HC-5560_03 [INTERSIL]

PCM Transcoder; PCM转码器
HC-5560_03
型号: HC-5560_03
厂家: Intersil    Intersil
描述:

PCM Transcoder
PCM转码器

PC
文件: 总10页 (文件大小:391K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HC-5560  
®
J uly 2003  
FN2887.3  
PCM Trans coder  
Features  
The HC-5560 digital line transcoder provides encoding and  
decoding of pseudo ternary line code substitution schemes.  
Unlike other industry standard transcoders, the HC-5560  
provides four worldwide compatible mode selectable code  
substitution schemes, including HDB3 (High Density Bipolar  
3), B6ZS, B8ZS (Bipolar with 6 or 8 Zero Substitution) and  
AMI (Alternate Mark Inversion).  
• Single 5V Supply . . . . . . . . . . . . . . . . . . . . . . 10mA (Typ)  
• Mode Selectable Coding Including:  
- AMI (T1, T1C)  
- B8ZS (T1)  
- HDB3 (PCM30)  
• North American and European Compatibility  
• Simultaneous Encoding and Decoding  
• Asynchronous Operation  
The HC-5560 is fabricated in CMOS and operates from a  
single 5V supply. All inputs and outputs are TTL compatible.  
Application Note #573, “The HC-5560 Digital Line  
Transcoder,” by D.J. Donovan is available.  
• Loop Back Control  
• Transmission Error Detection  
Part Number Information  
• Alarm Indication Signal  
PART  
NUMBER  
TEMP.RANGE  
• Replaces MJ1440, MJ1471 and TCM2201 Transcoders  
o
( C)  
PACKAGE  
PKG. DWG. #  
Applications  
HC3-5560-5  
0 to 70  
20 Ld PDIP  
E20.3  
• North American and European PCM Transmission Lines  
where Pseudo Ternary Line Code Substitution Schemes  
are Desired  
Pinout  
HC-5560  
(PDIP)  
TOP VIEW  
• Any Equipment that Interfaces T1, T1C, T2 or PCM30  
Lines Including Multiplexers, Channel Service Units,  
(CSUs) Echo Cancellors, Digital Cross-Connects (DSXs),  
T1 Compressors, etc.  
1
2
V
FORCE AIS  
20  
19  
DD  
MODE SELECT 1  
NRZ DATA IN  
CLK ENC  
OUTPUT ENABLE  
• Related Literature  
3
18 RESET  
17 OUT1  
16 OUT2  
- AN573, The HC-5560 Digital Line Transcoder  
4
MODE SELECT 2  
NRZ DATA OUT  
CLK DEC  
5
Functional Diagram  
6
15 B  
IN  
1
2
V
V
MODE  
SELECT  
DD  
SS  
14 LOOP TEST ENABLE  
7
RESET AIS  
AIS  
8
13 A  
IN  
NRZ DATA IN  
CLK ENC  
TRANSMITTER/  
ENCODER  
9
12  
CLOCK  
CLOCK  
V
10  
11 ERROR  
SS  
OUTPUT  
ENABLE  
OUT 1  
OUT 2  
LOOP TEST  
ENABLE  
SWITCH  
RECEIVER/  
DECODER  
NRZ DATA  
OUT  
A
B
IN  
IN  
FORCE AIS  
RESET  
ERROR  
DETECT  
CLK DEC  
ERROR  
AIS  
AIS  
DETECT  
RESET AIS  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2003. All Rights Reserved.  
1
All other trademarks mentioned are the property of their respective owners.  
HC-5560  
Absolute Maximum Ratings  
Thermal Information  
o
Voltage at Any Pin . . . . . . . . . . . . . . . . . . . .GND -0.3V to V  
0.3V  
Thermal Resistance (Typical, Note 1)  
θJA ( C/W)  
DD  
Maximum V  
Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.0V  
DD  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .175 C  
Maximum Junction Temperature (Plastic Package) . . . . . . . .150 C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . -65 C to 150 C  
67  
o
o
Operating Conditions  
o
o
o
o
Operating Temperature Range . . . . . . . . . . . . . . . . . . . 0 C to 70 C  
Operating V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V ±5%  
DD  
o
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . . 300  
Die Characteristics  
Transistor Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4322  
