HS1-3282-8 [INTERSIL]

CMOS ARINC Bus Interface Circuit; CMOS ARINC总线接口电路
HS1-3282-8
型号: HS1-3282-8
厂家: Intersil    Intersil
描述:

CMOS ARINC Bus Interface Circuit
CMOS ARINC总线接口电路

外围集成电路 数据传输
文件: 总15页 (文件大小:179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HS-3282  
REFERENCE AN400  
March 1997  
CMOS ARINC Bus Interface Circuit  
Features  
Description  
• ARlNC Specification 429 Compatible  
• Data Rates of 100 Kilobits or 12.5 Kilobits  
• Separate Receiver and Transmitter Section  
The HS-3282 is a high performance CMOS bus interface  
circuit that is intended to meet the requirements of ARINC  
Specification 429, and similar encoded, time multiplexed  
serial data protocols. This device is intended to be used with  
the HS-3182, a monolithic Dl bipolar differential line driver  
designed to meet the specifications of ARINC 429. The  
ARINC 429 bus interface circuit consists of two (2) receivers  
and a transmitter operating independently as shown in  
Figure 1. The two receivers operate at a frequency that is ten  
(10) times the receiver data rate, which can be the same or  
different from the transmitter data rate. Although the two  
receivers operate at the same frequency, they are  
functionally independent and each receives serial data asyn-  
chronously. The transmitter section of the ARINC bus  
interface circuit consists mainly of a First-In First-Out (FIFO)  
memory and timing circuit. The FIFO memory is used to hold  
up to eight (8) ARINC data words for transmission serially.  
The timing circuit is used to correctly separate each ARINC  
word as required by ARINC Specification 429. Even though  
ARINC Specification 429 specifies a 32-bit word, including  
parity, the HS-3282 can be programmed to also operate with  
a word length of 25 bits. The incoming receiver data word  
parity is checked, and a parity status is stored in the receiver  
latch and output on Pin BD08 during the 1st word. [A logic  
“0” indicates that an odd number of logic “1” s were received  
and stored; a logic “1” indicates that an even number of logic  
“1”s were received and stored]. In the transmitter the parity  
generator will generate either odd or even parity depending  
upon the status of PARCK control signal. A logic “0” on BD12  
will cause odd parity to be used in the output data stream.  
• Dual and Independent Receivers, Connecting Directly  
to ARINC Bus  
• Serial to Parallel Receiver Data Conversion  
• Parallel to Serial Transmitter Data Conversion  
• Word Lengths of 25 or 32 Bits  
• Parity Status of Received Data  
• Generate Parity of Transmitter Data  
• Automatic Word Gap Timer  
• Single 5V Supply  
• Low Power Dissipation  
• Full Military Temperature Range  
Ordering Information  
PKG.  
NO.  
PACKAGE  
CERDIP  
SMD#  
TEMP. RANGE  
PART NUMBER  
o
o
-55 C to +125 C HS1-3282-8  
F40.6  
5962-8688001QA F40.6  
o
o
CLCC  
-40 C to +85 C HS4-3282-9+  
J44.A  
J44.A  
o
o
-55 C to +125 C HS4-3282-8  
SMD#  
5962-8688001XA J44.A  
Versatility is provided in both the transmitter and receiver by  
the external clock input which allows the bus interface circuit  
to operate at data rates from 0 to 100 kilobits. The external  
clock must be ten (10) times the data rate to insure no data  
ambiguity.  
The ARINC bus interface circuit is fully guaranteed to  
support the data rates of ARINC specification 429 over both  
the voltage (±5%) and full military temperature range. It  
interfaces with UL, CMOS or NMOS support circuitry, and  
uses the standard 5-volt V  
supply.  
CC  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
File Number 2964.2  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 19959-183  
HS-3282  
Pinouts  
HS-3282 (CERDIP)  
TOP VIEW  
V
1
2
3
4
5
6
7
8
9
40 NC  
DD  
429DI1(A)  
429DI1(B)  
429DI2(A)  
429DI2(B)  
D/R1  
39 MR  
38 TX CLK  
37 CLK  
36 NC  
35 NC  
D/R2  
34 CWSTR  
33 ENTX  
32 429D0  
31 429D0  
30 TX/R  
29 PL2  
SEL  
EN1  
EN2 10  
BD15 11  
BD14 12  
BD13 13  
BD12 14  
BD11 15  
BD10 16  
BD09 17  
BD08 18  
BD07 19  
BD06 20  
28 PL1  
27 BD00  
26 BD01  
25 BD02  
24 BD03  
23 BD04  
22 BD05  
21 GND  
HS-3282 (CLCC)  
TOP VIEW  
44  
43 42 41 40  
6
5
4
3
2
1
7
39  
38  
NC  
D/R1  
D/R2  
NC  
NC  
8
9
37 CWSTR  
10  
11  
12  
ENTX  
429D0  
429D0  
TX/R  
PL2  
SEL  
EN1  
36  
35  
34  
33  
32  
31  
30  
29  
EN2  
BD15 13  
14  
BD14  
15  
PL1  
BD13  
BD12 16  
BD11  
BD00  
BD01  
17  
18 19 20 21 22 23 24 25 26 27 28  
5-184  
HS-3282  
Pin Description  
PIN  
1
SYMBOL  
SECTION  
Recs/Trans  
Receiver  
Receiver  
Receiver  
Receiver  
Receiver  
Receiver  
Receiver  
Receiver  
Receiver  
Recs/Trans  
DESCRIPTION  
V
Supply pin 5 volts ±5%.  
