HGTG12N60C3D [INTERSIL]

24A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode; 24A , 600V , UFS系列N沟道IGBT与反并联二极管超高速
HGTG12N60C3D
型号: HGTG12N60C3D
厂家: Intersil    Intersil
描述:

24A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
24A , 600V , UFS系列N沟道IGBT与反并联二极管超高速

晶体 二极管 晶体管 功率控制 瞄准线 双极性晶体管 栅 局域网
文件: 总7页 (文件大小:101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTG12N60C3D  
Data Sheet  
January 2000  
File Number 4043.2  
24A, 600V, UFS Series N-Channel IGBT  
with Anti-Parallel Hyperfast Diode  
Features  
o
• 24A, 600V at T = 25 C  
C
The HGTG12N60C3D is a MOS gated high voltage switching  
device combining the best features of MOSFETs and bipolar  
transistors. The device has the high input impedance of a  
MOSFET and the low on-state conduction loss of a bipolar  
transistor. The much lower on-state voltage drop varies only  
moderately between 25 C and 150 C. The IGBT used is the  
development type TA49123. The diode used in anti parallel  
with the IGBT is the development type TA49061.  
o
Typical Fall Time. . . . . . . . . . . . . . . . 210ns at T = 150 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
• Hyperfast Anti-Parallel Diode  
o
o
Packaging  
JEDEC STYLE TO-247  
The IGBT is ideal for many high voltage switching  
applications operating at moderate frequencies where low  
conduction losses are essential.  
E
C
G
Formerly Developmental Type TA49117.  
Ordering Information  
PART NUMBER  
PACKAGE  
BRAND  
G12N60C3D  
HGTG12N60C3D  
TO-247  
NOTE: When ordering, use the entire part number.  
Symbol  
C
G
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000  
1
HGTG12N60C3D  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTG12N60C3D  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
24  
A
A
A
A
V
V
C25  
C110  
(AVG)  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
12  
o
Average Diode Forward Current at 110 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
15  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
96  
±20  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
24A at 600V  
104  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.83  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
-40 to 150  
260  
C
J
STG  
o
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
L
SC  
SC  
Short Circuit Withstand Time (Note 2) at V  
Short Circuit Withstand Time (Note 2) at V  
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
= 10V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
4
µs  
µs  
GE  
13  
GE  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Repetitive Rating: Pulse width limited by maximum junction temperature.  
o
2. V  
= 360V, T = 125 C, R = 25Ω.  
J G  
CE(PK)  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
-
MAX  
-
UNITS  
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
Collector to Emitter Leakage Current  
BV  
BV  
I
I
= 250µA, V  
= 0V  
600  
V
V
CES  
ECS  
C
GE  
= 10mA, V  
= 0V  
T
15  
25  
-
C
GE  
o
I
V
V
= BV  
= BV  
= 25 C  
-
-
250  
2.0  
2.0  
2.2  
2.2  
2.4  
6.0  
µA  
mA  
V
CES  
CE  
CE  
CES  
C
C
C
C
C
C
C
o
T
= 150 C  
-
-
CES  
o
Collector to Emitter Saturation Voltage  
V
I
= I  
,
T
= 25 C  
-
1.65  
1.85  
1.80  
2.0  
5.0  
CE(SAT)  
C
C110  
= 15V  
V
o
GE  
T
= 150 C  
-
-
V
o
I
= 15A,  
T
= 25 C  
V
C
V
= 15V  
o
GE  
T
= 150 C  
-
V
o
Gate to Emitter Threshold Voltage  