Die Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . .119 mils x 133 mils  
Substrate Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+V  
Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAJI CMOS  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
o
Electrical Specifications Unless Otherwise Specified, Typical parameters at 25 C, Min-Max parameters are over operating  
temperature range. V = 5V.  
DD  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
STATIC SPECIFICATIONS  
Quiescent Device Current  
Operating Device Current  
l
-
-
-
10  
-
100  
µA  
mA  
mA  
DD  
-
-
OUT1, OUT2 Low (Sink) Current  
(V = 0.4V)  
I
3.2  
OL1  
OL2  
OL  
All Other Outputs Low (Sink) Current  
I
2
2
-
-
-
-
mA  
mA  
(V = 0.8V)  
OL  
All Outputs High (Source) Current  
I
OH  
(V  
= 4V)  
OH  
Input Low Current  
Input High Current  
Input Low Voltage  
Input High Voltage  
Input Capacitance  
I
-
-
-
-
-
-
10  
10  
0.8  
-
µA  
µA  
V
IL  
I
-
-
IH  
V
lL  
lH  
lN  
V
C
2.4  
-
V
8
pF  
o
Electrical Specifications Unless Otherwise Specified, Typical parameters at 25 C, Min-Max parameters are over operating  
temperature range. V = 5V.  
DD  
PARAMETER  
DYNAMIC SPECIFICATIONS  
SYMBOL  
FIGURE  
MIN  
TYP  
MAX  
UNITS  
CLK ENC, CLK DEC Input Frequency  
CLK ENC, CLK DEC Rise Time (1.544MHz)  
Fall Time  
f
-
-
-
-
-
-
-
-
-
-
8.5  
60  
60  
40  
40  
30  
30  
10  
10  
MHz  
ns  
CL  
t
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
10  
10  
10  
10  
10  
10  
5
RCL  
t
ns  
FCL  
RCL  
Rise Time (2.048MHz)  
Fall Time  
t
ns  
t
ns  
FCL  
Rise Time (6.3212MHz)  
Fall Time  
t
ns  
RCL  
t
ns  
FCL  
Rise Time (8.448MHz)  
Fall Time  
t
ns  
RCL  
t
5
ns  
FCL  
2
HC-5560  
o
Electrical Specifications Unless Otherwise Specified, Typical parameters at 25 C, Min-Max parameters are over operating  
temperature range. V  
= 5V. (Continued)  
DD  
PARAMETER  
SYMBOL  
FIGURE  
MIN  
20  
20  
15  
5
TYP  
MAX  
UNITS  
ns  
NRZ-Data In to CLK ENC Data Setup Time  
Data Hold Time  
t
1
1
2
2
1
-
-
-
-
S
t
ns  
H
A
, B to CLK DEC Data Setup Time  
IN IN  
t
-
-
ns  
S
Data Hold Time  
CLK ENC to OUT1, OUT2  
OUT1, OUT2 Pulse Width (CLK ENC Duty Cycle = 50%)  
t
-
-
ns  
H
t
-
23  
80  
ns  
DD  
f
f
f
f
= 1.544MHz  
= 2.048MHz  
= 6.3212MHz  
= 8.448MHz  
t
t
t
t
1
1
1
1
2
3
3
3
3
3
-
-
324  
224  
79  
58  
25  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CL  
CL  
CL  
CL  
W
W
W
W
-
-
-
-
CLK DEC to NRZ-Data Out  
Setup Time CLK DEC to Reset AlS  
Hold Time of Reset AlS = ‘0’  
Setup Time Reset AlS = ‘1’ to CLK DEC  
Reset AlS to AIS Output  
t
-
54  
-
DD  
t
35  
20  
0
-
S2  
t
-
-
H2  
t
-
-
S2  
t
t
-
42  
62  
PD5  
PD4  
CLK DEC to Error Output  
-
-
Pin Des criptions  
PIN NUMBER  
FUNCTION  
DESCRIPTION  
1
Force AIS  
Pin 19 must be at logic ‘0’ to enable this pin. A logic ‘1’ on this pin forces OUT1 and OUT2 to all ‘1’s. A logic  
‘0’ on this pin allows normal operation.  
2, 5  
Mode Select 1,  
Mode Select 2  
MS1  
MS2  
Functions As  
AMI  
0
0
1
1
0
1
0
1
B8ZS  
B6ZS  
HDB3  
3
4
NRZ Data In  
CLK ENC  
Input data to be encoded into ternary form. The data is clocked by the negative going edge of CLK ENC.  
Clock encoder, clock for encoding data at NRZ Data In.  
6
NRZ Data Out  
CLK DEC  
Decoded data from ternary inputs A and B .  
IN IN  
7
Clock decoder, clock for decoding ternary data on inputs A and B .  
IN IN  
8, 9  
