Sensitivity is a measure of the change in gain  
and offset of the D/A converter resulting from a change in -15V  
or +15V supplies. It is specified under DC conditions and  
expressed as parts per million of full scale range per percent of  
change in power supply (ppm of FSR/%).  
With these changes, performance is guaranteed as shown  
under Specifications, “External Adjustments”. Typical  
unipolar zero will be ±0.50 LSB plus the op amp offset.  
Compliance  
Compliance Voltage is the maximum output voltage range  
that can be tolerated and still maintain its specified accuracy.  
Compliance Limit implies functional operation only and  
makes no claims to accuracy.  
The feedback capacitor C must be selected to minimize  
settling time.  
R4  
100Ω  
Glitch  
R3  
VCC  
REF OUT  
A glitch on the output of a D/A converter is a transient spike  
resulting from unequal internal ON-OFF switching times.  
Worst case glitches usually occur at half scale or the major  
carry code transition from 011 . . . 1 to 100 . . . 0 or vice  
versa. For example, if turn ON is greater than turn OFF for  
011 . . . 1 to 100 . . . 0, an intermediate state of 000 . . . 0  
exists, such that, the output momentarily glitches toward  
zero output. Matched switching times and fast switching will  
reduce glitches considerably.  
BIP.  
100Ω  
4
3
8
OFF.  
11  
10  
20V SPAN  
10V SPAN  
HS-565ARH  
+
-
5K  
5K  
10V  
VO  
IREF  
9.95K  
DAC  
DAC  
OUT  
0.5mA  
19.95K  
6
5
C
-
IO  
REF  
IN  
+
-
9
3.5K  
3K  
(4 x IREF  
x CODE)  
+
2.5K  
REF  
GND  
R (SEE  
TABLE 7)  
Applying the HS-565ARH  
CODE  
INPUT  
OP AMP Selection  
The HS-565ARH’s current output may be converted to  
voltage using the standard connections shown in Figures 3  
and 4. The choice of operational amplifier should be  
reviewed for each application, since a significant trade-off  
may be made between speed and accuracy. Remember  
settling time for the DAC-amplifier combination is  
7
. . . . .  
13  
24  
MSB  
-VEE  
LSB  
PWR  
GND  
FIGURE 4. BIPOLAR VOLTAGE OUTPUT  
Calibration  
Calibration provides the maximum accuracy from  
converter by adjusting its gain and offset errors to zero, For  
the HS-565ARH, these adjustments are similar whether the  
current output is used, or whether an external op amp is  
added to convert this current to a voltage. Refer to Table 7  
for the voltage output case, along with Figure 3 or 4.  
2 2  
) + (t )  
a
(t  
D
A
where tD, tA are settling times for the DAC and amplifier.  
+15V  
-15V  
100kΩ  
R1  
50kΩ  
R2  
100Ω  
100Ω  
Calibration is a two step process for each of the five output  
ranges shown in Table 7. First adjust the negative full scale  
(zero for unipolar ranges). This is an offset adjust which  
translates the output characteristic, i.e. affects each code by  
the same amount.  
VCC  
REF OUT  
BIP.  
4
3
8
OFF.  
11  
20V SPAN  
HS-565ARH  
+
-
5K  
5K  
10V  
10  
VO  
10V SPAN  
IREF  
9.95K  
Next adjust positive FS. This is a gain error adjustment,  
which rotates the output characteristic about the negative FS  
value.  
DAC  
19.95  
K
DAC  
OUT  
0.5mA  
6
5
C
-
IO  
REF  
IN  
+
-
9
3.5K  
3K  
(4 x IREF  
x CODE)  
+
2.5K  
For the bipolar ranges, this approach leaves an error at the  
zero code, whose maximum values is the same as for  
integral nonlinearity error. In general, only two values of  
output may be calibrated exactly; all others must tolerate  
some error. Choosing the extreme end points (plus and  
minus full scale) minimizes this distributed error for all other  
codes.  
REF  
GND  
R (SEE  
TABLE 7)  
CODE  
INPUT  
7
. . . . .  
13  
24  
MSB  
-VEE  
LSB  
PWR  
GND  
FIGURE 3. UNIPOLAR VOLTAGE OUTPUT  
Spec Number 518795  
7
HS-565ARH  
Settling Time  
This is a challenging measurement, in which the result  
depends on the method chosen, the precision and quality of  
test equipment and the operating configuration of the DAC  
(test conditions). As a result, the different techniques in use  
by converter manufacturers can lead to consistently different  
results. An engineer should understand the advantage and  
limitations of a given test methods before using the specified  
settling time as a basis for design.  
(Cases (b) and (c) may be eliminated unless the overshoot  
exceeds 0.50 LSB). For example, refer to Figures 5A and5B  
for the measurement of case (d).  
Procedure  
As shown in Figure 5B, settling time equals tX plus the  
comparator delay (tD = 15ns). To measure tX,  
• Adjust the delay on generator number 2 for a tX of several  
microseconds. This assures that the DAC output has  
settled to its final wave.  
The approach used for several years at Harris calls for a  
strobed comparator to sense final perturbations of the DAC  
output waveform. This gives the LSB  
a reasonable  
• Switch on the LSB (+5V)  
magnitude (814mV for the HS-565ARH, which provides the  
comparator with enough overdrive to establish an accurate  
±0.50 LSB window about the final settled value. Also, the  
required test conditions simulate the DACs environment for a  
common application - use in a successive approximation A/  
D converter. Considerable experience has shown this to be a  
reliable and repeatable way to measure settling time.  
• Adjust the VLSB supply for 50% triggering at COMPARA-  
TOR OUT. This is indicated by traces of equal brightness  