CC  
2
429 DI1 (A)  
429 DI1 (B)  
429 Dl2 (A)  
429 DI2 (B)  
D/R1  
ARlNC 429 data input to Receiver 1.  
ARlNC 429 data input to Receiver 1.  
ARINC 429 data input to Receiver 2.  
ARINC 429 data input to Receiver 2.  
3
4
5
6
Device ready flag output from Receiver 1 indicating a valid data word is ready to be fetched.  
Device ready flag output from Receiver 2 indicating a valid data word is ready to be fetched.  
Bus Data Selector - Input signal to select one of two 16-bit words from either Receiver 1 or 2.  
Input signal to enable data from Receiver 1 onto the data bus.  
7
D/R2  
8
SEL  
9
EN1  
10  
11  
EN2  
Input signal to enable data from Receiver 2 onto the data bus.  
BD15  
Bi-directional data bus for fetching data from either of the Receivers, or for loading data into  
the Transmitter memory or control word register. See Control Word Table for description of  
Control Word bits.  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
BD14  
BD13  
BD12  
BD11  
BD10  
BD09  
BD08  
BD07  
BD06  
GND  
BD05  
BD04  
BD03  
BD02  
BD01  
BD00  
PL1  
Recs/Trans  
Recs/Trans  
Recs/Trans  
Recs/Trans  
Recs/Trans  
Recs/Trans  
Recs/Trans  
Recs/Trans  
Recs/Trans  
Recs/Trans  
Recs/Trans  
Recs/Trans  
Recs/Trans  
Recs/Trans  
Recs/Trans  
Recs/Trans  
Transmitter  
Transmitter  
See Pin 11.  
See Pin 11.  
See Pin 11.  
See Pin 11.  
See Pin 11.  
See Pin 11.  
See Pin 11.  
See Pin 11.  
See Pin 11.  
Circuit Ground.  
See Pin 11.  
See Pin 11. Control Word function not applicable.  
See Pin 11. Control Word function not applicable.  
See Pin 11. Control Word function not applicable.  
See Pin 11. Control Word function not applicable.  
See Pin 11. Control Word function not applicable.  
Parallel load input signal loading the first 16-bit word into the Transmitter memory.  
PL2  
Parallel load input signal loading the first 16-bit word into the Transmitter memory and initiates  
data transfer into the memory stack.  
30  
TX/R  
Transmitter  
Transmitter flag output to indicate the memory is empty.  
5-185  
HS-3282  
Pin Description (Continued)  
PIN  
31  
32  
33  
34  
SYMBOL  
429D0  
SECTION  
Transmitter  
Transmitter  
Transmitter  
Recs/Trans  
DESCRIPTION  
Data output from Transmitter  
Data output from Transmitter.  
429D0  
ENTX  
Transmitter Enable input signal to initiate data transmission from FIFO memory.  
CWSTR  
Control word input strobe signal to latch the control word from the databus into the control  
word register.  
35  
36  
37  
-
-
-
No connection. Must be left open.  
-
No connection. Must be left open or tied low but never tied high.  
CLK  
Recs/Trans  
External clock input. May be either ten (10) or eighty (80) times the data rate. If using both  
ARINC data rates it must be ten (10) times the highest data rate, (typically 1MHz).  
38  
39  
TXCLK  
MR  
Transmitter  
Recs/Trans  
Transmitter Clock output. Delivers a clock frequency equal to the transmitter data rate.  
Master Reset. Active low pulse used to reset FIFO, bit counters, gap timer, word count signal,  
TX/R and various other flags and controls. Master reset does not reset the control word  
register. Usually only used on Power-Up or System Reset.  
40  
-
-
No Connection.  
Pinout  
20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
NC NC NC  
5-186  
HS-3282  
Operational Description  
The HS-3282 is designed to support ARINC Specification Provisions have been made through the external clock input  
429 and other serial data protocols that use a similar format to provide data rate flexibility. This requires an external clock  
by collecting the receiving, transmitting, synchronizing, that is 10 times the data rate.  
timing and parity functions on a single, low power LSl circuit.  
To obtain the flexibility discussed above, a number of  
It goes beyond the ARlNC requirements by providing for  
external control signals are required, To reduce the pin count  
either odd or even parity, and giving the user a choice of  
requirements, an internal control word register is used. The  
either 25 or 32-bit word lengths. The receiver and transmitter  
control word is latched from the data bus into the register by  
sections operate independently of each other. The serial-to-  
the Control Word Strobe (CWSTR) signal going to a logic  
parallel conversion required of the receiver and the parallel-  
“1”. Eleven (11) control functions are used, and along with  
to-serial conversion requirements of the transmitter have  
the Bus Data (BD) line are listed below:  
been incorporated into the bus interface circuit.  
Control Word  
PIN NAME SYMBOL  
FUNCTION  
BD05  
SLFTST  
Connects the self test signal from the transmitter directly to the receiver shift registers, bypassing the input  
receivers. Receiver 1 receives Data True and Receiver 2 receives Data Not. Note that the transmitter output  
remains active. (Logic “0” on SLFTST Enables Self Test).  
BD06  
BD07  
SDENB1 Signal to Activate the Source/Destination (S/D) Decoder for Receiver 1. (Logic “1” activates S/D Decoder).  