Reset AIS, AlS Logic ‘0’ on Reset AIS resets a decoded zero counter and either resets AIS output to zero provided 3 or more  
zeros have been decoded in the preceding Reset AIS period or sets AlS to ‘1’ if less than 3 zeros have been  
decoded in the preceding two Reset AlS periods. A period of Reset AlS is defined from the bit following the  
bit during which Reset AlS makes a high to low transition to the bit during which Reset AIS makes the next  
high to low transition.  
10  
11  
12  
V
Ground reference.  
SS  
Error  
A logic ‘1’ indicates that a violation of the line coding scheme has been decoded.  
Clock  
“OR” function of A and B for clock regeneration when pin 14 is at logic ‘0’, “OR” function of OUT1 and  
IN IN  
OUT2 when pin 14 is at logic ‘1’.  
13, 15  
A
, B  
IN IN  
Inputs representing the received PCM signal. A = ‘1’ represents a positive going ‘1’ and B = ‘1’ represents  
IN IN  
a negative going ‘1’. A and B are sampled by the positive going edge of CLK DEC. A and B may be  
IN IN IN IN  
interchanged.  
3
HC-5560  
Pin Des criptions (Continued)  
PIN NUMBER  
FUNCTION  
DESCRIPTION  
14  
LTE  
Loop Test Enable, this pin selects between normal and loop back operation. A logic ‘0’ selects normal  
operation where encode and decode are independent and asynchronous. A logic ‘1’ selects a loop back  
condition where OUT1 is internally connected to A and OUT2 is internally connected to B . A decode clock  
IN IN  
must be supplied.  
16, 17  
18  
OUT1, OUT2  
Outputs representing the ternary encoded NRZ Data In signal for line transmission. OUT1 and OUT2 are in  
return to zero form and are clocked out on the positive going edge of CLK ENC. The length of OUT1 and  
OUT2 is set by the length of the positive clock pulse.  
Reset  
A logic ‘0’ on this pin resets all internal registers to zero. A logic ‘1’ allows normal operation of all internal  
registers.  
19  
20  
Output Enable  
A logic ‘1’ on this pin forces outputs OUT1 and OUT2 to zero. A logic ‘0’ allows normal operation.  
Power to chip.  
V
DD  
level at the Alarm Indication Signal (AlS) output. This is also  
known as Blue Code. The AlS output is set to a high level  
Functional Des cription  
The HC-5560 TRANSCODER can be divided into six sections:  
transmission (coding), reception (decoding), error detection, all  
ones detection, testing functions, and output controls.  
when less than three zeros are received during one period of  
Reset AIS immediately followed by another period of Reset  
AlS containing less than three zeros. The AIS output is reset  
to a low level upon the first period of Reset AlS containing 3  
or more zeros.  
The transmitter codes a non-return to zero (NRZ) binary  
unipolar input signal (NRZ Data In) into two binary unipolar  
return to zero (RZ) output signals (OUT1, OUT2). These  
output signals represent the NRZ data stream modified  
according to the selected encoding scheme (i.e., AMl, B8ZS,  
B6ZS, HDB3) and are externally mixed together (usually via  
a transistor or transformer network) to create a ternary  
bipolar signal for driving transmission lines.  
A logic high level on LTE enables a loopback condition  
where OUT1 is internally connected to A and OUT2 is  
IN  
internally connected to B (this disables inputs A and B  
IN IN  
IN  
to external signals). In this condition, NRZ Data In appears  
at NRZ Data Out (delayed by the amount of clock cycles it  
