HI1-0539-5 [INTERSIL]

Precision, 4-Channel, Low-Level, Differential Multiplexer; 精密, 4通道,低层次的,差分多路复用器
HI1-0539-5
型号: HI1-0539-5
厂家: Intersil    Intersil
描述:

Precision, 4-Channel, Low-Level, Differential Multiplexer
精密, 4通道,低层次的,差分多路复用器

复用器
文件: 总11页 (文件大小:192K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI-539  
Data Sheet  
July 1999  
File Number 3149.2  
Precision, 4-Channel, Low-Level,  
Differential Multiplexer  
Features  
• Differential Performance, Typical:  
o
The Intersil HI-539 is a monolithic, 4-Channel, differential  
multiplexer. Two digital inputs are provided for channel  
selection, plus an Enable input to disconnect all channels.  
- Low r , 125 C . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5Ω  
ON  
o
- Low I  
D(ON)  
- Low Charge Injection . . . . . . . . . . . . . . . . . . . . 0.1pC  
, 125 C. . . . . . . . . . . . . . . . . . . . . . . 0.6nA  
- Low Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . -124dB  
Performance is guaranteed for each channel over the  
voltage range ±10V, but is optimized for low level differential  
signals. Leakage current, for example, which varies slightly  
with input voltage, has its distribution centered at zero input  
volts.  
• Settling Time, ±0.01% . . . . . . . . . . . . . . . . . . . . . . . 900ns  
• Wide Supply Range . . . . . . . . . . . . . . . . . . . ±5V to ±18V  
• Break-Before-Make Switching  
In most monolithic multiplexers, the net differential offset due  
to thermal effects becomes significant for low level signals.  
This problem is minimized in the HI-539 by symmetrical  
placement of critical circuitry with respect to the few heat  
producing devices.  
• No Latch-Up  
Applications  
• Low Level Data Acquisition  
• Precision Instrumentation  
Test Systems  
Supply voltages are ±15V and power consumption is only  
2.5mW.  
Ordering Information  
TRUTH TABLE  
TEMP.  
PKG.  
NO.  
ON CHANNEL TO  
o
PART NUMBER RANGE ( C)  
PACKAGE  
EN  
L
A
A
OUT A  
None  
1A  
OUT B  
None  
1B  
1
0
HI1-0539-5  
HI1-0539-8  
HI3-0539-5  
HI4P0539-5  
0 to 75  
16 Ld CERDIP  
F16.3  
X
X
-55 to 125 16 Ld CERDIP  
F16.3  
E16.3  
N20.35  
H
L
L
L
H
L
0 to 75  
0 to 75  
16 Ld PDIP  
20 Ld PLCC  
H
2A  
2B  
H
H
H
3A  
3B  
H
H
4A  
4B  
Pinouts  
HI-539  
(CERDIP, PDIP)  
HI-539  
(PLCC)  
TOP VIEW  
TOP VIEW  
A
1
2
3
4
5
6
7
8
16 A  
1
0
3
2
1
20 19  
EN  
V-  
15 GND  
14 V+  
4
5
6
7
8
18 V+  
V-  
IN 1A  
NC  
IN 1A  
IN 2A  
IN 3A  
IN 4A  
OUT A  
13 IN 1B  
12 IN 2B  
11 IN 3B  
10 IN 4B  
17  
16  
15  
IN 1B  
NC  
IN 2A  
IN 3A  
IN 2B  
14 IN 3B  
9
OUT B  
9
10 11 12 13  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
1
HI-539  
Absolute Maximum Ratings  
Thermal Information  
o
o
V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40V  
V+ or V- to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V  
Thermal Resistance (Typical, Note 1)  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
CERDIP Package. . . . . . . . . . . . . . . . .  
PDIP Package . . . . . . . . . . . . . . . . . . .  
PLCC Package. . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature  
85  
90  
80  
32  
N/A  
N/A  
Analog Signal (V , V  
). . . . . . . . . . . . . . . . . . . . . . . . . . V- to V+  
IN OUT  
Digital Input Voltage (V , V ) . . . . . . . . . . . . . . . . . . . . . . V- to V+  
EN  
A
Analog Current (IN or OUT). . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA  