X1  
If SDENB1 = “1” then this bit is compared with ARlNC Data Bit #9. If Y1 also matches (see Y1), the word will be  
accepted by the Receiver 1. If SDENB1 = “0” this bit becomes a don’t care.  
BD08  
Y1  
If SDENBI = “1” then this bit is compared with ARINC Data Bit #10. If X1 also matches (see X1), the word will  
be accepted by the Receiver 1. If SDENB1 = “0” this bit becomes a don’t care.  
BD09  
BD10  
SDENB2 Signal to activate the Source/Destination (S/D) Decoder for Receiver 2. (Logic “1” activates S/D Decoder).  
X2  
If SDENB2 = “1” then this bit is compared with ARlNC Data Bit #9. If Y2 also matches (see Y2), the word will be  
accepted by the Receiver 2. If SDENB2 = “0” this bit becomes a don’t care.  
BD11  
BD12  
BD13  
BD14  
Y2  
If SDENB2 = “1” then this bit is compared with ARINC Data Bit #10. If X2 also matches (see X2), the word will  
be accepted by the Receiver 2. If SDENB2 = “0” this bit becomes a don’t care.  
PARCK  
TXSEL  
Signal used to invert the transmitter parity bit for test of parity circuits. Logic “0” selects normal odd parity. Logic  
“I” selects even parity.  
Selects high or low Transmitter data rate. If TXSEL = “0” then transmitter data rate is equal to the clock rate  
divided by ten (10). If TXSEL = “1” then transmitter data rate is equal to the clock rate divided by eighty (80).  
RCVSEL Selects high or low Receiver data rate. If RCVSEL = “0” then the received data rate should be equal to the clock  
rate divided by ten (10), if RCVSEL = “1 “then the received data rate should be equal to the clock rate divided  
by eighty (80).  
BD15  
WLSEL  
Selects word length. If WLSEL = “0” a 32-bit word format will be selected. If WLSEL = “1” a 25-Bit word format  
will be selected.  
ARlNC 429 DATA FORMAT as input to the Receiver and out- This format is shuffled when seen on the sixteen bidirec-  
put from the Transmitter is as follows:  
tional input/outputs. The format shown below is used from  
the receivers and input to the transmitter:  
TABLE 1. ARINC 429 32-BIT DATA FORMAT  
TABLE 2A. WORD 1 FORMAT  
ARINC BIT #  
1 - 8  
FUNCTION  
Label  
BI-DIRECTIONAL  
BIT #  
15, 14  
13  
FUNCTION  
Data  
ARINC BlT #  
13, 12  
11  
9 - 10  
11  
SDl or Data  
LSB  
LSB  
12 - 27  
28  
Data  
12, 11  
10, 9  
8
SDl or Data  
SSM Status  
Parity Status  
Label  
10, 9  
MSB  
31, 30  
32  
29  
Sign  
30, 31  
32  
SSM  
7 - 00  
1 - 8  
Parity Status  
5-187  
HS-3282  
• The Line Receiver functions as a voltage level translator.  
It transforms the 10 volt differential line voltage, ARINC  
429 format, into 5 volt internal logic level.  
TABLE 2B. WORD 2 FORMAT  
BI-DIRECTIONAL  
BlT#  
FUNCTION  
ARINC BIT#  
• The output of the Line Receiver is one of two inputs to the  
Self-Test Data Selector (SEL). The other input to the  
Data Selector is the Self-Test Signal from the Transmitter  
section.  
15  
Sign  
29  
28  
14  
MSB  
13 - 00  
Data  
27 - 14  
• The incoming data, either Self-Test or ARlNC 429, is  
double sampled by the Word Gap Timer to generate a  
Data Clock. The Receiver sample frequency (RCVCLK),  
1MHz, or 125kHz, is generated by the Receiver/Transmit-  
ter Timing Circuit. This sampling frequency is ten times the  
Data Rate to ensure no data ambiguity.  
Receiver Parity Status:  
0 = Odd Parity  
1 = Even Parity  
If the receiver input data word string is broken before the  
entire data word is received, the receiver will reset and  
ignore the partially received data word.  
• The derived data clock then shifts the data down a 32-Bit  
long Data Shift Register (Data S/RI). The Data Word  
Length is selectable for either 25 Bits or 32 Bits long by the  
Control Signal (WLSEL). As soon as the data word is  
completely received, an internal signal (WDCNT1) is gen-  
erated by the Word Gap Timer Circuit.  
If the transmitter is used to transmit consecutive data words,  
each word will be separated by a four (4) bit “null” state (both  
positive and negative outputs will maintain a zero (0) volt  
level.)  
• The Source/Destination (S/D) Decoder compares the user  
set code (X and Y) with Bits 9 and 10 of the Data Word. If  
the two codes are matched, a positive signal is generated  
to enable the WDCNT1 signal to latch in the received data.  
Otherwise, the data word is ignored and no latching action  
takes place. The S/D Decoder can be Enabled and  
Disabled by the control signal S/D ENB. If the data word is  
latched, an indicator flag (D/R1) is set. This indicates a  
valid data word is ready to be fetched by the user.  