takes to encode and decode the selected line code). A  
decode clock must be supplied for this operation.  
The receiver accepts as its input the ternary data from the  
transmission line that has been externally split into two binary  
The output controls are Output Enable and Force AlS. These  
pins allow normal operation, force OUT1 and OUT2 to zero,  
or force OUT1 and OUT2 to output all ones (AIS condition).  
unipolar return to zero signals (A and B ). These signals are  
IN IN  
decoded, according to the rules of the selected line code into  
one binary unipolar NRZ output signal (NRz Data Out).  
The encoder and decoder sections of the chip perform  
independently (excluding loopback condition) and may  
operate simultaneously.  
Line Code Des criptions  
AMl, Alternate Mark Inversion, is used primarily in North  
American T1 (1.544MHz) and T1C (3.152MHz) carriers.  
Zeros are coded as the absence of a pulse and ones are  
coded alternately as positive or negative pulses. This type of  
coding reduces the average voltage level to zero to eliminate  
DC spectral components, thereby eliminating DC wander. To  
simplify timing recovery, logic 1’s are encoded with 50% duty  
cycle pulses.  
The Error output signal is active high for one cycle of CLK  
DEC upon the detection of any bipolar violation in the  
received A and B signals that is not part of the selected  
IN IN  
line coding scheme. The bipolar violation is not removed,  
however, and shows up as a pulse in the NRZ Data Out  
signal. In addition, the Error output signal monitors the  
received A and B signals for a string of zeros that  
IN IN  
e.g.,  
violates the maximum consecutive zeros allowed for the  
selected line coding scheme (i.e., 15 for AMI, 8 for B8ZS, 6  
for B6ZS, and 4 for HDB3). ln the event that an excessive  
amount of zeros is detected, the Error output signal will be  
active high for one cycle of CLK DEC during the zero that  
exceeds the maximum number. In the case that a high level  
should simultaneously appear on both received input signals  
PCM CODE  
0
0
0
1
0
1
1
1
0
1
0
0
0
0
0 1  
AMI CODE  
To facilitate timing maintenance at regenerative repeaters  
along a transmission path, a minimum pulse density of logic  
1’s is required. Using AMl, there is a possibility of long  
strings of zeros and the required density may not always  
exist, leading to timing jitter and therefore higher error rates.  
A
and B a logical one is assumed and appears on the  
IN  
IN  
NRZ Data Out stream with the Error output active.  
An input signal received at inputs A and B that consists  
IN IN  
of all ones (or marks) is detected and signaled by a high  
4
HC-5560  
A method for insuring minimum logic 1 density by substituting  
Another coding scheme is HDB3, high density bipolar 3, used  
primarily in Europe for 2.048MHz and 8.448MHz carriers. This  
code is similar to BNZS in that it substitutes bipolar code for 4  
consecutive zeros according to the following rule:  
bipolar code in place of strings of 0’s is called BNZS or Bipolar  
with N Zero Substitution. B6ZS is used commonly in North  
American T2 (6.3212MHz) carriers. For every string of 6  
zeros, bipolar code is substituted according to the following  
rule:  
1. If the polarity of the immediate preceding pulse is (-) and  
there have been an odd (even) number of logic 1 pulses  
since the last substitution, each group of 4 consecutive  
zeros is coded as 000-(+00+).  