V
I
= 250µA,  
T
= 25 C  
3.0  
V
GE(TH)  
C
V
= V  
GE  
CE  
Gate to Emitter Leakage Current  
Switching SOA  
I
V
= ±20V  
-
-
-
-
±100  
nA  
A
GES  
GE  
o
SSOA  
T = 150 C,  
V
V
= 480V  
80  
24  
-
-
J
CE(PK)  
V
= 15V,  
= 25Ω,  
GE  
= 600V  
A
CE(PK)  
R
G
L = 100µH  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= I  
= I  
, V  
C110 CE  
= 0.5 BV  
CES  
-
-
-
-
-
-
-
-
-
-
7.6  
48  
-
55  
71  
-
V
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
V
GEP  
C
Q
,
V
GE  
= 15V  
= 20V  
G(ON)  
C
C110  
V
= 0.5 BV  
CE  
CES  
V
62  
GE  
o
Current Turn-On Delay Time  
Current Rise Time  
t
T = 150 C,  
14  
d(ON)I  
J
I
= I  
CE  
C110,  
= 0.8 BV  
t
16  
-
rI  
V
V
R
CE(PK)  
CES,  
Current Turn-Off Delay Time  
Current Fall Time  
t
270  
210  
380  
900  
1.7  
400  
275  
-
d(OFF)I  
= 15V,  
GE  
= 25Ω,  
t
G
fI  
L = 100µH  
Turn-On Energy  
E
ON  
Turn-Off Energy (Note 3)  
Diode Forward Voltage  
E
-
OFF  
V
I
= 12A  
2.0  
EC  
EC  
2
HGTG12N60C3D  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified (Continued)  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
34  
30  
-
MAX  
42  
UNITS  
ns  
Diode Reverse Recovery Time  
t
I
I
= 12A, dI /dt = 100A/µs  
-
-
-
-
rr  
EC  
EC  
= 1.0A, dI /dt = 100A/µs  
37  
ns  
EC  
EC  
o
Thermal Resistance  
NOTE:  
R
IGBT  
1.2  
1.5  
C/W  
θJC  
o
Diode  
-
C/W  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse, and ending  
OFF  
at the point where the collector current equals zero (I  
= 0A). The HGTG12N60C3D was tested per JEDEC Standard No. 24-1 Method for  
CE  
Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. Turn-On losses include  
diode losses.  
Typical Performance Curves  
o
80  
70  
PULSE DURATION = 250µs, DUTY CYCLE <0.5%, T = 25 C  
C
DUTY CYCLE <0.5%, V  
CE  
= 10V  
80  
70  
V
= 15.0V  
PULSE DURATION = 250µs  
GE  
12.0V  
60  
50  
40  
30  
60  
50  
o
T
= 150 C  
C
10.0V  
9.0V  
o
40  
30  
20  
T
= 25 C  
C
o
T
= -40 C  
C
20  
8.5V  
8.0V  
10  
0
10  
0
7.5V  
7.0V  
4
6
8
10  
12  
14  
0
2
4
6
8
10  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
V , COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 1. TRANSFER CHARACTERISTICS  
FIGURE 2. SATURATION CHARACTERISTICS  
80  
70  
80  
PULSE DURATION = 250µs  
PULSE DURATION = 250µs  
DUTY CYCLE <0.5%, V  
= 15V  
DUTY CYCLE <0.5%, V  
= 10V  
GE  
70  
60  
50  
40  
30  
20  
10  
GE  
o
T
= -40 C  
60  
50  
40  
30  
20  
C
o
T
= 25 C  
C
o
o
= -40 C  
T
= 150 C  
T
C
C
o
T
= 150 C  
C
o
T
= 25 C  
C
10  
0
0
0
1
2
3
4
5
0
1
2
3
4
5
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V , COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 3. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 4. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
3
HGTG12N60C3D  
Typical Performance Curves (Continued)  
25  
20  
15  
140  
120  
100  
V
= 15V  
o
GE  
V
= 360V, R = 25, T = 125 C  
G J  
CE  
20  
15  
I
SC  
80  
60  
10  
5
10  
5
40  
20  
t
SC  
0
25  
50  
75  
100  
125  
150  
10  
11  
12  
13  
14  
15  
o
T
, CASE TEMPERATURE ( C)  
V
, GATE TO EMITTER VOLTAGE (V)  
C
GE  
FIGURE 5. MAXIMUM DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 6. SHORT CIRCUIT WITHSTAND TIME  
100  
o
400  
300  
T
= 150 C, R = 25, L = 100µH, V  
= 480V  
CE(PK)  
J
G
o
T
= 150 C, R = 25, L = 100mH, V  
= 480V  
J
G