TABLE 3. ARINC 25-BIT DATA FORMAT  
ARINC BIT #  
FUNCTION  
Label  
1 - 8  
9
LSB  
11 - 23  
24  
Data  
MSB  
25  
Parity Status  
• After the receiver data has been shifted down the shift  
register, it is placed in a holding register. The device ready  
flag will then be set indicating that data is ready to be  
fetched. If the data is ignored and left in the holding regis-  
ter, it will be written over when the next data word is  
received.  
TABLE 4A. WORD 1 FORMAT  
BI-DIRECTIONAL  
BIT#  
FUNCTION  
Don’t Care  
Parity Status  
Label  
ARINC BIT#  
15 - 9  
8
XXX  
25  
• The received data in the 32-bit holding register is placed  
on the bus in the form of two (2)16-bit words regardless of  
whether the format is for 32 or 25-bit data words. Either  
word can be accessed first or repeatedly until the next  
received data word falls into the holding register.  
7 - 0  
1 - 8  
TABLE 4B. WORD 2 FORMAT  
BI-DIRECTIONAL  
• The parity of the incoming word is checked and the status  
(i.e., logic “0” for odd parity and logic “1” for even parity)  
stored in the receiver latch and output on BD08 during the  
Word No. 1.  
BIT#  
FUNCTION  
ARINC BlT#  
15  
MSB  
24  
23 -10  
9
14 - 1  
0
Data  
LSB  
• Assuming the user desires to access the data, he first sets  
the Data Select Line (SEL) to a Logic “0” level and pulses  
the Enable (EN1) line. This action causes the Data  
Selector (SELl) to select the first-data word, which con-  
tains the label field and Enable it onto the Data Bus. To  
obtain the second data word, the user sets the SEL line to  
a Logic “1” level and pulse the Enable (EN1) line again.  
The Enable pulse duration is matched to the user circuit  
requirement needed to read the Data Word from the Data  
Bus. The second Enable pulse is also used to reset the  
Device Ready (D/R1) flip-flop. This completes a receiving  
cycle.  
Receiver Parity Status:  
0 = Odd Parity  
1 = Even Parity  
No Source/Destination (S/D) in 25-Bit format.  
Receiver Operation  
Since the two receivers are functionally identical, only one  
will be discussed in detail, and the block diagram will be  
used for reference in this discussion. The receiver consists  
of the following circuits:  
5-188  
HS-3282  
Transmitter Operation  
Sample Interface Technique  
The Transmitter section consists of an 8-word deep by 31- From Figure 1, one can see that the Data Bus is time shared  
Bit long FIFO Memory, Parity Generator, Transmitter Word between the Receiver and Transmitter. Therefore, bus  
Gap Timing Circuit and Driver Circuit.  
controlling must be synchronously shared between the  
Receiver and the Transmitter.  
• The FlFO Memory is organized in such a way that data  
loaded in the input register is automatically transferred to Figure 2 shows the typical interface timing control of the  
the output register for Serial Data Transmission. This ARlNC Chip for Receiving function and for Transmitting  
eliminates a large amount of data managing time since the function. Timing sequence for loading the Transmitter FIFO  
data need not be clocked from the input register to the Memory is shown in Timing Interval A. A transmitter Ready  
output register. The FIFO input register is made up of two (TX/R) Flag signals the user that the Transmitter Memory is  
sets of 16 D-type flip-flops, which are clocked by the two empty. The user then Enables the Transmitter Data, a 16-Bit  
parallel load signals (PL1 and PL2). PL1 must always word, on the Data Bus and strobes the Transmitter with a  
precede PL2. Multiple PL1’s may occur and data will be Parallel Load (PL1) Signal. The second part of the 32-Bit  
written over. As soon as PL2 is received, data is word is similarly loaded into the Transmitter with PL2, which  
transferred to the FIFO. The data from the Data Bus is also initiates data transfer to stack. This is continuous until  
clocked into the D-type flip-flop on the positive going edge the Memory is full, which is eight 31-Bit words. The user  
of the PL signals. If the FIFO memory is initially empty, or must keep track of the number of words loaded into the  
the stack is not full, the data will be automatically Memory to ensure no data is written over by other data.  
transferred down the Memory Stack and into the output During the time the user is loading the Transmitter, he does  
register or to the last empty FIFO storage register. If the not have to service the Receiver, even if the Receiver flags  
Transmitter Enable signal (ENTX) is not active, a Logic “0”, the user with the signal D/R1 that a valid received word is  
the data remains at the output register. The FIFO Memory ready to be fetched. This is shown by the Timing interval B. If  
has storage locations to hold eight 31-bit words. If the the user decides to obtain the received data before the  
memory is full and the new data is again strobed with PL, Transmitter is completely loaded, he sets the two parallel  
the old data at the input register is written over by the new load signals (PL1 and PL2) at a Logic “1” state, and strobes  
data. Data will remain in the Memory until ENTX goes to a EN1 while the signal SEL is at a Logic “0” state. After the  
Logic “1”. This activates the FIFO Clock and data is shifted negative edge of EN1, the first 16-Bit segment of the  
out serially to the Transmitter Driver. Data may be loaded received word becomes valid on the Data Bus. At the  
into the FIFO only while ENTX is inactive (low). It is not positive edge of EN1, the user should toggle the signal SEL  
possible to write data into the FIFO while transmitting. to ready the Receiver for the second 16-Bit word. Strobing  
WARNING: If PL1 or PL2 is applied while ENTX is high, the Receiver with EN1, the second time, enables the second  
i.e., while transmitting, the FlFO may be disrupted such 16-Bit word and resets the Receiver Ready Flag D/R1. The  
that it would require a MR (Master Reset) signal to user should now reset the signal SEL to a Logic “0” state to  
recover.  
ready the Receiver for another Read Cycle. During the time  
period that the user is fetching the received words, he can  
load the transmitter. This is done by interlacing the PL  
signals with the EN signals as shown in the Timing Interval  
B. Servicing the Receiver 2 is similar and is illustrated by  
Timing interval C. Timing interval D shows the rest of the  
Transmitter loading sequence and the beginning of the  
transmission by switching the signal TX Enable to a Logic “1”  
state. Timing interval E is the time it takes to transmit all data  
from the FlFO Memory, either 288 Bit times or 232 Bit times.  