on the oscilloscope display as shown in Figure 5B. Note  
DVM reading.  
• Switch to LSB to Pulse (P)  
• Readjust the VLSB supply for 50% triggering as before,  
and note DVM reading. One LSB equals one tenth the  
difference in the DVM readings noted above.  
The usual specification is based on a 10V step, produced  
by simultaneously switching all bits from off-to-on (tON) or  
on-to-off (tOFF). The slower of the two cases is specified,  
as measured from 50% of the digital input transition to the  
final entry within a window of 0.50 LSB about the settled  
value. Four measurements characterize a given type of  
DAC:  
• Adjust the VLSB supply to reduce the DVM reading by  
5 LSBs (DVM reads 10X, so this sets the comparator  
to sense the final settled value minus 0.50 LSB). Com-  
parator output disappears.  
(a) tON, to final value +0.50 LSB  
(b) tON, to final value -0.50 LSB  
(c) tOFF, to final value +0.50 LSB  
(d) OFF, to final value -0.50 LSB  
• Reduce generator number 2 delay until comparator output  
reappears, and adjust for “equal brightness”.  
• Measure tX from scope as shown in Figure 5B. Settling  
time equals tX + tD, i.e. tX + 15ns.  
TABLE 7. OPERATING MODES AND CALIBRATION  
CIRCUIT CONNECTIONS  
CALIBRATION  
ADJUST  
OUTPUT  
RANGE  
PIN 10  
TO  
PIN 11  
TO  
RESISTOR  
(R)  
APPLY  
INPUT CODE  
MODE  
TO SET VO  
Unipolar (See Figure 3)  
0 to +10V  
0 to +5V  
±10V  
VO  
VO  
NC  
VO  
VO  
Pin 10  
Pin 9  
VO  
1.43K  
All 0’s  
All 1’s  
R1  
R2  
0V  
+9.99756V  
1.1K  
All 0’s  
All 1’s  
R1  
R2  
0V  
+4.99878V  
Bipolar (See Figure 4)  
1.69K  
1.43K  
1.1K  
All 0’s  
All 1’s  
R3  
R4  
-10V  
+9.99512V  
±5V  
Pin 10  
Pin 9  
All 0’s  
All 1’s  
R3  
R4  
-5V  
+4.99756V  
±2.5V  
All 0’s  
All 1’s  
R3  
R4  
-2.5V  
+2.49878V  
Spec Number 518795  
8
HS-565ARH  
SYNC  
IN  
PULSE  
GENERATOR  
NO. 1  
PULSE  
GENERATOR  
NO. 2  
OUT  
OUT  
TRIG  
OUT  
C
20V ± 20%  
BIAS  
A
HS-565ARH  
TURN ON  
8
24  
TURN OFF  
11  
23  
.
.
.
5K  
5K  
+3V  
.
9.95K  
10  
9
.
50%  
A
B
NC  
.
DIGITAL  
INPUT  
0V  
0V  
.
.
-0.50LSB  
STROBE IN  
D
.
.
B
+
DAC  
OUTPUT  
.
~100  
kHz  
COMPARATOR  
OUT  
.
.
-
14  
-400mV  
(TURN OFF)  
2.5K  
SETTLING TIME  
tD = COMPARATOR DELAY  
P
5
13  
2mA  
5V  
tX  
50%  
COMP.  
STROBE  
2V  
C
12  
LSB  
90  
10  
200K  
0.8V  
“EQUAL BRIGHTNESS”  
VLSB  
SUPPLY  
DVM  
0.1µF  
COMP.  
OUT  
4V  
D
0V  
FIGURE 5A.  
FIGURE 5B.  
Other Considerations  
Grounds  
Layout  
The HS-565ARH has two ground terminals, pin 5 (REF GND)  
and pin 12 (PWR GND). These should not be tied together  
near the package unless that point is also the system signal  
ground to which all returns are connected. (If such a point  
exists, then separate paths are required to pins 5 and 12).  
Connections to pin 9 (IOUT) on the HS-565ARH are most crit-  
ical for high speed performance. Output capacitance of the  
DAC is only 20pF, so a small change of additional capacitance  
may alter the op amp’s stability and affect settling time. Con-  
nections to pin 9 should be short and few. Component leads  
should be short on the side connecting to pin 9 (as for feed-  
back capacitor C). See the Settling Time section.  
The current through pin 5 is near zero DC (Note); but pin 12  
carries up to 1.75mA of code - dependent current from bits  
1, 2, and 3. The general rule is to connect pin 5 directly to  
the system “quiet” point, usually called signal or analog  
ground. Connect pin 12 to the local digital or power ground.  
Then, of course, a single path must connect the analog/  
signal and digital/power grounds.  
Bypass Capacitors  
Power supply bypass capacitors on the op amp will serve the  
HS-565ARH also. If no op amp is used, a 0.01µF ceramic  
capacitor from each supply terminal to pin 12 is sufficient,  
since supply current variations are small.  
NOTE: Current cancellation is a two step process within the HS-  
565ARH in which code dependent variations are eliminated,  
the resulting DC current is supplied internally. First an  
auxiliary 9-bit R-2R ladder is driven by the complement of the  
DACs input code. Together, the main and auxiliary ladders  
draw a continuous 2.25mA from the internal ground node, re-  
gardless of input code. Part of the DC current is supplied by  
the zener voltage reference, and the remainder is sourced  
from the positive supply via a current mirror which is laser  
trimmed for zero current through the external terminal (pin 5).  
Die Characteristics  
Transistor Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Die Size . . . . . . . . . . . . . . . . . . . . . . . . . 179 mils x 107 mils  
Tie Substrate to . . . . . . . . . . . . . . . . . . . .Reference Ground  
Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bipolar - DI  
Spec Number 518795  
9
HS-565ARH  
Die Characteristics  
DIE DIMENSIONS:  
179 mils x 107 mils x 19 mils  
WORST CASE CURRENT DENSITY:  
2.0 x 105 A/cm2  
METALLIZATION:  
Type: Al/Copper  
Thickness: 16kÅ ±2kÅ  
GLASSIVATION:  
Type: SiO2  
Thickness: 8kÅ ±1kÅ  
Metallization Mask Layout  
HS-565ARH  
(MSB)  
BIT 1  
VCC NC  
NC  
1
A
BIT 2  
3
3
VREF OUT  
BIT 3  
VREF  
GND  
BIT 4  
BIT 5  
VREF IN  
-VS  
BIT 6  
BIPOLAR  
12  
BIT 7  
BIT 8  
IDAC  
OUT  
BIT 9  
10V  
SPAN  
BIT 10  
20V  
POWER  
GND  
BIT 12  
(LSB)  
BIT 11  
SPAN  
Spec Number 518795  
10  