CE(PK)  
V
= 15V  
GE  
50  
V
= 10V  
GE  
V
= 10V  
= 15V  
GE  
200  
100  
30  
20  
V
GE  
10  
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 7. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
200  
300  
o
= 150 C, R = 25, L = 100µH, V = 480V  
CE(PK)  
o
= 150 C, R = 25, L = 100µH, V = 480V  
CE(PK)  
T
T
J
G
J
G
100  
V
= 10V  
GE  
200  
V
= 10V or 15V  
GE  
V
= 15V  
GE  
10  
5
100  
90  
80  
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 9. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-OFF FALL TIME vs COLLECTOR TO  
EMITTER CURRENT  
4
HGTG12N60C3D  
Typical Performance Curves (Continued)  
3.0  
2.5  
2.0  
o
o
= 150 C, R = 25, L = 100µH, V = 480V  
CE(PK)  
T
= 150 C, R = 25, L = 100µH, V = 480V  
CE(PK)  
T
J
G
J
G
1.5  
1.0  
2.0  
1.5  
V
= 10V  
GE  
V
= 10V OR 15V  
GE  
1.0  
0.5  
V
= 15V  
GE  
0.5  
0
0
5
10  
15  
20  
25  
30  
5
10  
15  
20  
25  
30  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
100  
80  
o
200  
T
= 150 C, V = 15V, R = 25, L = 100µH  
GE G  
o
o
J
T
= 150 C, T = 75 C  
C
J
R
= 25, L = 100µH  
G
100  
V
= 10V  
GE  
V
= 15V  
GE  
60  
LIMITED BY  
CIRCUIT  
f
= 0.05/(t  
D(OFF)I  
+ t )  
D(ON)I  
MAX1  
10  
40  
20  
f
= (P - P )/(E  
+ E  
)
OFF  
MAX2  
D
C
ON  
P
= ALLOWABLE DISSIPATION  
D
P
= CONDUCTION DISSIPATION  
C
(DUTY FACTOR = 50%)  
o
R
= 1.2 C/W  
θJC  
0
1
0
100  
200  
300  
400  
500  
600  
5
10  
20  
30  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE(PK)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 13. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 14. SWITCHING SAFE OPERATING AREA  
o
I
= 1.276mA, R = 50, T = 25 C  
2500  
G(REF)  
L
C
FREQUENCY = 1MHz  
15  
12  
600  
480  
C
IES  
2000  
1500  
1000  
V
= 600V  
CE  
360  
240  
9
6
V
= 400V  
CE  
V
= 200V  
CE  
500  
0
120  
0
3
0
C
OES  
C
RES  
0
5
10  
15  
20  
25  
0
10  
20  
30  
40  
50  
60  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
Q
, GATE CHARGE (nC)  
CE  
G
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 16. GATE CHARGE WAVEFORMS  
5
HGTG12N60C3D  
Typical Performance Curves (Continued)  
0
10  
0.5  
0.2  
0.1  
t
1
-1  
P
D
10  
0.05  
t
2
0.02  
0.01  
DUTY FACTOR, D = t / t  
1
2
PEAK T = (P X Z  
X R  
) + T  
JC C  
J
D
JC  
θ
θ
SINGLE PULSE  
-2  
10  
-5  
-4  
-3  
-2  
-1  
10  
0
1
10  
10  
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 17. IGBT NORMALIZED TRANSIENT THERMAL IMPEDANCE, JUNCTION TO CASE  
50  
40  
30  
20  
o
T
= 25 C, dI /dt = 100A/µs  
C
EC  
40  
30  
t
rr  
o
t
100 C  
a
20  
o
o
t
150 C  
b
25 C  
10  
0
10  
0
0
5
I
10  
15  
20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
, FORWARD CURRENT (A)  
V
, FORWARD VOLTAGE (V)  
EC  
EC  
FIGURE 18. DIODE FORWARD CURRENT vs FORWARD  
VOLTAGE DROP  
FIGURE 19. RECOVERY TIMES vs FORWARD CURRENT  
Test Circuit and Waveform  
L = 100µH  
90%  
RHRP1560  
10%  
V
V
GE  
E
E
OFF  
ON  
R
= 25Ω  
G
CE  
+
90%  
V
= 480V  
DD  
-
10%  
d(OFF)I  
I
CE  
t
t
rI  
t
fI  
t
d(ON)I  
FIGURE 20. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 21. SWITCHING TEST WAVEFORMS  
6
HGTG12N60C3D  
Operating Frequency Information  
Handling Precautions for IGBTs  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge  
built in the handler’s body capacitance is not discharged  
through the device. With proper handling and application  