• The Output Register of the FIFO is designed such that it  
can shift out a word of 24 Bits long or 31 Bits long. This  
word length is again controlled by the WLSEL bit. The TX  
word Gap Timer Circuit also automatically inserts a gap  
equivalent to 4-Bit Times between each word. This gives a  
minimum requirement of 29-Bit time or 36-Bit time for each  
word transmission. Assuming the signal, ENTX, remains  
at a Logic “1”, a transfer to stack signal is generated to  
transfer the data down the Memory Stack one position.  
This action is continued until the last word is shifted out of  
the FIFO memory. At this time a Transmitter Ready (TX/R)  
flag is generated to signal the user that the Transmitter is  
ready to receive eight more data words. During transmis-  
sion, if ENTX is taken low then high again, transmission  
will cease leaving a portion of the word untransmitted, and  
the data integrity of the FIFO will be destroyed.  
Repeater Operation  
This mode of operation allows a data word that has been  
received to be placed directly in the FIFO for transmission. A  
timing diagram is shown in Figure 7. A 32-bit word is used in  
this example. The data word is shifted into the shift register  
and the D/R flag goes low. A logic “0” is placed on the SEL  
line and EN1 is strobed. This is the same as the normal  
receiver operation and places half the data word (16 bits) on  
the data bus. By strobing PL1 at the same time as EN1,  
these 16 bits will be taken off the bus and placed in the  
FIFO. SEL is brought back high and EN1 is strobed again for  
the second 16 bits of the data word. Again by strobing PL2 at  
the same time the second 16 bits will be placed in the FIFO.  
The parity bit will have been stripped away leaving the 31-bit  
data word in the FIFO ready for transmission as shown in  
Figure 6.  
• A Bit Counter is used to detect the last Bit shifted out of  
the FIFO memory and appends the Parity Bit generated  
by the Parity Generator. The Parity Generator has a  
control signal, Parity Check (PARCK), which establishes  
whether odd or even parity is used in the output data word.  
PARCK set to a logic “0” will result in odd parity and when  
set to a logic “1” will result in even parity.  
5-189  
HS-3282  
CLK  
37  
TX CLK  
38  
V
GND  
21  
SLF TST  
(BD05)  
S/D ENB1  
(BD06)  
CC  
1
RCV CLK  
RCVSEL  
WDCNT 1  
TXSEL  
RCV  
TIMING  
TX  
WLSEL  
SEL  
WORD GAP  
SELF  
TEST  
S/D ENB2  
(BD09)  
DATA CLOCK  
429D11 (A)  
429D11 (B)  
X1 (BD07)  
Y1 (BD06)  
X2 (BD10)  
2
CONTROL  
WORD  
REGISTER  
DATA S/R 1  
RCV  
CLK  
TX  
LINE  
RECEIV.  
ER 1  
CLK  
Y2 (BD11)  
PARCK  
(BD12)  
TXSEL  
(BD13)  
RCVSEL  
(BD14)  
WLSEL  
(BD15)  
3
32  
LATCH 1  
SEL EN1  
SLF  
TEST  
11  
S/DENB  
16  
16  
SEL 1  
16  
S/D  
WDCNT 1  
WDCNT 2  
34  
DECODER  
CWSTR  
ENTX  
16  
16  
TX CLK  
WLSEL  
16  
SEL 2  
D
D
TX WORD  
GAP  
F/F  
F/F  
S/D CODER  
33  
SEL EN2  
LATCH 2  
32  
DATA S/R 2  
DATA CLOCK  
429D12 (A)  
429D12 (B)  
4
16  
16  
LINE  
RECEIV.  
ER 2  
5
16  
SEL  
32  
31  
FIFO  
8 x 31  
TXC  
DRVR  
429D0  
429D0  
PARITY  
PARCK  
SELF  
TEST  
11 - 20  
WORD GAP  
8
WLSEL  
WDCNT 2  
22 - 27  
RCV CLK  
SELF  
TEST  
39  
6
7
9
10  
28 29  
30  
BD15-  
BD00  
DATA  
BUS  
MR D/R1 D/R2  
SEL EN1 EN2  
PL1 PL2  
TX/R  
FIGURE 1. SINGLE CHIP ARINC 429 INTERFACE FUNCTIONAL BLOCK DIAGRAM  
5-190  
HS-3282  
Absolute Maximum Ratings  
Thermal Information  
o
o
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+7.0V Thermal Resistance  
θJA ( C/W) θJC ( C/W)  
Input, Output or I/O Voltage Applied  
(Except Pins 2 - 5) . . . . . . . . . . . . . . . . GND -0.3V to V  
Input Voltage Applied (Pins 2 - 5). . . . . . . . . . . . . . . . . -29V to +29V  
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 1  
CDIP Package . . . . . . . . . . . . . . . . . . .  