相关型号:

HS9-565ARH-Q

12-Bit Digital-to-Analog Converter
ETC

HS9-565ARH-T

Radiation Hardened High Speed, Monolithic Digital-to-Analog Converter
INTERSIL

HS9-565ARH/PROTO

Radiation Hardened High Speed, Monolithic Digital-to-Analog Converter
INTERSIL

HS9-565BEH-Q

Radiation Hardened High Speed, Monolithic Digital-to-Analog Converter
INTERSIL

HS9-565BRH-Q

Radiation Hardened High Speed, Monolithic Digital-to-Analog Converter
INTERSIL

HS9-565BRH/PROTO

Radiation Hardened High Speed, Monolithic Digital-to-Analog Converter
INTERSIL

HS9-6254RH-Q

Radiation Hardened Ultra High Frequency NPN Transistor Array
INTERSIL

HS9-6254RH/PROTO

5 CHANNEL, Si, NPN, RF SMALL SIGNAL TRANSISTOR, CERAMIC, DFP-16
RENESAS

HS9-6254RH/SAMPLE

5 CHANNEL, Si, NPN, RF SMALL SIGNAL TRANSISTOR, CERAMIC, DFP-16
RENESAS

HS9-6504RH

4KX1 STANDARD SRAM, 210ns, CDFP18
RENESAS
ETC

HS9-6504RH-Q

HS9-6504RH-Q
RENESAS