procedures, however, IGBTs are currently being extensively  
used in production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device (Figure 13)  
is presented as a guide for estimating device performance  
for a specific application. Other typical frequency vs collector  
current (I ) plots are possible using the information shown  
CE  
for a typical unit in Figures 4, 7, 8, 11 and 12. The operating  
frequency plot (Figure 13) of a typical device shows f  
or  
MAX1  
whichever is smaller at each point. The information is  
f
MAX2  
based on measurements of a typical device and is bounded  
by the maximum rated junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t  
D(OFF)I  
+ t ).  
D(ON)I  
MAX1  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD LD26” or equivalent.  
are possible. t  
D(OFF)I  
and t  
are defined in Figure 21.  
D(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
is important when controlling output ripple under a lightly  
JM D(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means, for example, with a metallic wristband.  
loaded condition.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON  
MAX2  
D
C
3. Tips of soldering irons should be grounded.  
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM θJC  
C
The sum of device switching and conduction losses must not  
4. Devices should never be inserted into or removed from  
circuits with power on.  
exceed P . A 50% duty factor was used (Figure 13) and the  
D
conduction losses (P ) are approximated by  
C
5. Gate Voltage Rating - Never exceed the gate-voltage  
P
= (V x I )/2.  
rating of V  
. Exceeding the rated V can result in  
C
CE CE  
GEM  
GE  
permanent damage to the oxide layer in the gate region.  
E
and E are defined in the switching waveforms  
ON  
OFF  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate open-  
circuited or floating should be avoided. These conditions  
can result in turn-on of the device due to voltage buildup on  
the input capacitor due to leakage currents or pickup.  
shown in Figure 21. E  
is the integral of the instantaneous  
ON  
power loss (I  
CE  
x V ) during turn-on and E  
is the  
OFF  
CE  
integral of the instantaneous power loss during turn-off. All  
tail losses are included in the calculation for E ; i.e. the  
OFF  
collector current equals zero (I  
= 0).  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic Zener Diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
ECCOSORBD is a Trademark of Emerson and Cumming, Inc.  
7

相关型号:

HGTG12N60C3DR

24A, 600V, N-CHANNEL IGBT
ROCHESTER

HGTG12N60C3DR

24A, 600V, N-CHANNEL IGBT, TO-247
RENESAS

HGTG12N60D1

12A, 600V N-Channel IGBT with Anti-Parallel Ultrafast Diode
INTERSIL

HGTG12N60D1D

12A, 600V N-Channel IGBT with Anti-Parallel Ultrafast Diode
INTERSIL

HGTG15N120B3D

1200V, N-CHANNEL IGBT, TO-247
RENESAS

HGTG15N120C3

35A, 1200V, UFS Series N-Channel IGBTs
INTERSIL

HGTG15N120C3

TRANSISTOR,IGBT,N-CHAN,1.2KV V(BR)CES,35A I(C),TO-247
RENESAS

HGTG15N120C3D

35A, 1200V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL

HGTG18N120BN

54A, 1200V, NPT Series N-Channel IGBT
FAIRCHILD

HGTG18N120BN

54A, 1200V, NPT Series N-Channel IGBT
INTERSIL

HGTG18N120BN

1200 V NPT IGBT
ONSEMI

HGTG18N120BND

54A, 1200V, NPT Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
FAIRCHILD