CLCC Package . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +175 C  
Maximum Storage Temperature Range . . . . . . . . .-65 C to +150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . +300 C  
35  
55  
8
12  
+0.3V  
DD  
o
o
o
o
Operating Conditions  
Die Characteristics  
Operating Voltage Range . . . . . . . . . . . . . . . . . . . +4.75V to +5.25V  
Operating Temperature Range  
Gate Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2632 Gates  
o
o
HS-3282-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to +70 C  
o
o
HS-3282-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55 C to +125 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of  
the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
o
o
DC Electrical Performance Specifications V = 5V ±5%, T = 0 C to +70 C (HS-3282-5),  
DD  
A
o
o
T = -55 C to +125 C (HS-3282-8)  
A
LIMITS  
PARAMETER  
ARlNC INPUTS Pins 2-3,4-5  
Logic “1” Input Voltage  
Logic “0” Input Voltage  
Null Input Voltage  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNITS  
V
V
V
V
V
V
V
V
V
V
= 5.25V  
6.7  
-13.0  
-2.5  
-5.0  
-
13.0  
-6.7  
+2.5  
+5.0  
200  
-
V
V
lH  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
V
= 5.25V  
IL  
V
= 4.75V, 5.25V  
= 4.75V, 5.25V  
V
NUL  
Common Mode Voltage  
Input Leakage  
V
V
CH  
I
= 5.25V, V = ±6.5V  
IN  
µA  
µA  
kΩ  
kΩ  
kΩ  
lH  
Input Leakage  
I
= 5.25V, V = 0.0V  
IN  
-450  
12  
lL  
Differential Input Impedance  
RI  
= 5.25V, V = +5V, -5V  
IN  
-
Input lmpedance to V  
RH  
RG  
= 5.25V, V = 0V  
lN  
12  
-
DD  
Input lmpedance to GND  
= Open, V = 5.0V  
lN  
12  
-
BIDIRECTIONAL INPUTS Pins 11-20, 22-27  
Logic “1” Input Voltage  
Logic “0” Input Voltage  
Input Leakage  
V
V
V
V
V
= 5.25V  
= 4.75V  
2.1  
-
V
V
IH  
DD  
DD  
DD  
DD  
V
-
-
0.7  
1.5  
-
IL  
l
= 5.25V,V = 5.25V  
IN  
µA  
µA  
IH  
Input Leakage  
I
= 5.25V, V = 0.0V  
IN  
-1.5  
lL  
ALL OTHER INPUTS Pins 8-10, 28, 29, 33, 34, 37, 39  
Logic “1” Input Voltage  
Logic “0” Input Voltage  
Input Leakage  
V
V
V
V
V
= 5.25V  
= 4.75V  
3.5  
-
-
0.7  
10  
-
V
V
IH  
DD  
DD  
DD  
DD  
V
IL  
I
= 5.25V, V = 5.25V  
IN  
-
µA  
µA  
lH  
Input Leakage  
I
= 5.25V, V = 0.0V  
IN  
-75  
lL  
OUTPUTS Pins 6, 7, 11-20, 22-27, 30-32, 38, Supply Pin 1  
Logic “1” Output Voltage  
Logic “0” Output Voltage  
Standby Supply Current  
V
V
V
V
= 4.75V, I = -1.5mA  
OH  
2.7  
-
V
V
OH  
DD  
DD  
DD  
V
= 4.75V l = 1.8mA  
-
-
0.4  
20  
OL  
OL  
l
= 5.25V, V = 0V Except 9,10,  
mA  
CC1  
IN  
29 = 5.25V  
Operating Supply Current  
l
V
= 5.25V, V = 5.25V Except 8,  
-
20  
mA  
CC2  
DD  
IN  
33 = 0.0V, CLK = 1MHz  
5-191  
HS-3282  
o
o
AC Electrical Performance Specifications V = 5V ±5%, T = 0 C to +70 C (HS-3282-5),  
DD  
A
o
o
T = -55 C to +125 C (HS-3282-8)  
A
LIMITS  
PARAMETER  
SYMBOL  
FC  
CONDITIONS  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
MIN  
MAX  
1
UNITS  
MHz  
kHz  
Clock Frequency  
Data Rate 1/  
V
V
V
V
-
DD  
DD  
DD  
DD  
FD  
-
-
100  
12.5  
-
Data Rate 2/  
FD  
kHz  
Master Reset Pulse Width  
TMR  
200  
ns  
RECEIVER TIMING  
Receiver Ready Time From 32nd Bit 1/  
Receiver Ready Time From 32nd Bit 2/  
Device Ready to Enable Time  
Data Enable Pulse Width  
TD/R2  
TD/R2  
V
V
V
V
V
V
V
V
V
V
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
-
-
16  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