• If the immediate preceding pulse is of (-) polarity, then  
code each group of 6 zeros as 0+- 0+-, and if the  
immediate preceding pulse is of (+) polarity, code each  
group of 6 zeros as 0+- 0-+.  
2. If the polarity of the immediate preceding pulse is (+) then  
the substitution is 000+(-00-) for odd (even) number of  
logic 1 pulses since the last substitution.  
One can see the consecutive logic 1 pulses of the same  
polarity violate the AMI coding scheme.  
e.g.,  
4
4
e.g.,  
0
0
0
0
1
0
1
1
1
0
+
0
0
0
0
0
+
0
0 1  
PCM CODE  
HDB3 (-)  
6
-
0
0
0
PCM CODE  
B6ZS (-)  
0
0
0
1
0
1
1
1
0
0
0
0
0
0
+
0
1
V
-
-
0
+
V
V
V
+
-
-
0
0
0
0
0
V
HDB3 (+)  
+
+
0
-
0
-
V
B6ZS (+)  
V = VIOLATION  
V
The 3 in HDB3 refers to the coding format that precludes  
strings of zeros greater than 3. Note that violations are  
produced only in the fourth bit location of the substitution  
code and that successive substitutions produce alternate  
polarity violations.  
V
V = VIOLATION  
B8ZS is used commonly in North American T1 (1.544MHz)  
and T1C (3.152MHz) carriers. For every string of 8 zeros,  
bipolar code is substituted according to the following rules:  
1. If the immediate preceding pulse is of (-) polarity, then  
code each group of 8 zeros as 000-+ 0+-.  
2. If the immediate preceding pulse is of (+) polarity then  
code each group of 8 zeros as 000+-0-+.  
e.g.,  
8
1
0
1 0  
0
0
0
0
0
0
0
0
0
0
1
1
0
PCM CODE  
B8ZS (-)  
+
0
+
-
-
V
V
-
-
0
0
0
+
0
+
B8ZS (+)  
V
V = VIOLATION  
The BNZS coding schemes, in addition to eliminating DC  
wander, minimize timing jitter and allow a line error  
monitoring capability.  
5
HC-5560  
Application Diagram  
5V  
V
DD  
FROM CODEC OR  
T1, T2, T1C,  
PCM 30  
LINE OUTPUT  
NRZ DATA IN  
ENCODER  
OUT1  
OUT2  
TRANSCODER  
V+  
ENCODER CLOCK  
CLK ENC  
FORCE AIS  
MS1  
MS2  
MODE SELECT  
LOGIC INPUTS  
LTE  
CONTROL  
CLOCK  
CLOCK RECOVERY  
ALARM CLOCK  
ALARM  
RESET  
OUTPUT  
ENABLE  
RESET AIS  
AIS  
ERROR  
MONITORS  
ERROR  
ERROR  
±
±
A
DECODER  
NRZ DATA OUT  
IN  
LINE  
INPUT  
DIFF  
AMP  
TO CODED OR TRANSCODER  
B
IN  
V+  
MS1  
MS2  
SELECTS  
CLK DEC  
V
SS  
0
0
1
1
0
1
0
1
AMI  
B8ZS  
B6ZS  
HDB3  
DECODER CLOCK  
Timing Waveforms  
1
f
CL  
t
t
FCL  
RCL  
90%  
50%  
CLK ENC  
10%  
t
t
S
H
50%  
50%  
NRZ DATA IN  
t
DD  
50%  
50%  
OUT 1, OUT 2  
t
W
FIGURE 1. TRANSMITTER (CODER) TIMING WAVEFORMS  
6
HC-5560  
Timing Waveforms (Continued)  
1
f
CL  
t
t
RCL  
FCL  
CLK DEC  
90%  
50%  
10%  
t
t
H
S
50%  
A
, B  
IN IN  
50%  
CLOCK  
t
DD  
50%  
NRZ DATA OUT  
FIGURE 2. RECEIVER (DECODER) TIMING WAVEFORMS  
50%  
50%  
CLK DEC  
t
S2  
t
H2  
RESET AIS  
50%  
50%  
t
t
PD5  
S2  
AIS OUTPUT  
50%  
t
PD4  
ERROR OUTPUT  
50%  
FIGURE 3. RESET AIS INPUT, AIS OUTPUT, ERROR OUTPUT  
CLK DEC  
RESET AIS  
NRZ DATA OUT  
AIS  
FIGURE 4.  
Two consecutive periods of Reset AIS, each containing less than three zeros, sets AIS to a logic ‘1’ and remains in a logic ‘1’ state  
until a period of Reset AIS contains three or more zeros.  
7
HC-5560  
Timing Waveforms (Continued)  
CLK DEC  
RESET AIS  
NRZ DATA OUT  
AIS  
FIGURE 5.  
Zeros which occur during a high to low transition of Reset AIS are counted with the zeros that occurred before the high to low  
transition.  
NRZ DATA IN  
CLK ENC  
OUT 1  
AMI  
OUT 2  
OUT 1  
OUT 2  
S
S
S
HDB3  
B6ZS  
B8ZS  
S
S
S
S
S
S
OUT 1  
OUT 2  
S
S
OUT 1  
OUT 2  