o
Ceramic Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 C  
Plastic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 C  
o
Operating Conditions  
o
o
Temperature Range  
HI-539-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55 C to 125 C  
HI-539-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 75 C  
o
o
o
(PLCC - Lead Tips Only)  
o
o
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications Supplies = ±15V, V = 4V, V (Logic Level High) = 4V, V (Logic Level Low) = 0.8V,  
EN  
AH  
AL  
Unless Otherwise Specified  
-8  
-5  
TEST  
CONDITIONS  
TEMP  
( C)  
o
PARAMETER  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC CHARACTERISTICS  
Access Time, t  
25  
Full  
25  
-
-
250  
-
750  
-
-
250  
-
750  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
pC  
pC  
pC  
dB  
dB  
pF  
A
1,000  
1,000  
Break-Before-Make Delay, t  
30  
30  
-
85  
-
-
30  
30  
-
85  
-
-
OPEN  
Full  
25  
-
-
Enable Delay (ON), t  
250  
-
750  
250  
-
750  
ON(EN)  
Full  
25  
-
1,000  
-
1,000  
Enable Delay (OFF), t  
-
160  
-
650  
-
160  
-
650  
OFF(EN)  
Full  
25  
-
900  
-
900  
Settling Time  
To 0.01%  
-
0.9  
3
-
-
-
-
-
-
-
-
0.9  
3
-
-
-
-
-
-
-
Charge Injection (Output)  
Charge Injection (Output)  
Charge Injection (Input)  
Differential Crosstalk  
Full  
Full  
Full  
25  
-
-
-
0.1  
10  
-124  
-100  
5
-
0.1  
10  
-124  
-100  
5
-
-
Note 4  
Note 4  
-
-
Single Ended Crosstalk  
Channel Input Capacitance,  
25  
-
-
Full  
-
-
C
S(OFF)  
Channel Output Capacitance,  
Full  
Full  
Full  
Full  
-
-
-
-
7
17  
0.08  
3
-
-
-
-
-
-
-
-
7
17  
0.08  
3
-
-
-
-
pF  
pF  
pF  
pF  
C
D(OFF)  
Channel On Output Capacitance,  
C
D(ON)  
Input to Output Capacitance,  
Note 5  
C
DS(OFF)  
Digital Input Capacitance, C  
A
DIGITAL INPUT CHARACTERISTICS  
Input Low Threshold, V  
Full  
Full  
Full  
Full  
-
4.0  
-
-
-
-
-
0.8  
-
-
4.0  
-
-
-
-
-
0.8  
-
V
V
AL  
Input High Threshold, V  
AH  
Input Leakage Current (High), I  
1
1
µA  
µA  
AH  
AL  
Input Leakage Current (Low), I  
-
1
-
1
2
HI-539  
Electrical Specifications Supplies = ±15V, V = 4V, V (Logic Level High) = 4V, V (Logic Level Low) = 0.8V,  
EN  
AH  
AL  
Unless Otherwise Specified (Continued)  
-8  
-5  
TEST  
CONDITIONS  
TEMP  
( C)  
o
PARAMETER  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
ANALOG CHANNEL CHARACTERISTICS  
Analog Signal Range, V  
Full  
25  
-10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
650  
950  
700  
1.1K  
4.0  
4.75  
4.5  
5.5  
30  
+10  
-10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+10  
850  
1K  
900  
1.1K  
24  
24  
27  
27  
-
V
IN  
On Resistance, r  
V
V
V
V
= 0V  
850  
650  
800  
700  
900  
4.0  
4.0  
4.5  
4.5  
30  
ON  
IN  
lN  
IN  
lN  
Full  
25  
1.3K  
= ±10V  
= 0V  
900  
1.4K  
24  
28  
27  
33  
-
Full  
25  
r  
ON,  
(Side A-Side B)  
Full  
25  
= ±10V  
Full  
25  
Off Input Leakage Current, I  
Condition 0V  
(Note 2)  
pA  
nA  
pA  
nA  
pA  
nA  
pA  
nA  
pA  
nA  
pA  
nA  
pA  
nA  
pA  
nA  
pA  
nA  
pA  
nA  
pA  
nA  
pA  
nA  
µV  
µV  
S(OFF)  
Full  
25  
2
10  
-
0.2  
100  
0.5  
3
1
Condition ±10V  
(Note 2)  
100  
5
-
Full  
25  
25  
-
2.5  
-
I  
S(OFF),  
(Side A-Side B)  
Condition 0V  
3
Full  
25  
0.2  
10  
2
0.02  
10  
0.2  
-
Condition ±10V  
-
Full  
25  
0.5  
30  
5
0.05  
30  