128  
TD/REN  
TEN  
0
-
200  
50  
-
-
-
Data Enable to Data Enable Time  
Data Enable to Device Ready Reset Time  
Output Data Valid to Enable Time  
Data Enable to Data Select Time  
Data Select to Data Enable Time  
Output Data Disable Time  
TENEN  
TEND/R  
TENDATA  
TENSEL  
TSELEN  
TDATAEN  
200  
200  
-
-
20  
20  
-
-
80  
CONTROL WORD TIMING  
Control Word Strobe Pulse Width  
Control Word Setup Time  
TCWSTR  
TCWSET  
TCWHLD  
V
V
V
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
130  
130  
0
-
-
-
ns  
ns  
ns  
DD  
DD  
DD  
Control Word Hold Time  
TRANSMITTER FIFO Write Timing  
Parallel Load Pulse Width  
TPL  
V
V
V
V
V
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
200  
0
-
ns  
ns  
ns  
ns  
ns  
DD  
DD  
DD  
DD  
DD  
Parallel Load to Parallel Load 2 Delay  
Transmitter Ready Delay Time  
Data Word Setup Time  
TPL12  
-
TTX/R  
-
840  
TDWSET  
TDWHLD  
110  
0
-
-
Data Word Hold Time  
TRANSMITTER Output Timing  
Enable Transmit to Output Data Valid Time 1/  
Enable Transmit to Output Data Valid Time 2/  
Output Data Bit Time 1/  
TENDAT  
TENDAT  
TBlT  
V
V
V
V
V
V
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
-
25  
µs  
µs  
µs  
µs  
µs  
µs  
DD  
DD  
DD  
DD  
DD  
DD  
-
200  
5.05  
40.4  
5.05  
40.4  
4.95  
39.6  
4.95  
39.6  
Output Data Bit Time 2/  
TBlT  
Output Data Null Time 1/  
TNULL  
TNULL  
Output Data Null Time 2/  
5-192  
HS-3282  
o
o
AC Electrical Performance Specifications V = 5V ±5%, T = 0 C to +70 C (HS-3282-5),  
DD  
A
o
o
T = -55 C to +125 C (HS-3282-8) (Continued)  
A
LIMITS  
PARAMETER  
Data Word Gap Time 1/  
SYMBOL  
TGAP  
CONDITIONS  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
MIN  
39.6  
316.8  
-
MAX  
40.4  
323.2  
400  
-
UNITS  
µs  
V
V
V
V
DD  
DD  
DD  
DD  
Data Word Gap Time 2/  
TGAP  
µs  
Data Transmission Word to TX/R Set Time  
Enable Transmit Turnoff Time  
TDTX/R  
TENTX/R  
ns  
0
ns  
REPEATER OPERATION TIMING  
Data Enable to Parallel Load Delay Time  
Data Enable Hold for Parallel Load Time  
Enable Transmit Delay Time  
TENPL  
TPLEN  
V
V
V
= 4.75V, 5.25V  
= 4.75V, 5.25V  
= 4.75V, 5.25V  
0
0
0
-
-
-
ns  
ns  
ns  
DD  
DD  
DD  
TTX/REN  
NOTES:  
1. 100kHz Data Rate.  
2. 12.5kHz Data Rate.  
o
o
Electrical Performance Specifications V = 5V ±5%, T = 0 C to +70 C (HS-3282-5),  
DD  
A
o
o
T = -55 C to +125 C (HS-3282-8)  
A
LIMITS  
(NOTE 1)  
PARAMETER  
SYMBOL  
CD  
CONDITIONS  
MIN  
MAX  
20  
20  
20  
15  
15  
10  
10  
15  
15  
UNITS  
pF  
Differential Input Capacitance  
V
= Open, f = 1MHz, Note 2, 3  
= GND, f = 1MHz, Note 2, 3  
= Open, f = 1MHz, Note 2, 3  
= Open, f = 1MHz, Note 2, 4  
= Open, f = 1MHz, Note 2, 5  
-
-
-
-
-
-
-
-
-
DD  
DD  
DD  
DD  
DD  
Input Capacitance to V  
CH  
V
V
V
V
pF  
DD  
lnput Capacitance to GND  
Input Capacitance  
Output Capacitance  
Clock Rise Time  
Clock Fall Time  
CG  
pF  
Cl  
pF  
CO  
pF  
TLHC  
THLC  
TLHI  
THLI  
CLK = 1MHz, From 0.7V to 3.5V  
CLK = 1MHz, From 3.5V to 0.7V  
From 0.7V to 3.5V, Note 6  
ns  
ns  
Input Rise Time  
Input Fall Time  
ns  
From 3.5V to 0.7V, Note 6  
ns  
NOTES:  
1. The parameters listed in this table are controlled via design or process parameters and are not directly tested. These parameters are  
characterized upon initial design and after major process and/or design changes affecting these parameters.  