S
3 1/2 CYCLES  
5 1/2 CYCLES  
FIGURE 6. ENCODE TIMING AND DELAY  
Data is clocked on the negative edge of CLK ENC and appears on OUT1 and OUT2. OUT1 and OUT2 are interchangeable.  
Bipolar violations and all other pulses inserted by the line coding scheme to encode strings of zeros are labeled with an “S”.  
8
HC-5560  
Timing Waveforms (Continued)  
CLK DEC  
A
B
AMI  
IN  
IN  
NRZ DATA OUT  
HDB3  
S
S
S
S
S
A
B
IN  
IN  
S
S
S
S
NRZ DATA OUT  
S
S
S
S
B6ZS  
A
B
IN  
IN  
S
S
S
S
S
NRZ DATA OUT  
S
S
S
S
B8ZS  
A
B
IN  
IN  
S
S
S
S
NRZ DATA OUT  
4 CYCLES  
6 CYCLES  
8 CYCLES  
FIGURE 7. DECODE TIMING AND DELAY  
Data that appears on A and B is clocked by the positive edge of CLK DEC, decoded, and zeros are inserted for all valid line  
IN IN  
code substitutions. The data then appears in non-return to zero to zero form at output NRZ Data Out. A and B are  
IN  
IN  
interchangeable.  
CLK DEC  
S
S
E
A
B
IN  
IN  
S
S
E
E
NRZ DATA  
OUT  
ERROR  
FIGURE 8.  
The ERROR signal indicates bipolar violations that are not part of a valid substitution.  
9
HC-5560  
Dual-In-Line Plas tic Packages (PDIP)  
E20.3 (JEDEC MS-001-AD ISSUE D)  
N
20 LEAD DUAL-IN-LINE PLASTIC PACKAGE  
E1  
INDEX  
AREA  
INCHES  
MILLIMETERS  
1 2  
3
N/2  
SYMBOL  
MIN  
MAX  
0.210  
-
MIN  
-
MAX  
5.33  
-
NOTES  
-B-  
-C-  
A
A1  
A2  
B
-
4
-A-  
0.015  
0.115  
0.014  
0.045  
0.008  
0.980  
0.005  
0.300  
0.240  
0.39  
2.93  
0.356  
1.55  
0.204  
24.89  
0.13  
7.62  
6.10  
4
D
E
BASE  
PLANE  
0.195  
0.022  
0.070  
0.014  
1.060  
-
4.95  
0.558  
1.77  
0.355  
26.9  
-
-
A2  
A
-
SEATING  
PLANE  
L
C
L
B1  
C
8
D1  
B1  
-
eA  
A1  
A
D1  
e
D
5
eC  
C
B
eB  
D1  
E
5
0.010 (0.25) M  
C
B S  
0.325  
0.280  
8.25  
7.11  
6
E1  
e
5
NOTES:  
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
-
1. Controlling Dimensions: INCH. In case of conflict between English  
and Metric dimensions, the inch dimensions control.  
e
e
6
A
B
-
0.430  
0.150  
-
10.92  
3.81  
7
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
L
0.115  
2.93  
4
9
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2  
of Publication No. 95.  
N
20  
20  
4. Dimensions A, A1 and L are measured with the package seated in  
Rev. 0 12/93  
JEDEC seating plane gauge GS-3.  
5. D, D1, and E1 dimensions do not include mold flash or protrusions.  
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).  
e
6. E and  
dicular to datum  
7. e and e are measured at the lead tips with the leads uncon-  
are measured with the leads constrained to be perpen-  
A
-C-  
.
B
C
strained. e must be zero or greater.  
C
8. B1 maximum dimensions do not include dambar protrusions. Dam-  
bar protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,  
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
10  

相关型号:

HC-577

Hybrid Assemblies OPTIC RECEIVER MODULES
ETC

HC-577M

Hybrid Assemblies OPTIC RECEIVER MODULES
ETC

HC-6

Make & Break Load Switching
TE

HC-6/115VDC

Make & Break Load Switching
TE

HC-6/12VDC

Make & Break Load Switching
TE

HC-630

Hybrid Assemblies OPTIC RECEIVER MODULES
ETC

HC-637M

Hybrid Assemblies OPTIC RECEIVER MODULES
ETC

HC-677

Hybrid Assemblies OPTIC RECEIVER MODULES
ETC

HC-677M

Hybrid Assemblies OPTIC RECEIVER MODULES
ETC

HC-707

Hybrid Assemblies OPTIC RECEIVER MODULES
ETC

HC-ADV-B06-HHWH-1SGM25-PL

Connector Accessory,
PHOENIX

HC-ADV-B06-HHWH-1TGM25-PL

Connector Accessory,
PHOENIX