0.5  
-
Off Output Leakage Current,  
Condition 0V  
(Note 2)  
-
I
D(OFF)  
Full  
25  
2
10  
-
0.2  
100  
0.5  
3
1
Condition ±10V  
(Note 2)  
100  
5
-
Full  
25  
25  
-
2.5  
-
I  
D(OFF),  
(Side A-Side B)  
Condition 0V  
3
Full  
25  
0.2  
10  
2
0.02  
10  
0.2  
-
Condition ±10V  
-
Full  
25  
0.5  
50  
5
0.05  
50  
0.5  
-
On Channel Leakage Current, I  
Condition 0V  
(Note 2)  
-
D(ON)  
Full  
25  
5
25  
-
0.5  
150  
0.8  
10  
2.5  
-
Condition ±10V  
(Note 2)  
150  
6
Full  
25  
40  
-
4.0  
-
I  
D(ON),  
(Side A-Side B)  
Condition 0V  
Condition ±10V  
Note 3  
10  
Full  
25  
0.5  
30  
5
0.05  
30  
0.5  
-
-
Full  
25  
0.6  
0.02  
0.70  
6
0.08  
0.02  
0.08  
0.8  
-
Differential Offset Voltage, V  
OS  
-
Full  
-
-
POWER SUPPLY CHARACTERISTICS  
Power Dissipation, P  
25  
Full  
25  
-
-
-
-
2.3  
-
45  
-
-
-
-
-
2.3  
-
45  
-
mW  
mW  
mA  
mA  
D
-
0.150  
-
-
0.150  
-
Current, l+  
Full  
2.0  
2.0  
3
HI-539  
Electrical Specifications Supplies = ±15V, V = 4V, V (Logic Level High) = 4V, V (Logic Level Low) = 0.8V,  
EN  
AH  
AL  
Unless Otherwise Specified (Continued)  
-8  
TYP  
0.001  
-
-5  
TYP  
0.001  
-
TEST  
CONDITIONS  
TEMP  
( C)  
o
PARAMETER  
MIN  
MAX  
MIN  
MAX  
-
UNITS  
mA  
Current, l-  
25  
-
-
-
-
-
Full  
Full  
1.0  
±18  
1.0  
±18  
mA  
Supply Voltage Range  
NOTES:  
±5  
±15  
±5  
±15  
V
2. See Figures 2B, 2C, 2D. The condition ±10V means:  
and I  
l
:
D(OFF)  
S(OFF)  
(V = +10V, V = -10V), then  
S
D
(V = -10V, V = +10V)  
S
D
I
: (+10V, then -10V)  
D(ON)  
3. V  
(Exclusive of thermocouple effects) = r  
I  
ON D(ON)  
+ I  
r . See Applications section for discussion of additional V  
D(ON) ON  
error.  
OS  
OS  
4. V = 1kHz, 15V  
on all but the selected channel. See Figure 7.  
5. Calculated from typical Single-Ended Crosstalk performance.  
lN P-P  
o
Test Circuits and Waveforms Unless Otherwise Specified T = 25 C, V+ = +15V, V- = -15V, V = 4V and V = 0.8V  
A
AH  
AL  
V
= 0V  
IN  
100µA  
800  
700  
600  
500  
V
2
IN  
OUT  
r
V
2
HI-539  
V
=
IN  
ON  
100µA  
-50  
-25  
0
25  
50  
75  
100  
125  
o
TEMPERATURE ( C)  
FIGURE 1A. TEST CIRCUIT  
FIGURE 1B. ON RESISTANCE vs TEMPERATURE  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
900  
800  
700  
600  
500  
400  
o
125 C  
V
= 0V  
IN  
o
25 C  
o
-55 C  
-12 -10 -8 -6 -4  
-2  
0
2
4
6
8
10 12  
5
7
9
11  
13  
15  
17  
ANALOG INPUT (V)  
SUPPLY VOLTAGE (±V)  
FIGURE 1C. ON RESISTANCE vs ANALOG INPUT VOLTAGE  
FIGURE 1D. ON RESISTANCE vs SUPPLY VOLTAGE  
FIGURE 1. ON RESISTANCE  
4
HI-539  
o
Test Circuits and Waveforms Unless Otherwise Specified T = 25 C, V+ = +15V, V- = -15V, V = 4V and V = 0.8V (Continued)  
A
AH  
AL  
10  
HI-539†  
0.8V  
EN  
I
OUT A  
A
D(ON)  
1
I
D(OFF)  
±
I
= I  
S(OFF)  
±10V  
10V  
D(OFF)  
A
A
1
0
25  
50  
75  
100  
125  
Similar Connection For Side “B”  
o
TEMPERATURE ( C)  
FIGURE 2A. LEAKAGE CURRENT vs TEMPERATURE  
FIGURE 2B. I TEST CIRCUIT (NOTE 6)  
D(OFF)  
HI-539†  
HI-539†  
OUT A  
OUT A  
I
A
A
I
S(OFF)  
0.8V  
D(ON)  
EN  
A
A
1
EN  
0
±
±10V  
10V  
±
±10V  
10V  
A
A
1
4V  
0
Similar Connection For Side “B”  
Similar Connection For Side “B”  
FIGURE 2C. I  
TEST CIRCUIT (NOTE 6)  
FIGURE 2D. I  
D(ON)  
TEST CIRCUIT (NOTE 6)  
S(OFF)  
NOTE:  
±
6. Three measurements = ±10V, 10V, and 0V.  
FIGURE 2. LEAKAGE CURRENT  
+15V/+10V  
+I  
14  
SUPPLY  
A
FUNCTIONAL LIMIT  
12  
10  
V+  
+10V/+5V  
HI-539IN 1A  
A
A
1
V
= ±15V  
IN 2A  
0
SUPPLY  
8
6
4
2
V
50Ω  
V
= ±10V  
A
SUPPLY  
IN 3A  
IN 4A  
-10V/-5V  
5V  
EN  
OUT A  
V-  
GND  
10MΩ  
14pF  
HIGH = 4.0V  
LOW = 0V  
50% DUTY CYCLE  
V
A
-I  
A
SUPPLY  
0
-15V/-10V  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz 3MHz 10MHz  
TOGGLE FREQUENCY  
Similar Connection For Side “B”  
FIGURE 3A. SUPPLY CURRENT vs TOGGLE FREQUENCY  
FIGURE 3. DYNAMIC SUPPLY CURRENT  
FIGURE 3B. TEST CIRCUIT  
5
HI-539  
o
Test Circuits and Waveforms Unless Otherwise Specified T = 25 C, V+ = +15V, V- = -15V, V = 4V and V = 0.8V (Continued)  
A
AH  
AL  
+15V  
320  
300  
280  
260  
240  
220  
200  
V+  
IN 1A  
±10V  
A
A
1
IN 2A,  
IN 3A  
0
V
50Ω  
A
HI-539  
±
10V  
IN 4A  
EN  
OUT A  
V-  
5V  
GND  
50  
pF  
10  
kΩ  
-15V  
3
4
5
6
7
8
9
10 11 12  
13 14 15  
LOGIC LEVEL (HIGH) (V)  
FIGURE 4A. ACCESS TIME vs LOGIC LEVEL (HIGH)  
FIGURE 4B. TEST CIRCUIT  
V
= 4V  
AH  
ADDRESS  
DRIVE (V )  
V
INPUT  
A
A
2V/DIV.  
50%  
0V  
S
ON  
1
+10V  
OUTPUT  
-10V  
OUTPUT  
5V/DIV.  
10%  
t
A
S
ON  
4
200ns/DIV.  
FIGURE 4C. MEASUREMENT POINTS  
FIGURE 4D. WAVEFORMS  
FIGURE 4. ACCESS TIME  
+15V  
V+  
V
= 4V  
AH  
+5V  
HI-539†  
IN 1A  
ADDRESS  
DRIVE (V )  
IN 2, IN 3A  
A
0V  
A
A
1
IN 4A  
OUTPUT  
0
V
OUT  
EN  
OUT A  
V-  
50%  
50%  
5V  
GND  
700  
V
50Ω  
A
12.5pF  
t
OPEN  
-15V  
Similar connection for side “B”  
FIGURE 5B. TEST CIRCUIT  
FIGURE 5A. MEASUREMENT POINTS  
6
HI-539  
o
Test Circuits and Waveforms Unless Otherwise Specified T = 25 C, V+ = +15V, V- = -15V, V = 4V and V = 0.8V (Continued)  
A
AH  
AL  
V
INPUT  
A
2V/DIV.  
S
ON  
S
ON  
1
4
OUTPUT  
1V/DIV.  
100ns/DIV.  
FIGURE 5C. WAVEFORMS  
FIGURE 5. BREAK-BEFORE-MAKE DELAY  
+15V  
V+  
HI-539†  
V
= 4V  
+10V  
AH  
IN 1A  
50% ENABLE DRIVE (V )  
50%  
A
IN 2A THRU  
IN 4A  
A
A
1
0V  
0
V
OUT  
90%  
EN  
OUT A  
OUTPUT  
10%  
50  
GND  
V-  
700  
V
A
12.5pF  
0V  
t
ON(EN)  
-15V  
t
OFF(EN)  
Similar connection for side “B”  
FIGURE 6A. MEASUREMENT POINTS  
FIGURE 6B. TEST CIRCUIT  
ENABLE  
DRIVE  
2V/DIV.  
ENABLED  
(S ON)  
DISABLED  
1
OUTPUT  
2V/DIV.  
100ns/DIV.  
FIGURE 6C. WAVEFORMS  
FIGURE 6. ENABLE DELAYS  
7
HI-539  
o
Test Circuits and Waveforms Unless Otherwise Specified T = 25 C, V+ = +15V, V- = -15V, V = 4V and V = 0.8V (Continued)  
A
AH  
AL  
HI-539  
HI-539  
INSTRUMENTATION  
INSTRUMENTATION  
AMPLIFIER†  
AMPLIFIER†  
G = 1000  
+
G = 1000  
+
-
350Ω  
350Ω  
-
1kHz,  
15V  
P-P  
350Ω  
1kHz,  
15V  
P-P  
AD606 or BB3630, for Example  
AD606 or BB3630, for example  
FIGURE 7B. DIFFERENTIAL CROSSTALK TEST CIRCUIT  
FIGURE 7A. SINGLE-ENDED CROSSTALK TEST CIRCUIT  
FIGURE 7. CROSSTALK  
Coaxial cable is not suitable for low level signals because the  
Application Information  
two conductors (center and shield) are unbalanced. Also,  
ground loops are produced if the shield is grounded at both  
ends by standard BNC connectors. If coax must be used, carry  
the signal on the center conductors of two equal-length cables  
whose shields are terminated only at the transducer end. As a  
general rule, terminate (ground) the shield at one end only,  
preferably at the end with greatest noise interference. This is  
usually the transducer end for both high and low level signals.  
General  
The Hl-539 accepts inputs in the range -15V to +15V, with  
performance guaranteed over the ±10V range. At these  
higher levels of analog input voltage it is comparable to the Hl-  
509, and is plug-in compatible with that device (as well as the  
Hl-509A). However, as mentioned earlier, the Hl-539 was  
designed to introduce minimum error when switching low level  
inputs.  
Watch Small V Errors  
Special care is required in working with these low level  
signals. The main concern with signals below 100mV is that  
noise, offset voltage, and other aberrations can represent a  
large percentage error. A shielded differential signal path is  
Printed circuit traces and short lengths of wire can add  
substantial error to a signal even after it has traveled  
hundreds of feet and arrived on a circuit board. Here, the  
small voltage drops due to current flow through connections  
of a few milliohms must be considered, especially to meet an  
accuracy requirement of 12 bits or more.  
essential to maintain a noise level below 50µV  
.
RMS  
Low Level Signal Transmission  
The transmission cable carrying the transducer signal is critical  
in a low level system. It should be as short as practical and  
rigidly supported. Signal conductors should be tightly twisted  
for minimum enclosed area to guard against pickup of  
electromagnetic interference, and the twisted pair should be  
shielded against capacitively coupled (electrostatic)  
Table 1 is a useful collection of data for calculating the effect  
of these short connections. (Proximity to a ground plane will  
lower the values of inductance.)  
As an example, suppose the Hl-539 is feeding a 12-bit  
1
converter system with an allowable error of ± / LSB  
2
(±1.22mV). lf the interface logic draws 100mA from the 5V  
supply, this current will produce 1.28mV across 6 inches of  
#24 wire; more than the error budget. Obviously, this digital  
current must not be routed through any portion of the analog  
ground return network.  
interference. A braided wire shield may be satisfactory, but a  
1
lapped foil shield is better since it allows only / as much  
10  
leakage capacitance to ground per foot. A key requirement for  
the transmission cable is that it presents a balanced line to  
sources of noise interference. This means an equal series  
impedance in each conductor plus an equally distributed  
impedance from each conductor to ground. The result should  
be signals equal in magnitude but opposite in phase at any  
transverse plane. Noise will be coupled in phase to both  
conductors, and may be rejected as common-mode voltage by  
a differential amplifier connected to the multiplexer output.  
8
HI-539  
TABLE 1.  
EQUIVALENT WIDTH OF  
P.C. CONDUCTOR  
(2 oz. Cu)  
IMPEDANCE PER FOOT  
60Hz  
DC RESISTANCE  
PER FOOT  
INDUCTANCE PER  
WIRE GAGE  
FOOT  
0.36µH  
0.37µH  
0.37µH  
0.40µH  
0.42µH  
0.45µH  
0.49µH  
0.53µH  
10kHz  
0.0235Ω  
0.0254Ω  
0.0288Ω  
0.0345Ω  
0.0488Ω  
0.0718Ω  
0.110Ω  
18  
20  
22  
24  
26  
28  
30  
32  
0.47”  
0.30”  
0.0064Ω  
0.0102Ω  
0.0161Ω  
0.0257Ω  
0.041Ω  
0.066Ω  
0.105Ω  
0.168Ω  
0.0064Ω  
0.0102Ω  
0.0161Ω  
0.0257Ω  
0.041Ω  
0.066Ω  
0.105Ω  
0.168Ω  
0.19”  
0.12”  
0.075”  
0.047”  
0.029”  
0.018”  
0.171Ω  
Provide Path For I  
Differential Offset, V  
OS  
BIAS  
The input bias current for any DC-coupled amplifier must  
have an external path back to the amplifier’s power supply.  
No such path exists in Figure 8A, and consequently the  
amplifier output will remain in saturation.  
There are two major sources of V . That part due to the  
OS  
r ) becomes significant  
expression (r  
l  
+ l  
ON D(ON) D(ON) ON  
with increasing temperature, as shown in the Electrical  
Specifications tables. The other source of offset is the  
thermocouple effects due to dissimilar materials in the signal  
path. These include silicon, aluminum, tin, nickel-iron and  
(often) gold, just to exit the package.  
A single large resistor (1Mto 10M) from either signal line  
to power supply common will provide the required path, but a  
resistor on each line is necessary to preserve accuracy. A  
single pair of these bias current resistors on the HI-539  
output may be used if their loading effect can be tolerated  
For the thermocouple effects in the package alone, the  
constraint on V  
may be stated in terms of a limit on the  
OS  
(each forms a voltage divider with r ). Otherwise, a resistor  
pair on each input channel of the multiplexer is required.  
difference in temperature for package pins leading to any  
channel of the Hl-539. For example, a difference of 0.13 C  
ON  
o
produces a 5µV offset. Obviously, this T effect can  
The use of bias current resistors is acceptable only if one is  
confident that the sum of signal plus common-mode voltage  
will remain within the input range of the multiplexer/amplifier  
combination.  
dominate the V  
parameter at any temperature unless  
OS  
care is taken in mounting the Hl-539 package.  
Temperature gradients across the Hl-539 package should be  
held to a minimum in critical applications. Locate the Hl-539  
far from heat producing components, with any air currents  
flowing lengthwise across the package.  
Another solution is to simply run a third wire from the low  
side of the signal source, as in Figure 8B. This wire assures  
a low common-mode voltage as well as providing the path  
for bias currents. Making the connection near the multiplexer  
will save wire, but it will also unbalance the line and reduce  
the amplifier's common-mode rejection.  
9
HI-539  
HI-539  
V+  
V-  
r
r
ON  
+
“FLOATING”  
SOURCE  
ON  
-
FIGURE 8A.  
HI-539  
V+  
r
r
ON  
+
ON  
-
V-  
1M TO 10M  
POWER SUPPLY  
COMMON  
POWER SUPPLY  
COMMON  
NOTE: The amplifier in Figure 8A is unusable because its bias currents cannot return to the power supply. Figure 8B shows two alternative paths  
for these bias currents: either a pair of resistors, or (better) a third wire from the low side of the signal source.  
FIGURE 8B.  
10  
HI-539  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
92 mils x 100 mils  
Type: Nitride Over Silox  
Nitride Thickness: 3.5kÅ ±1kÅ  
Silox Thickness: 12kÅ ±2.0kÅ  
METALLIZATION:  
Type: AlCu  
Thickness: 16kÅ ±2kÅ  
WORST CASE CURRENT DENSITY:  
5
2
2.54 x 10 A/cm at 20mA  
SUBSTRATE POTENTIAL (NOTE):  
TRANSISTOR COUNT:  
-V  
SUPPLY  
236  
PROCESS:  
CMOS-DI  
NOTE: The substrate appears resistive to the -V  
SUPPLY  
terminal, therefore it may be left floating (Insulating Die Mount) or it may be mounted on a  
conductor at -V  
potential.  
SUPPLY  
Metallization Mask Layout  
HI-539  
V-  
EN  
A
A
GND  
V+  
0
1
IN1B  
IN2B  
IN1A  
IN2A  
IN3A  
IN4A  
OUTA  
OUTB  
IN4B  
IN3B  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
11  

相关型号:

HI1-0539-8

Precision, 4-Channel, Low-Level, Differential Multiplexer
INTERSIL

HI1-0546-2

Single 16 and 8, Differential 8-Channel and 4-Channel CMOS Analog MUXs with Active Overvoltage Protection
INTERSIL

HI1-0546-5

Single 16 and 8, Differential 8-Channel and 4-Channel CMOS Analog MUXs with Active Overvoltage Protection
INTERSIL

HI1-0546/883

16-Channel Analog Multiplexer
ETC

HI1-0547-2

8-CHANNEL, DIFFERENTIAL MULTIPLEXER, CDIP28, PACKAGE-28
ROCHESTER

HI1-0547-5

Single 16 and 8, Differential 8-Channel and 4-Channel CMOS Analog MUXs with Active Overvoltage Protection
INTERSIL

HI1-0547/883

8-CHANNEL, DIFFERENTIAL MULTIPLEXER, CDIP28, PACKAGE-28
ROCHESTER

HI1-0548-2

Single 16 and 8, Differential 8-Channel and 4-Channel CMOS Analog MUXs with Active Overvoltage Protection
INTERSIL

HI1-0548-5

Single 16 and 8, Differential 8-Channel and 4-Channel CMOS Analog MUXs with Active Overvoltage Protection
INTERSIL

HI1-0548-5

8-CHANNEL, SGL ENDED MULTIPLEXER, CDIP16, FRIT SEALED, CERDIP-16
ROCHESTER

HI1-0548/883

8-CHANNEL, SGL ENDED MULTIPLEXER, CDIP16, PACKAGE-16
ROCHESTER

HI1-0549-2

Single 16 and 8, Differential 8-Channel and 4-Channel CMOS Analog MUXs with Active Overvoltage Protection
INTERSIL