2. All measurements are referenced to device GND.  
3. Pins 2-3, 4-5.  
4. Pins 8-10, 28, 29, 33, 34, 37, 39.  
5. Pins 6, 7, 11-20, 22-27, 30-32, 38.  
6. Pins 8-20, 22-29, 33, 34.  
5-193  
HS-3282  
Timing Waveforms  
TX/R  
TX ENABLE  
DATA BUS  
PL1  
PL2  
D/R1  
D/R2  
EN1  
EN2  
SEL  
TIME  
INTERVAL A  
TIME  
INTERVAL B  
TIME  
INTERVAL C  
TIME  
INTERVAL D  
TIME  
INTERVAL E  
BUS IS BEING USED AS AN OUTPUT  
BUS IS BEING USED AS AN INPUT  
FIGURE 2. TYPICAL INTERFACE TIMING SEQUENCE  
429DI  
D/R  
BIT  
32  
t
t
END/R  
D/R  
t
t
ENEN  
D/REN  
EN  
t
SELEN  
t
t
t
ENSEL  
SELEN  
ENSEL  
t
EN  
t
EN  
SEL  
t
t
ENDATA  
DATAEN  
t
t
DATAEN  
ENDATA  
BD00-15  
WORD  
1
WORD  
2
OR  
SEL  
WORD  
2
WORD  
1
BD00-15  
FIGURE 3. RECEIVER TIMING  
t
CWSTR  
CWSTR  
BD00-15  
t
CWHLD  
t
CWSET  
CONTROL WORD  
FIGURE 4. CONTROL WORD TIMING  
5-194  
HS-3282  
Timing Waveforms (Continued)  
PL1  
t
PL12  
t
PL  
PL2  
t
TX/R  
t
PL  
TX/R  
t
t
DWSET  
DWSET  
t
DWHLD  
t
DWHLD  
BD00-15  
WORD 1  
WORD 2  
FIGURE 5. TRANSMITTER FIFO WRITE TIMING  
TX/R  
t
ENTX/R  
ENTX  
t
BIT  
t
t
NUL  
NUL  
t
NUL  
t
t
GAP  
ENDAT  
BIT  
1
BIT  
2
BIT  
32  
BIT  
1
BIT  
32  
42900  
t
DTX/R  
FIGURE 6. TRANSMITTER OUTPUT TIMING  
BIT  
32  
t
429DI  
D/R  
t
D/R  
END/R  
t
t
ENEN  
D/REN  
t
t
EN  
EN  
EN  
t
SELEN  
t
t
SELEN  
t
ENSEL  
ENSEL  
SEL  
t
ENPL  
t
PLEN  
PL1  
PL2  
t
ENPL  
t
PLEN  
t
TX/R  
TX/R  
t
t
ENTX/R  
TX/REN  
ENTX  
t
t
NUL  
ENDAT  
BIT  
1
BIT  
32  
429D0  
t
DTX/R  
FIGURE 7. REPEATER OPERATION TIMING  
5-195  
HS-3282  
Burn-In Circuits  
HS-3282 CERDIP  
V
C
DD  
GND  
1
2
3
4
5
6
7
8
9
V
NC 40  
NC  
DD  
F4  
GND  
F4  
F15  
DI1(A)  
MR 39  
TX CLK 38  
CLK 37  
NC 36  
DI1(B)  
DI2(A)  
DI2(B)  
D/R1  
D/R2  
SEL  
NC  
F0  
GND  
NC  
NC  
NC  
NC 35  
NC  
V
CWSTR 34  
ENTX 33  
429D0 32  
429D0 31  
TX/R 30  
PL2 29  
DD  
F9  
GND  
NC  
NC  
NC  
F8  
V
EN1  
DD  
F8  
F15  
F14  
F13  
F12  
F11  
F10  
F9  
10 EN2  
11 BD15  
12 BD14  
13 BD13  
14 BD12  
15 BD11  
16 BD10  
17 BD09  
18 BD08  
19 BD07  
20 BD06  
PL1 28  
F8  
BD00 27  
BD01 26  
BD02 25  
BD03 24  
BD04 23  
BD05 22  
21  
F0  
F1  
F2  
F3  
F8  
F4  
F7  
F5  
F6  
GND  
HS-3282 CLCC  
GND  
C
44  
43 42 41 40  
6
5
4
3
2
1
7
39  
38  
NC  
NC  
NC  
F9  
NC  
NC  
NC  
NC  
NC  
V
D/R1  
D/R2  
8
9
CWSTR 37  
DD  
GND  
NC  
10  
11  
12  
ENTX  
D0  
SEL  
EN1  
36  
35  
34  
33  
32  
31  
30  
29  
V
DD  
D0  
F8  
NC  
NC  
EN2  
F15  
13 BD15  
TX/R  
PL2  
14  
F14  
F8  
BD14  
15  
PL1  
BD13  
16 BD12  
BD11  
F13  
F12  
F8  
F0  
BD00  
BD01  
17  
F11  
F1  
18 19 20 21 22 23 24 25 26 27 28  
NOTES:  
1. Resistors = 47k, 5%, 1/4W (Min)  
2. GND = Ground  
3. V  
= +5.5V, ±0.5V  
DD  
4. C = 0.01mF/Socket (Min)  
5. F0 = 100kHz, F1 = F0/2, . . . F15 = F14/2  
5-196  
HS-3282  
Die Characteristics  
DIE DIMENSIONS:  
246 x 224 x 19 mils)  
(6250 x 5700 x 483µm)  
GLASSIVATION:  
Type: SiO  
Thickness: 8kA ±1kÅ  
2
METALLIZATION:  
Type: Si-Al  
WORST CASE CURRENT DENSITY:  
2 x 10 A/cm  
5
2
Thickness: 11kÅ ±2kÅ  
Metallization Mask Layout  
HS-3282  
D/R2 (7)  
SEL (8)  
(36) N/C  
EN1 (9)  
(35) N/C  
EN1 (10)  
(34) CWSTR  
BD15 (11)  
BD14 (12)  
(33) ENTX  
(32) 429D0  
(31) 429D0  
(30) TX/R  
BD13 (13)  
BD12 (14)  
BD11 (15)  
(29) PL2  
(28) PL1  
BD10 (16)  
(27) BD00  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
5-197  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY